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Robust Identification from Band-Limited Data

L. Baratchart, J. Leblond, J. R. Partington, and N. Torkhani

Abstract— Consider the problem of identifying a scalar bounded-
input/bounded-output stable transfer function from pointwise measure-
ments at frequencies within a bandwidth. We propose an algorithm which
consists of building a sequence of maps from data to models converging
uniformly to the transfer function on the bandwidth when the number of
measurements goes to infinity, the noise level to zero, and asymptotically
meeting some gauge constraint outside. Error bounds are derived, and
the procedure is illustrated by numerical experiments.

Index Terms—Approximate modeling, linear systems, Nehari extension,
robust identification.

I. INTRODUCTION

This paper is concerned with the problem of harmonic identifica-
tion, that is, of recovering a single-input/single-output (SISO) and
bounded-input/bounded-output (BIBO)-stable transfer function from
a family of experimental pointwise values on the imaginary axis. Such
data are common in engineering practice as they may be obtained
from asymptotic outputs associated to sine inputs or from numerical
simulations of distributed parameter systems (see [6] and [17], for
example). In [9], a setting to approach this issue was proposed in
which the error in measurements is handled in a deterministic fashion,
and the identification procedure consists of a map from finite sets
of data to (stable) transfer functions that converge uniformly to the
“true” transfer function when the noise goes uniformly to zero and
the number of data goes to infinity.

In the present work, we shall consider the (realistic) case where
the experiments are only available in some range of frequencies
corresponding to the bandwidth of the system. In this case, none
of the algorithms that were proposed [8], [9], [11], [12] converges,
and we shall see that the setting itself has to be modified. We shall
adapt to the new situation by requiring the map from data to models
to converge uniformly in the bandwidth while meeting some norm
constraints at remaining frequencies.

Our working space will be the unit disc rather than the half-
plane, the two frameworks being equivalent by means of a Möbius
transform. Since the transfer function of a BIBO-stable system is
continuous on the imaginary axis, including at infinity, a model for
us has to be found in the disc algebra.

LetH1 be the familiar Hardy space of bounded analytic functions
in the disc andA( ) (the disc algebra) be the subspace of such
functions that are continuous on the closed disc. On a couple of
occasions in this section, we shall also use the symbolH1 to mean
the Hardy space of the right half-plane�+ = fs 2 C; Res > 0g,
but the context will always keep the meaning clear. The algebra
A(�+) of the right half-plane will then consist of those functions
in H1 of this half-plane that extend continuously to the imaginary
axis, including at infinity. The symbolC(X) stands for the space
of complex continuous functions onX endowed with the sup norm.
SpacesX used in this paper will be arcs on the unit circle or intervals
on the imaginary axis.

Manuscript received February 25, 1995; revised July 25, 1996.
L. Baratchart, J. Leblond, and N. Torkhani are with INRIA, BP 93, 06902

Sophia-Antipolis Cedex, France (e-mail: leblond@sophia.inria.fr).
J. R. Partington is with the School of Mathematics, University of Leeds,

Leeds LS2 9JT, U.K.
Publisher Item Identifier S 0018-9286(97)05053-8.

In the problem of robustH1 identification of functions in the
disc algebra as stated in the above-mentioned references, one is
given experimental data as complex numbers(ak)

N
k=�N = (f(zk)+

�k)
N
k=�N , where f is an unknown function in the disc algebra

A( ), and z�N ; � � � ; zN are points on the unit circle , while
(��N ; � � � ; �N) is some unknown but bounded noise sequence which
can be due to nonlinear effects or measurement errors, for example.
From the(ak), one wishes to construct an approximationfN such
that in the limit, as the noise level tends to zero and the number of
observations tends to infinity, one has convergence in theH1 norm,
that is

lim sup
k�k ��

kfN � fk1 = 0; for all f 2 A( ): (1)

This convergence requirement corresponds to a continuity property
of the modelfN with respect to the number of measurements and
the noise level, as explained in Remark 1 below. To approach this
problem, a two-stage algorithm has been found useful [8], [9], [11],
[12]. To proceed, one first computes a trigonometric polynomialpN
which interpolates the given data (but is not inA( )), and one
applies then the (nonlinear) Nehari extension [19] to obtain the best
approximation topN by a functionfN bounded and analytic in the
disc (it will in fact be rational).

When the points(zk) are equally spaced on the circle,pN can
be obtained using the classical Jackson or de la Vallée–Poussin
trigonometric polynomials [11], [20]. When the points are not equally
spaced, the problem becomes computationally harder, but one can
design a transformation from the given points into equally spaced
ones and proceed as before (see, e.g., [13]) or else rely on a more
general principle of linear programming [14].

