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In the problem of robustH ., identification of functions in the
disc algebra as stated in the above-mentioned references, one is
given experimental data as complex numbens) - = (f(z)+
) r=_~, Where f is an unknown function in the disc algebra
A(D), and z_n, ---, zny are points on the unit circlel, while
Abstract— Consider the problem of identifying a scalar bounded- (- - ) s some unknown but bounded noise sequence which
input/bounded-output stable transfer function from pointwise measure- can be due to nonlinear effects or measurement errors, for example.
ments at frequencies within a bandwidth. We propose an algorithm which  From the(a ), one wishes to construct an approximatifn such
consists of building a sequence of maps from data to models converging that in the limit, as the noise level tends to zero and the number of

uniformly to the transfer function on the bandwidth when the number of . [P .
measurements goes to infinity, the noise level to zero, and asymptotically observations tends to infinity, one has convergence irfthenorm,

meeting some gauge constraint outside. Error bounds are derived, and that is
the procedure is illustrated by numerical experiments. lim sup |[f = fllee = O, for all f € A(D). @

Index Terms—Approximate modeling, linear systems, Nehari extension, T2 lnlleo<e
robust identification.

Robust Identification from Band-Limited Data

L. Baratchart, J. Leblond, J. R. Partington, and N. Torkhani

This convergence requirement corresponds to a continuity property

of the modelfx with respect to the number of measurements and

. INTRODUCTION the noise level, as explained in Remark 1 below. To approach this

This paper is concerned with the problem of harmonic identific roblem, a two-stage a_lgorlthm has beer_l found us_eful [8] [9].’ [11],
2]. To proceed, one first computes a trigpnometric polynomial

tion, that is, of recovering a single-input/single-output (SISO) and™" " . ; .
bounded-input/bounded-output (BIBO)-stable transfer function fro}%h'Ch interpolates the given data (but is not .#(D)), and one

a family of experimental pointwise values on the imaginary axis. Suapplies_ the_” the (nonlinear) N(_ahari extension [19] to obta_lin_the best
data are common in engineering practice as they may be obtai ro.)(lm?;[IS)nftOprby a.funcltloan bounded and analytic in the
from asymptotic outputs associated to sine inputs or from numeri ?V?/h(lt Wlh n a}ct e rational). I d he ci )
simulations of distributed parameter systems (see [6] and [17], for en the points(z:) are equally spaced on the circley can

example). In [9], a setting to approach this issue was proposedbl obtained using the classical Jackson or de la Vallee—Poussin

which the error in measurements is handled in a deterministic fashi&rﬁgon?jme;”c polt))/lnomll;alls [11], [20]. When_ the l?o'RtS;re nbot equally
and the identification procedure consists of a map from finite s aced, the problem becomes computationally harder, but one can

of data to (stable) transfer functions that converge uniformly to t sign a transformation from the given points into equally spaced

“true” transfer function when the noise goes uniformly to zero and®S and proceed as before (see, e.g., [13]) or else rely on a more

the number of data goes to infinity. general principle of linear programming [14].
In the present work, we shall consider the (realistic) case where!N the last reference, the overall error of the identification procedure

the experiments are only available in some range of frequencﬁeas’,_1 be expressed as a sum of two terms, one corresponding to the

corresponding to the bandwidth of the system. In this case, nongSe and the other to the maximum gap between the interpolation

f the algorithms that d (81, 191, [11], [12 goints. One such theoretical bound 4s + 5dist (f, P,), where
of the algorithms that were proposed [8], [9], [11], [12] converge & lInll and P, is the space of polynomials of degrgeand

and we shall see that the setting itself has to be modified. We sH ! .
e maximum gap is less than/p. Thus, the error goes to zero as

adapt to the new situation by requiring the map from data to modé 0 ided th ) bet th t point
to converge uniformly in the bandwidth while meeting some nor _3 g’oper:tho ezeroe maximum gap between the measurement points
Zk, .

constraints at remaining frequencies. . . N
Our working space will be the unit disc rather than the half- However,_ln practical ap_pllcatlons, one may n_ot be at_)le to_r_neqsure
plane, the two frameworks being equivalent by means oftilts f at all points on the circle. For example, in the identification

transform. Since the transfer function of a BIBO-stable system % iontmgm;s-tlme, linear, time-invariant, anotl BIBhQ-ks]tablebcont;ol d
continuous on the imaginary axis, including at infinity, a model fopySt€MSs Dy Irequéncy response measurements, which can be reduce