In the last reference, the overall error of the identification procedure
can be expressed as a sum of two terms, one corresponding to the
noise and the other to the maximum gap between the interpolation
points. One such theoretical bound is4� + 5dist (f; Pp), where
� � k�k1 and Pp is the space of polynomials of degreep and
the maximum gap is less than1=p. Thus, the error goes to zero as
�! 0, provided the maximum gap between the measurement points
(zk) goes to zero.

However, in practical applications, one may not be able to measure
f at all points on the circle. For example, in the identification
of continuous-time, linear, time-invariant, and BIBO-stable control
systems by frequency response measurements, which can be reduced
to the above problem by means of the Möbius transformations =

(1 + z)=(1� z) andG(s) = f(z) whereG is the transfer-function,
one is not able to measureG(i!) for arbitrarily high values of
!. Moreover, one is not normally concerned about modelingG

arbitrarily well at high frequencies. In some cases, one may even
prefer to have a linear model valid for a restricted set of frequencies,
since the linearity assumption would hold only locally with respect
to the frequency. In these circumstances, no algorithm can guarantee
uniform convergence over the whole imaginary axis without further
a priori knowledge onG [14]. It is nevertheless natural to ask
whether the unknown functionG can be recovered in a robust
fashion at least in the range of frequencies where measurements
are available, through a model which is still under control at the
remaining frequencies.

Let us stay with the half-plane for a while and discuss a bit further
the situation where measurements are only available in the bandwidth,
say
. In this connection, some work on band-limited identification
has been published by Bai and Raman [1] in which they essentially
approximate separately the real and imaginary parts of the transfer
function by polynomials over the frequency interval
, plugging
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in some arbitrary polynomial weight of sufficiently high degree to
become the denominator off the approximant so as to end up with a
stable and proper model. In doing so, they are not concerned about
controlling the behavior of the set
 and, since their scheme is (real)
linear, it is a routine matter to check, by the same arguments as in
[12], that their sequence of estimates is unbounded outside
 for
almost every noise inl1 (i.e., for every noise sequence in a set of
second category in the sense of Baire). In fact, we claim thatanyH1

band-limited identification schememustincorporate some constraints
that impinge on the behavior of the transfer-function outside
. This
can be inferred from two facts.

1) In the spaceC(
), the subspaceA(�+)j
 obtained by re-
stricting A(�+) to 
 is dense.

2) If G 2 C(
) does not belong toA(�+)j
, any sequence of
functions inA(�+) (or even inH1) that converges toG on

 is unbounded inH1.

Fact 1) is an easy consequence of Runge’s theorem, while Fact
2) follows from the weak–� compactness of balls inH1, and we
refer the reader to [2] for a proof which is phrased on the disc rather
than the half-plane (and also works inLp

(
) for 1 � p � 1).
Altogether, 1) and 2) indicate that no matter the data, we can always
construct an excellent model on
 at the cost of nearly destabilizing
it at the remaining frequencies, a problem which is familiar to
identification practitioners. At this point, it is perhaps interesting to
draw a parallel with the seemingly different process of stochastic
parametric identification; there, the constraints on the model are often
imposed in terms of bounded rational degree, and the analog of the
above-mentioned phenomenon would be that allowing the degree to
grow too large destabilizes the model because it starts fitting the noise.

It might be argued that all one needs to do is to prescribe plausible
values for G outside the bandwidth and to use standard robust
identification techniques. However, this approach would prevent us
from recoveringG asymptotically on
. Indeed, Fact 1) is not
applicable to the whole axis, and we should incur an irreducible
error at each frequency.

In this paper, we choose to constrain the behavior of the model to
lie within some tolerance of a prescribed function at nonmeasured
frequencies. Thus, back to the disc, we propose the following
modified setup. We suppose that0 < a < � and considerI =

fei�: a � � � 2� � ag, which is a proper closed symmetric subarc
of the unit circle. We defineJ to be the closure of the complement
of I, i.e., J = fei�: � a � � � ag. Also, we define the norm

kgkI;1 = esssupfjg(ei�)j: ei� 2 Ig (2)

for g in L1(I) and similarly forJ .
We provide ourselves with measurementsak = f(zk) + �k, with

k = �N; � � � ; N , where thezk all lie within I with z�N = e�ia

and zN = eia. We shall assume that the functionf satisfies ana
priori estimate of the form

jf(z)� h(z)j � r(z); for all z 2 J (3)

for some functionsh andr belonging toC(J), with r a nonnegative
gauge function that vanishes at the endpoints ofJ .

This may seem absurd sincef cannot be known exactly and
thereforeh cannot be determined to within a precision less than�.
However, there is actually no contradiction since, in the algorithm,
the values of h, just like those of f, are assumed to be available only
up to an uncertainty of�.