; : to the above problem by means of the&dMus transformatiors =

us has to be found in the disc algebra. . .
Let H., be the familiar Hardy space of bounded analytic function(s1 + _”7)/(1 n L))I andG(s) = rjgl) wr;ereGbys thﬁ trznsr:er-fllmctlonf,
in the disc andA(D) (the disc algebra) be the subspace of such® Is not able to_measu (iw) for arbitrarily high values o
Moreover, one is not normally concerned about modeli®g

functions that are continuous on the closed disc. On a couple %I)'t i I at high f ; |
occasions in this section, we shall also use the synfbglto mean arbitrarily well at high irequencies. In Some cases, one may even
prefer to have a linear model valid for a restricted set of frequencies,

the Hardy space of the right half-pladg; = {s € C;Res > 0}, . : ) ) .
but the context will always keep the meaning clear. The algeb%pce the linearity assumption would hold only locally with respect
go the frequency. In these circumstances, no algorithm can guarantee

A(II4) of the right half-plane will then consist of those function i he whole i . is without furth
in H., of this half-plane that extend continuously to the imaginargn' orm convergence over the w ole Imaginary axis without further
priori knowledge onG [14]. It is nevertheless natural to ask

axis, including at infinity. The symbol’(X) stands for the space . .
of complex continuous functions ok endowed with the sup norm.WheFher the unk_nown functiortz can be r_ecovered in a robust
SpacesX used in this paper will be arcs on the unit circle or intervalfsaShlon _at least in the range of fr?q“?”c'?‘s where measurements
on the imaginary axis. are aygﬂable, through a model which is still under control at the
remaining frequencies.
Let us stay with the half-plane for a while and discuss a bit further

Manuscript received February 25, 1995; revised July 25, 1996. the situation where measurements are only available in the bandwidth,
Solah?;frtﬁigirlit’sjé é—;eb)'(orl‘:‘:éggg (g;n:girl'_‘*?:gl'oir;@;";hpL’\i‘aRi'nAria‘i':) 93, 069084y (2. In this connection, some work on band-limited identification

J. R. Partington is wi7th the School o.f Mathematics, U.niver-sit)./ of Leedg',as begn published by Bai and Rama_n [l]_ in which they essentially
Leeds LS2 9JT, UK. approximate separately the real and imaginary parts of the transfer
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in some arbitrary polynomial weight of sufficiently high degree tdloreover, we also require that this approximation procedure asymp-
become the denominator off the approximant so as to end up withodically meets the gauge constraint dn
stable and proper model. In doing so, they are not concerned about
controlling the behavior of the s€t and, since their scheme is (real) Lm  sup {sup |fn(2) = h(2)| — ,-('Z)} < 0.
linear, it is a routine matter to check, by the same arguments as in N2 lnllee<e Lzed
[12], that their sequence of estimates is unbounded outQider
almost every noise > (i.e., for every noise sequence in a set o
second category in the sense of Baire). In fact, we claimahgat >
band-limited identification schenraustincorporate some constraints
that impinge on the behavior of the transfer-function out$idd his - -

/ fnudf = / fudd,

J J

lf—iowever, from our incomplete set of data, we cannot constrain the
model fx to converge robustly tg on the whole circle; o/, we
will only get that fx converges weakly—to f

can be inferred from two facts. Aim

1) In the spaceC’(f2), the subspacei(Il )|, obtained by re-
stricting A(I11) to 2 is dense.

2) If G € C(£2) does not belong toi(114)|a, any sequence o
functions in A(I1;.) (or even inH..) that converges td+ on
Q is unbounded inH ..

Fact 1) is an easy consequence of Runge’s theorem, while F
2) follows from the weak* compactness of balls i#/.., and we

forall w e L' (J).

Note also that this scheme is not untuned in the terminology of [9],
f and this is natural since we emphasized the necessity of constraining
the model onJ in one way or another. Here, we need a pointwise
bound of the form (3) on/.