Our aim is to find an approximate modelfN of f on I converging
robustly onI, namely

lim sup
k�k ��

kfN � fkI;1 = 0:

Moreover, we also require that this approximation procedure asymp-
totically meets the gauge constraint onJ

lim sup
k�k ��

sup
z2J

jfN(z)� h(z)j � r(z) � 0:

However, from our incomplete set of data, we cannot constrain the
model fN to converge robustly tof on the whole circle; onJ , we
will only get that fN converges weakly–� to f

lim
N!1 J

fNud� =
J

fud�; for all u 2 L
1
(J):

Note also that this scheme is not untuned in the terminology of [9],
and this is natural since we emphasized the necessity of constraining
the model onJ in one way or another. Here, we need a pointwise
bound of the form (3) onJ .

A few comments on the role ofr are perhaps in order. On the one
hand, it seems more secure to chooser to be large onJ so that (3)
will be satisfied for a large class of functionsh. On the other hand,
if one wants to get accurate modeling at infinity, it is necessary to
have a good guess for the behavior off outside the bandwidth, that
is, to be able to maker small. Indeed, the approximationfN to f

that we are about to construct is such thatjfN � hj ! r uniformly
on J asN !1 and�! 0. Thus, if jf �hj is significantly smaller
thanr, the values off andfN will not be close to each other onJ
and the weak–� convergence offN to f will causefN to oscillate
on J with an amplitude which depends on the size ofr. Still, the
modelfN asymptotically meets the gauge constraint (3) which is the
main feature of our approach and warrants applications where one is
not so much concerned with the behavior at high frequencies except
for its boundedness.

In this paper, we describe an identification procedure meeting the
above requirements and derive error bounds in the case of equally
spaced points with a suitable choice ofh (Section II); the procedure
rests on an extension of results demonstrated in [2]. We then report on
a numerical experiment from real data measured on a hyperfrequency
filter by the French National Center for Spacial Research (CNES);
see Section III.

We shall make the standing assumption, required for system-
theoretical reasons though not for mathematical ones, that the un-
known functionf and the analytic modelfN we are seeking are real
symmetric, namely thatf(�z) = f(z) and the same forfN . Thus we
need only take measurements ina � � � � and obtain the others
by complex conjugation. The reference functionh is also assumed to
verify this hypothesis on the (symmetric) arcJ .

II. A N ALGORITHM FOR APPROXIMATE MODELING

Suppose, for some unknown functionf 2 A( ), that we are given
the values(ak) = (f(zk) + �k)

N
k=�N , wherezk belongs toI and

(�k) is a noise sequence, assumed to be�-small in the l1 norm.
We also assume thatz0 = �1 and thatz�k = �zk, a�k = �ak, and
��k = ��k for 1 � k � N , which is the real-symmetric assumption
made above.

Although we are seeking models inA( ) only, we shall need to
make excursions intoH1. If g 2 H1 andsupz2 jg(z)j = kgk1,
recall (see, e.g., [10, ch. 3]) that the radial limitlimr!1 g(re

i�
)

exists for almost every� (even nontangential limits exist), and this
serves as a definition forg(ei�). In this way, g(ei�) becomes a
member ofL _1( ), with normkgk1, whose Fourier coefficients
of negative index do vanish and whose restriction to any subset of
positive measure on is nonzero ifg is nonzero.

Given functions� 2 L1(I); � 2 L1(J) we denote by�_� the
L1( ) function which is equal to� on I and to� on the interior
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�

J of J ; when inf � > 0 and inf � > 0, we also denote byw�; �

the outer function

w�;� = exp
1

2�

�

��

ei� + z

ei� � z
log (� _ �) d� : (4)

This function is characterized by the following properties (see,
e.g., [10, ch. 5]):w�;�(0) > 0; w�; � andw�1�; � are both inH1,
and jw�; � j = � _ �, that is

jw�; �(z)j =
�(z); a.e. onI;

�(z); a.e. on
�

J .
(5)

Moreover, observe thatw�;� = w�; 1 w1; � so that w�1

�; � =

w1=�; 1=� .
Given a complex numberc we let ec(ei�) be the function defined

on J by

ec(e
i�
) =

1

2a
(c(�+ a)� �c(� � a)) (6)

thus,ec is linear in� and satisfiesec(eia) = c andec(e�ia) = �c. All
we shall need beyond the valuesak to make our procedure effective
is to specify numericallyr and approximate valuesbk of h at points
z0k on J . When nothing is known on the shape off except being
proper and stable, a particularly simple choice ish = ef(e ) and
bk = ea (z0k) on J ; since� is a bound forjef(e )�ea j on J , this
allowsh to be assigned numerically up to some precision less than�.
There is nothing so special about the functionec defined in (6) except
that ec(eia) = c, ec(e�ia) = �c, and ec goes uniformly to zero on
J with c; any function with the same properties could be used in its
place, and this choice was mainly for simplicity and definiteness. If
one wants a strictly proper model, one may use quadratic interpolants
rather than linear ones forh to interpolate the value zero at one. We
then need to chooser large enough so that (3) is satisfied. Of course,
there is no way to ensure beforehand that it is the case, and this
is revealeda posteriori only if the convergence gets ruined, which
means thatr is too small somewhere onJ .

We begin with a result asserting that robust band-limited identifica-
tion, as defined in the introduction, is possible at least whenr satisfies
a Lipschitz condition. The arguments in the proof will turn out to be
constructive, providing us with an algorithm to solve the problem.
Although, in practice, we use only a finite number of measurement
points, it is convenient to state the convergence result in terms of an
infinite sequence.

Theorem 2.1 (Convergence Result):Assume the sequence(zk) is
dense inI, and let (z0k) be a sequence dense inJ . Let r be
a nonnegative Lipschitz-continuous function onof exponent�,
0 < � � 1, which is zero onI. For everyN , M 2 IN, there exists
a mappingTr;N;M : CN+1 � CM ! A( ) such that writing

E(N; M; f; h; a; b) = sup
z2

[jTr; N;M(a0; � � � ; aN ; b1; � � � ; bM)(z)

� f _ h(z)j � r(z)]

for f 2 L1(I) andh 2 L1(J), we have

E(N; M; f; h; a; b)! 0 asN; M !1 and�! 0 (7)

where� = maxfjak � f(zk)j; jbk � h(z0k)jg, provided thatf _ h 2
C( ) and jf � hj � r on J .

Remark 1: The robustness property (7) is to be interpreted prac-
tically as a continuity property ofE with respect toN , M , and
�. More precisely, it means that for every�0 > 0, there exist
N0; M0 > 0; and �0 > 0 such that ifN > N0, M > M0, and
� < �0, thenE(N; M; f; h; a; b) < �0. In particular, sincer is zero
on I, (7) implies that, for� small enough andN;M large enough,
Tr;N;M(a0; � � � ; aN ; b1; � � � ; bM) is near to f in L1(I) while

Tr;N;M(a0; � � � ; aN ; b1; � � � ; bM) � h is approximately bounded
by r on J .

In the case where measurements are equally spaced, we get the
following more precise bounds forE . We write!f for the modulus
of continuity of f , that is

!f(�) = sup

j���j��

jf(e
i�
)� f(e

i�
)j (8)

and letPs denote the space of trigonometric polynomials of degree
at mosts.

Theorem 2.2 (Error Estimates):Suppose that we are given�
points (zk)Nk=�N and (z0k)

M
k=�M that are equally spaced on and

s � 1

4
(� � 1). Then, there is a choice ofh 2 C(J) such that with

f̂ = f _ h, E(N; M; f; h; a; b) satisfies

E(N; M; f; h; a; b) � 4 (2 + 1=s)(dist(f̂ ; Ps) + �) (9)

where

dist(f̂ ; Ps) �
3

2
max
0���1

!f
��

s+ 1
+ (1� �)

�

s+ 1

kfkI;1

a
:

(10)

Remark 2: Observe that the bounds given by (9) and
(10) are explicit and satisfy (7) of Theorem 2.1 (where
Tr;N;M(a0; � � � ; aN ; b1 � � � ; bM) is taken to befN ). It is of
perhaps more interest to have a bound forjf � fN j on J , and this
follows immediately from the triangle inequality as well, giving onJ

jf � fN j � E(N; M; f; h; a; b) + r:

Before proving Theorem 2.1, we need to establish a few facts
concerning a bounded (dual) extremal problem, which plays here the
same role as the Nehari extension does in robust identification over
the whole circle. These results will extend some of those established
in [2].

For every pair of functions�; � 2 C(J) with � > 0, we define

B�; � = f
 2 H1; j� � 
j � � a.e. onJg:

Proposition 1: Let  be in L1(I); h and � be in C(J) with
� > 0, and consider the following minimization problem:

k � g0kI;1 = min
g2B

k � gkI;1 = �1: (11)

1) Problem (11) admits a solutiong0 2 B�;h; when  _ h 2

H1 + C( ), the solutiong0 is unique. We assume now that
 is not already the trace onI of a function inB�;h so that
�1 > 0.

2) When _ h 2 H1 + C( ), we have that

j � g0j = �1; a.e. onI,
jh� g0j = �; a.e. onJ .