A few comments on the role of are perhaps in order. On the one
ﬁgﬁd, it seems more secure to choege be large onJ so that (3)
will be satisfied for a large class of functiofs On the other hand,

refer the reader to [2] for a proof which is phrased on the disc raﬂ\?rone wants to get accurate modeling at infinity, it is necessary to

than the half-plane (and also works Bf(€2) for 1 < p < o). paye 5 good guess for the behaviorfobutside the bandwidth, that
Altogether, 1) and 2) indicate that no matter the data, we can alwa}gsto be able to make small. Indeed, the approximatiofy to f

construct an excellent model éh at the cost of nearly destabilizing that we are about to construct is such that — | — » uniformly
it at the remaining frequencies, a problem which is familiar 8nJ asN — oo ande — 0. Thus, if|f — k| is significantly smaller

identification practitioners. At this point, it is perhaps interesting tfhanr the values off and fx will not be close to each other oh
draw a parallel with the seemingly different process of stochasté%d tr;e weaks convergencé of

. s ) ~ to f will cause fn to oscillate
parametric identification; there, the constraints on the model are o v to f /v

; di t bounded rational d dth | ; ' .J with an amplitude which depends on the sizerofStill, the
Imposed in terms of bounded rational degree, and the analog o 8deIfN asymptotically meets the gauge constraint (3) which is the

above-mentioned phenomenon would be that allowing the degreenjigin feature of our approach and warrants applications where one is

grow too large destabilizes the model because it starts fitting the noi &t so much concerned with the behavior at high frequencies except
It might be argued that all one needs to do is to prescribe plausil?c.? its boundedness

values for G outside the bandwidih and to use standard rObUStIn this paper, we describe an identification procedure meeting the

identification _techniques. Hoyvever, this approach would prevent U, ve requirements and derive error bounds in the case of equally
frorrll_ rebclovterlrtlﬁG ar\}sylmpto_tlcally donQ. Ihndelgd_, Fact 1). IS anbeéJaced points with a suitable choice/o{Section Il); the procedure

app |cat € (;] p € whole axis, and we should Incur an Ireducidigsis on an extension of results demonstrated in [2]. We then report on
error at each Irequency. a numerical experiment from real data measured on a hyperfrequency

. In .th'.s paper, we choose to constral_n the behgwor of the modeIfF er by the French National Center for Spacial Research (CNES);
lie within some tolerance of a prescribed function at nonmeasurgd, sqction 111

frqu(_ancies. Thus, back to the disc, we propose the foIIowmgWe shall make the standing assumption,
modified setup. We suppose that< « < = and considerl =
{e?: a < 9 < 27 — a}, which is a proper closed symmetric subar
of the unit circle. We defing/ to be the closure of the complemen
of I,ie,J = {e: —a <6 < a}. Also, we define the norm

required for system-

theoretical reasons though not for mathematical ones, that the un-

%nown functionf and the analytic modefy we are seeking are real

tsymmetric, namely thaf(z) = f(z) and the same fofx. Thus we

need only take measurementsdn< § < 7 and obtain the others

llgll7. so = esssup{|g(e'®)|: e’ € I} (2) by complex conjugation. The reference functioirs also assumed to
verify this hypothesis on the (symmetric) arlc

for g in L°°(I) and similarly for.J.

We provide ourselves with measuremeais= f(zx) + 1%, with
P Flen)+m ; Il. AN ALGORITHM FOR APPROXIMATE MODELING

k= —N,---, N, where thez, all lie within I with z_y = ¢
and zy = e*. We shall assume that the functighsatisfies ara ~ Suppose, for some unknown functigne A(D), that we are given
priori estimate of the form the values(ar) = (f(zx) + 1c)ie_n, Wherez, belongs tol and
, (nx) is a noise sequence, assumed toetmmall in thel* norm.
|7 (2) = h(2)] < r(2), forall = € J (3)  We also assume that = —1 and that:—;, = Z, a_ = a, and
n—r = 7 for 1 < k < N, which is the real-symmetric assumption

for some functiong: andr belonging toC'(.), with » a nonnegative
gauge function that vanishes at the endpointg of
This may seem absurd singé cannot be known exactly an

made above.
d Although we are seeking models (D) only, we shall need to

thereforeh cannot be determined to within a precision less than Make excursions intlo.. If g € Heo andsup.cp lg(2)[ = [lgllec,