3) The functiong0 is a solution to problem (11) if and only if

v0 = g0 w1=� ; 1=� (12)

is a solution to the implicit Nehari problem

min
v2H

k( _ h)w1=� ;1=� � vk1

= k( _ h)w1=� ;1=� � v0k1 = 1: (13)
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Proof: The case where� is constant onJ is contained in [2,
Ths. 3 and 4]. What we need here is to consider an arbitrary positive
function � 2 C(J).

The first step is to make sure thatB�; h is nonempty. For this, put
m = minJ � > 0. Since anyg 2 H1 such thatkg � hkJ;1 � m

belongs toB�; h, the conclusion follows from the density ofA( )j

in C(J) already pointed out (but for the half-plane) as Fact 1) in
Section I. Next, setting


 = g w1; 1=� (14)

and taking (5) into account, we get

min
g2B

k � gkI;1 = min

2B

k � 
 w
�1

1; 1=�kI;1

= min

2B

k w1; 1=� � 
kI;1 = �1:

(15)

We are now back to the case of a constant bound onJ so that the
cited results of [2] apply. This yields
0 realizing the infimum above,
henceg0 = 
0 w

�1

1; 1=� as asserted in 1). If _ h 2 H1 + C( ),
so does( _ h) w1; 1=� sinceH1 + C( ) is an algebra (see, e.g.,
[7, IX, Th. 2.2]; again from [2], we get uniqueness of
0, hence of
g0, thereby proving 1).

We turn to the proof of 2) and we observe, since�1 > 0 by
assumption, that [2, Th. 4] impliesj w1; 1=� � 
0j = �1 a.e. onI
and jhw1; 1=� � 
0j = 1 a.e. onJ . Now, 2) follows at once from
(5) and (14).

With regard to 3), we get from [2, Th. 3] that
0w1=� ; 1 is the
solution to (13) and from Section IV of the cited paper that the value
of this problem is indeed one. Now, (12) follows immediately from
(14).

Notice that�1 is definedby (11) so that the weightw1=� ; 1=�

depends on�,  , and h through �1. Hence, (13) is an implicit
equation, and the right value for�1 is the one that makes the infimum
equal to one. That such a value is unique will follow from Lemma
2.2 below.

We are now in a position to establish our main result.
Proof of Theorem 2.1:The first step is to construct a trigono-

metric polynomial pN , say of degreed, depending ona0; � � � ;
aN ; b1; � � � ; bM and interpolation pointsz0; � � � ; zN ; z01; � � � ; z

0
M .

Here, we can use standard robustly convergent interpolation proce-
dures as in [11], [14], and [18] (in reality, we also use conjugate
values at conjugate interpolation points).

However,pN cannot serve as a model because it does not belong
to A( ) in general. IfpN 2 A( ) for someN and someak’s, we
simply setTr;N;M(a0; � � � ; aN ; b1; � � � ; bM) = pN , which meets
all our requirements. We now assume throughout the proof that
pN =2 A( ), and we notice in this case thatpN cannot be the trace of
anyH1 function onI. If g were such a function,zd(pN�g) 2 H1

would vanish onI, hence should vanish identically, yieldingpN = g

so thatpN would be inA( ).
Let

�N(z) = r(z) + "N ; 8z 2 J (16)

for a sequence("N) of positive numbers to be determined later. This
defines a�-Lipschitz-continuous positive function�N on J .

The next stage is to get a functionfN 2 B� ; p solution to the
following bounded extremal problem:

min fkpN � gkI;1; g 2 B� ; p g

= kpN � fNkI;1 = �1(N): (17)

For simplicity, we will write in the sequel�1 = �1(N). It follows
from Proposition 1 that�1 > 0 and thatfN does exist, is unique,

and satisfies

jpN � fN j =
�1; a.e. onI
�N ; a.e. onJ .

(18)

Again from Proposition 1, it follows that (17) is equivalent to finding
vN which solves the Nehari problem

min
v2H

kpNw1=� ; 1=� � vk1

= kpNw1=� ; 1=� � vNk1 = 1 (19)

wherefN and vN are related by

vN = fN w1=� ; 1=� :

This provides us withfN 2 H1, and the problem is now, for
eachN , to choose"N , ensuring thatfN 2 A( ). Observe, indeed,
that for arbitrary values of"N , the outer functionw1=� ;1=� is
discontinuous ate�ia and that neithervN nor a fortiori fN needs to
be continuous on . The following lemma will allow us to obtain
this continuity from an appropriate choice of"N .

Lemma 2.1: Under the hypotheses of Theorem 2.1, and still as-
sumingpN =2 H1, the following assertions hold.