. e i
However, there is actually no contradiction since, in the algorithrﬁe,caII (see, e.g., [10, ch. 3]) that the radial linitn,—, g(re™)

the values of h, just like those of f, are assumed to be available oﬁ@}StS for almost every (even nontangential limits exist), and this

up to an uncertainty of. sérves as a definition .fog(e,""). In this Way,g(e”’_) becon_1e_s a
Our aim is to find an approximate modgt of f on I converging member_ofL.\/ oo(T), Wlth norm||¢||~, whose _F(_)urler coefficients
robustly onI, namely of n_e_gatlve index do yanlsh and _Wh_ose restriction to any subset of

positive measure off is nonzero ifg is nonzero.
lim  sup ||fv — fll7, = 0. Given functionse € L*=(1I), # € L=(J) we denote by V 3 the

o Malleo<e L>(T) function which is equal tex on I and to3 on the interior
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7 of J; wheninf a > 0 andinf 4 > 0, we also denote by, s  Ir.~N.nr(do, ==+, an, by, -++, bar) — h is approximately bounded
the outer function by » on J.
1 [ e 4 - In the case where measurements are equally spaced, we get the
W, 3 = exp {2—/ = = log (a V j3) de}. (4) following more precise bounds fd&. We write w; for the modulus
Tj_e’v —z

of continuity of f, that is
This function is characterized by the following properties (see, » y
e.g., [10, ch. 5])wa, 5(0) > 0, wa, 5 andw, ', are both inH.., wela) = sup [f(e”) = f(e")] (8)

and |w.. 5| = a V 3, that is lo=dl<e
alz), a.e. onl, and let P, denote the space of trigonometric polynomials of degree
Wa, g(2)] = , o 5 )
e (=)l {ﬁ(z), a.e. onJ. ®) at mosts. . )
Theorem 2.2 (Error Estimates)Suppose that we are given
Moreover, observe thatv, g = wa,1 wi,3 SO that w;"ﬁ = points(z)i-_n and(z})iL_,, that are equally spaced oh and
Wija,1/8- s < *(x —1). Then, there is a choice df € C'(J) such that with

Given a complex number we lete.(¢*’) be the function defined f=FfVh EN, M, f, h,a. b) satisfies
on J by o o

) E(N, M, f, h,a, b)<4(24+1/s)(dist(f, Ps € 9
) = 2 e+ 0= 50— ) © (N, M, £, by, 0) <424 1/5)(dist(f, P)+e) (9)
' . . where

thus,e. is linear inf and satisfies.(¢'*) = c ande.(e™**) = . All
we shall need beyond the values to make our procedure effective ;. ) o § i {wf< Py ) PRI Y I£1lr,0 ]
is to specify numerically and approximate valuds. of I at points 2 0<A<1 s+1 s+1 a
2, on J. When nothing is known on the shape pfexcept being (10)
proper and stable, a particularly simple choicehis= e iy and
bi = eay (2;) ON.J; sincee is a bound fole s (.iay —eay| ON.J, this Remark 2: Observe that the bounds given by (9) and
allowsh to be assigned numerically up to some precision less¢han(10) are explicit and satisfy (7) of Theorem 2.1 (where
There is nothing so special about the functiordefined in (6) except T, n, s (ao, <+, an, b1+, bay) is taken to befy). It is of

thate.(c") = ¢, ec(e” ™) = ¢, ande. goes uniformly to zero on perhaps more interest to have a bound [fbr fx| on J, and this

J with ¢; any function with the same properties could be used in ifsllows immediately from the triangle inequality as well, giving n

place, and this choice was mainly for simplicity and definiteness. If

one wants a strictly proper model, one may use quadratic interpolants |f — fn| < E(N, M, f, h, a, b)+r.

rather than linear ones fdr to interpolate the value zero at one. We

then need to chooselarge enough so that (3) is satisfied. Of courseBefore proving Theorem 2.1, we need to establish a few facts

there is no way to ensure beforehand that it is the case, and thimcerning a bounded (dual) extremal problem, which plays here the

is revealeda posteriorionly if the convergence gets ruined, whichsame role as the Nehari extension does in robust identification over

means that is too small somewhere od. the whole circle. These results will extend some of those established
We begin with a result asserting that robust band-limited identificgr [2].

tion, as defined in the introduction, is possible at least wheatisfies For every pair of functiong, = € C(J) with p > 0, we define

a Lipschitz condition. The arguments in the proof will turn out to be

constructive, providing us with an algorithm to solve the problem. B, =1y € Hx,

Although, in practice, we use only a finite number of measurement

points, it is convenient to state the convergence result in terms of arProposition 1: Let ¢» be in L>(I), h and p be in C'(.J) with

T—v <pae. onf}.