1) For every fixedN , the quantity�1 defined by (17) and (16) is
continuous and decreasing with respect to"N , and the implicit
equation

"N = �1 (20)

admits a solution.
2) For everyN and the choice (20) of"N , the outer function

w1=� ;1=� is Lipschitz-continuous on of exponent�.
3) If f _ h 2 C( ) and jf � hj � r on J , and if for everyN

we choose"N as given by (20), then

lim �1 = 0: (21)

Proof:

1) Observe from the convexity of the setB� ; p and of the norm
function k kI;1 that �1 is a decreasing convex function of
"N and hence is continuous.

Now, pNj 2 C(I) which is contained in theL1(I) closure
of H1j (see [2]), so (16) and (17) imply that�1 ! 0 as
"N ! 1. Thus, for"N large enough,�1 < "N .

Then let"N ! 0. Assume that�1 < "N so that in particular
�1 ! 0. In view of (17), and sincefN remains bounded on
J , this impliespN 2 H1; see [2, Proposition 3], which is a
contradiction. Hence,�1 � "N eventually, which proves 1)
by the intermediate value theorem.

2) Since the gauge functionr is assumed to be�-Lipschitz
on J , so is �N from its definition (16) and also1=�N as
�N � "N > 0. Hence, writingwN = w1=� ;1=� for
simplicity

jwN j =
1=�1 = 1="N = 1=�N(e

�ia); on I,
1=�N ; on J

is �-Lipschitz on , and it remains for us to show thatwN

is also�-Lipschitz. By standard arguments, this reduces to the
analogous result on conjugate functions, see [7, III, Th. 1.3].
This achieves the proof of 2).

3) By the construction ofpN

lim sup
k�k ��

kpN � f _ hk1 = 0: (22)

Choose"N = �1 for eachN , as this is possible by 1), and
assume that (21) is false. Then, (22) implies that forN large
enough and� small enough we will getkpN � hkJ;1 � "N ,
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and, sincejf � hj � r on J by hypothesis, it turns out that
jf � pN j � �N on J . Hence, for suchN and�; f 2 B� ; p

and necessarily�1 � kpN � fkI;1, which, still from (22),
tends to zero asN ! 1; � ! 0, a contradiction. This proves
3) and the lemma.

To complete the proof of Theorem 2.1, choose"N = �1. It follows
from 2) of Lemma 2.1 thatpNw1=� ;1=� is �-Lipschitz hencea
fortiori Dini-continuous on , and the Carleson–Jacobs theorem [7,
IV, Th. 2.1] implies that the solutionvN to (19) belongs toA( ).
Again from 2) of Lemma 2.1

w� ;� = (w1=� ;1=� )
�1

is continuous (since it is�-Lipschitz) so that

fN = vNw� ;�

lies in A( ).
We finally verify thatTr;N;M(a0; � � � ; aN ; b1; � � � ; bM) = fN

does the job. Indeed, onI we have the inequalityjf � fN j �

jf �pN j+ jpN �fN j, and the last term is equal to�1 by (18); thus,
(22) and (21) give the desired behavior onI.

Moreover, onJ , we getjh � fN j � jh � pN j + jpN � fN j and,
since�N = r + �1, the result forJ follows from (18), (21), and
(22). This establishes (7) and ends the proof of Theorem 2.1.

Remark 3: If the data are obtained by the Möbius transform of
measurements in continuous time, the question arises as to whether
the inverse transform offN = Tr;N;M(a0; � � � ; aN ; b1; � � � ; bM) is
the transfer function of a BIBO-stable system. The answer is yes.
Indeed, it follows from [15] that the solution�N of the Nehari
problem associated to the�-Lipschitz functionpNw1=� ; 1=� is
itself �-Lipschitz and hence hasH1 derivative. Hence, so doesfN .
Transforming back to the half-plane yields a functionGN whose
derivative is inH1

(�+). Mimicking the classical proof of Hardy’s
inequality [7, II, ex. 8], one obtains thatGN is the Laplace transform
of some impulse response belonging toL1

(0; 1) plus the constant
fN(1) which is bounded in modulus byjh(1)j+ r(1).

Having established Theorem 2.1, we must tie one loose end to make
the proof constructive, namely how does one find in practice�1 in
order to solve the Nehari problem (19) and to select"N according
to (20). This can be done by a dichotomy procedure which rests on
Lemma 2.2 below.

For every" > 0, define the map�"

�": ] 0; 1[�! ]0; 1[

� 7�! min
v2H

kpNw1=�;1=("+r) � vk1:

Lemma 2.2: If pN 62 H1, then for every" > 0, the map�" is
defined from(0;1) onto(0;1), is continuous, and is monotonically
decreasing.

Proof of Lemma 2.2:Let " > 0. Then for every real� > 0, the
function pNw1=�;1=("+r) 2 H1 + C( ). Hence, by [7, IV, Th. 1.3,
Th. 1.7], there is a unique functionv� 2 H1 such that

�"(�) = kpNw1=�; 1=("+r) � v�k1: (23)

Let �1; �2 > 0; �1 6= �2. Then, from the definition of�", we get

�"(�1) < kpNw1=� ;1=("+r) � w� =� ; 1 v� k1

= kw� =� ; 1 (pNw1=� ;1=("+r) � v� )k1:

That the inequality above is strict follows from the uniqueness of
v� and the fact thatw� =� ; 1 v� 6= v� . Indeed,jpNw1=� ; 1=("+r)�

v� j = �"(�1) and jpNw1=� ; 1=("+r) � v� j = �"(�2) are constant
a. e. on , while

jpNw1=� ; 1=("+r) � w� =� ; 1 v� j = �"(�2)jw� =� ; 1j

assumes different values onI andJ . Therefore

�"(�1) < max
�2

�1
kpNw1=� ;1=("+r) � v� kI;1;

kpNw1=� ;1=("+r) � v� kJ;1

=�"(�2) max
�2

�1
; 1 :

Taking �2 < �1 shows that�" is decreasing, and then�1 < �2
shows that it is continuous.

As a continuous and positive decreasing map,�" has a limit
at 1. Given � > 0, there exists a functiong 2 H1 such that
kpNw1;1=("+r) � gkJ;1 < � becausepNw1; 1=("+r) 2 H1+C( )

andH1j is dense inC(J) (this follows at once from Fact 1) in
Section I). For everyn > 0, we have

�"(n) � kpNw1=n;1=("+r) � gw1=n; 1k1

which implies that forn large enough

�"(n) � max
1

n
kpNw1;1=("+r) � gkI;1 ;

kpNw1;1=("+r) � gkJ;1 < �:

As � is arbitrarily small, we necessarily getlim�!1�"(�) = 0: To
analyze the behavior of�" when � ! 0, we write

�"(�) = max
1

�
kpNw1; 1=("+r) � v� w�; 1kI;1;

kpNw1;1=("+r) � v� w�; 1kJ;1 :

We claim that if the first argument of themax remains bounded as
� ! 0, then the second does not. Indeed,v�w�; 1 would otherwise be
a family of H1 functions converging topNw1=�;1=("+r) in L1(I)

as� tends to zero but remaining bounded onJ ; in view of pN =2 H1,
this would contradict [2, Proposition 3] (Fact 2) of Section I rephrased
on the disc). Thus, we getlim�!0 �"(�) =1. This shows that�"

is onto(0; 1).
By Lemma 2.2, we can associate to every" > 0 a unique

�1(") > 0 such that�"(�1(")) = 1, and�1(") may be computed
by a dichotomy procedure in view of the monotonicity of�".

Given pN , which in turn defines�", what we want to find now
is the unique value" = "N for which �1(") = " so that both (19)
and (20) are satisfied. In view of the monotonicity asserted in 1) of
Lemma 2.1, this can again be solved by dichotomy.

This process, which is somehow similar in spirit to the
-iteration
used inH1-control, settles our constructive approach to Theorem
2.1. However, it requires solving a series of Nehari problems, the
solution of which can be numerically estimated only when the
function to be approximated is continuous. Indeed, in this case, it
can be represented arbitrarily well inL1( ) by a rational function
(using for instance the Jackson polynomials previously introduced
to computepN ) whose Hankel operator has finite rank and thus
possesses a finite singular-value decomposition allowing one to solve
the associated Nehari problem in various fashions (see, e.g., [4] and
[5]).

Now, the typical Nehari problem we must solve here is associated
to a function of the form

pNw1=�;1=("+r) (24)

for some positive numbers" and �, and such a function is clearly
discontinuous ate�ia in general. However, (24) is continuous at any
other point on , because it is even�-Lipschitz there; indeed, an outer



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 9, SEPTEMBER 1997 1323

(a)

(b)

Fig. 1. (a) dist(pN ; H1) = 0:0236 and (b) the gauge functionsr0 and r1 on J .

function whoselog-modulus is�-Lipschitz in the neighborhood of
some point is itself�-Lipschitz at this point. This is the local version
of 2) of Lemma 2.1, and it is proved in the same manner except
that we must appeal, this time, to a local version of the regularity
theorem for conjugate functions (see the proof of [7, III, Corollary
1.4]). To circumvent the discontinuity problem ate�ia, we introduce
another Nehari problem, equivalent to (19). Letp be the first-order
trigonometric polynomial which coincides withpN at e�ia so that
(pN � p)w1=�;1=("+r) is continuous on . The Nehari problem

min
g2H

k(pN � p)w1=�;1=("+r) � gk1 (25)

is clearly equivalent to (19) under the transformationv = g +

pw1=�;1=("+r) and consequently assumes the same value. The di-
chotomy procedures described before may now be performed numer-
ically by solving (25) iteratively, and this was done in the example
presented in Section III.

Proof of Theorem 2.2:We are given that the points(zk) and
(z0k) are the�th roots of unity for some integer�. We take hereh
to be the functionef(e ) defined by (6). The approximate valuesbk
of h on J will be taken to beea (z0k). This choice is mainly for
definiteness and is not essential, although it leads to simpler estimates.
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(a)

(b)

Fig. 2. (a) gauge functionr0; �1 = 0:0122, and (b) gauge functionr1; �1 = 0:00328.

To construct the trigonometric polynomialpN we use the noisy
values (ak)Nk=�N of f on I together with the values(bk) on J

to produce the discrete de la Vallée–Poussin polynomialVs; � with
� � 4s+1, as in [11]. Because� = max fjak�f(zk)j; jbk�h(z0k)jg,
this is equivalent to using measurements off̂ = f _ h with an error
of at most� and hence (see [11, Th. 3.1]):

kf̂ � pNk1 � (4 + 2=s)(dist(f̂ ; Ps) + �):

Now dist (f̂ ; Ps) �
3

2
!f̂ (�=s+1) by Jackson’s theorem [16], which,

given the definition off̂ , implies that (10) holds. One could improve

upon this bound by considering a smoother extensionf̂ to f . One

way to do this would be to chooseh to be a function cubic (in�)

which matchesf and its derivatives at the pointsz
�N (this, of course,

assumes one is able to estimate these derivatives). To get the(bk),

one could use in this case a cubic polynomial matching the noisy

valuesa
�(N�1) and a

�N , as in [14].

Recall now that the final modelfN is the solution to the extremal

problem (17). Moreover, by the proof of Lemma 2.1, we see that

�
1
(N) � kf̂ �pNk1. This gives us the following estimates for the
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error in the identified modelfN :

kf � fNkI;1 � kf � pNkI;1 + kpN � fNkI;1 � 2kf̂ � pNk1

and onJ

jh� fN j � jh� pN j+ jpN � fN j

� kh� pNkJ;1 + (r + �1(N)) � r + 2kf̂ � pNk1:

III. N UMERICAL EXAMPLES

Our main example consists of real data measured on a hyper-
frequencies filter of the CNES. The bandwidthI is defined by
a = �=2, and we are given 801 noisy pointwise values(ak), so
thatN = 400. We first complete these data outside the bandwidth by
rough estimates, and we construct the trigonometric polynomialpN
using discrete de la Vallée–Poussin polynomials. Fig. 1(a) shows the
result of the classical Nehari extension topN , which gives rise to an
error of value 0.0236 inL1( ). We then compute the solutionfN to
the constrained approximation problem associated topN for different
gauge functionsr until an acceptable tradeoff is found between�1
andr; these gauge functions are plotted in Fig. 1(b). If no satisfactory
compromise can be found, one can change the reference behavior on
J , using the previous computations, in order to make a more accurate
choice. The corresponding results are shown in Fig. 2(a) and (b).

We have also considered the functionf(z) = 3(z2 + 1)=(z2 +

2z + 5), already studied (using information on the whole circle) in
[8], [11], and [12]. Full details can be found in [3].

IV. CONCLUSION

In this paper, we presented a framework for robust band-limited
identification which extends the existing one for robust identification
on the whole axis (or circle) that was introduced in [9]. We also
developed a constructive algorithm to perform such a band-limited
identification, which recovers the transfer-function on the bandwidth
in a robust fashion while meeting gauge constraints at the remaining
frequencies. The procedure is very similar in spirit to the two-stage
algorithms proposed in [8], [9], [11], and [12] but appeals to a
bounded extremal problem which may be seen as a generalization
of the classical Nehari problem. We also derived error bounds in a
standard case and presented examples on real data.

There are at least two further questions which, in our opinion,
deserve further study. The first arises from the observation that
the identification procedure can be applied to any sequence of
data a0; a1; � � � ; b1; b2; � � �; the question is: “What is the limit
behavior of Tr;N;M(a0; � � � ; aN ; b1; � � � ; bM) if the data do
not converge (pointwise inl1) to some interpolation sequence
f(a0); f(a1); � � � ; h(b1); h(b2); � � � with f 2 A( ), f _ h 2 C( ),
and jf � hj � r on J?” The second question stems from the fact
that our identification scheme converges uniformly tof on I but
only weak–� to f on J . This is enough to recoverf uniformly on
compact subsets of the half-plane (or of the disk) by the Poisson
formula but not to recoverf itself. Now, still assuming (3), what
additional hypotheses would be needed onf in order to design an
algorithm producing some stronger type of convergence? We think
both questions are important in connection with the practical value
of such schemes.
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