infinite sequence. p > 0, and consider the following minimization problem:
Theorem 2.1 (Convergence Resulssume the sequence:) is
dense inI, and let(z;) be a sequence dense ih Let r be 1Y = gollr, 00 = gEn I = gll7, 00 = Boo- (11)
9€B,y 1

a nonnegative Lipschitz-continuous function dnof exponent;,
0<p g 1, which is z&r? on[.m!:or everyN, M € N, tr_u_are exists 1) Problem (11) admits a solutiom € B,..; when V h €
a mappingl’, v, 11 : €70 x €7 — A(D) such that writing H., + C(T), the solutiong, is unique. We assume now that

E(N, M, f, h,a, b) =sup[|Tr. . arao, -, an, biy -+, bar)(2) ¥ is not already the trace oh of a function in53, . so that
zeT ' o ' / 8:>o > 0.
— fVR(2)]=r(2)] 2) When#'V h € Ho, + C(T), we have that
for f € L=(I) andh € L*(.J), we have {|U" — go| = Boos a.e. onl,
E(N, M, f.h,a,b)—0 asN, M — oc ande - 0 (7) |h = gol = p. a.e. on/.

wheree = max{|ar — f(zx)], |bx — h(z},)|}, provided thatf v h € 3) The functiongo is a solution to problem (11) if and only if
C(T)and|f —h| < r onJ.

Remark 1: The robustness property (7) is to be interpreted prac- Vo = Jo Wi/Beo,1/p (12)
tically as a continuity property of with respect toN, M, and ] ] o ]
e. More precisely, it means that for eveny > 0, there exist is a solution to the implicit Nehari problem

No, Mo > 0, andeg > 0 such that if N > Ny, M > M,, and
€ < eo, then&E(N, M, f, h, a, b) < no. In particular, since is zero
on I, (7) implies that, fore small enough andv, M large enough,
T noaa(ao, -+, an, by, -+ -, bM) is near to f in LOO(I) while = ||(’lb \ h) W1/Bo0,1/p — ’Uo”x =1. (13)

I;Ienflrllo ||(w v h) ull/ﬁgooyl/P - 7"‘”5’(\'
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Proof: The case wherg is constant on/ is contained in [2, and satisfies
Ths. 3 and 4]. What we need here is to consider an arbitrary positive ’ Boo, a.e. onl
function p € C(J). lpn — | =

The first step is to make sure thaf, ; is nonempty. For this, put ) N ) ) ) o
m = min, p > 0. Since anyg € Hoo such thatllg — hl|s,- < m Again f_rom Proposition 1, it f_ollows that (17) is equivalent to finding
belongs toB,, ,, the conclusion follows from the density af(D), N which solves the Nehari problem
in C(.J) already pointed out (but for the half-plane) as Fact 1) in

Section I. Next, setting v

ON, a.e. onJ. (18)

min PN w1/se,1/oy = llos

= ”prl Bocr1/on — UN”oo =1 (19)
v =gy, (14) ot
. ) where fy and vy are related by
and taking (5) into account, we get

min (o =gl =__ min (¢ =yurl,lne N S TN B 3o

9€B, 0 TEBL vy 1y 7 This provides us withfy € H.., and the problem is now, for

_min (b w1170 = Y7, 00 = Boo- eachN, to chooses v, ensuring thatfx € A(D). Observe, indeed,
TEB LI 1 that for arbitrary values of, the outer functionw;,s__ 1/¢, IS
(15)  discontinuous at** and that neithen, nor a fortiori fx needs to

be continuous onl. The following lemma will allow us to obtain

this continuity from an appropriate choice of;.

We are now back to the case of a constant bound @o that the
cited results of [2] apply. This yieldg realizing the infimum above, .
hencego = o ,L[]_]l ppgls asse)r/teddﬁ 1. 1 \?h € Ho + C(T) Lemma 2.1: Under the hypotheses of Theorem 2.1, and still as-

I 1, 1/ . 4 oo ’ . ; . .
so does(v V h) wl,lﬂ/p since Ho, + C(T) is an algebra (see, e.g_’sumlngpN ¢ H“j' the following §s§ert|on§ hold. )
[7, IX, Th. 2.2]; again from [2], we get uniqueness gf, hence of 1) For every fixedV, the quantity3.. defined by (17) and (16) is
g0, thereby proving 1). continuous and decreasing with respect tq and the implicit

We turn to the proof of 2) and we observe, sinée > 0 by equation
assumption, that [2, Th. 4] impligg> w1/, — | = f- a.e. onl
and |hwy 1/, — 7| = 1 a.e. onJ. Now, 2) follows at once from
(5) and (14). admits a solution.

With regard to 3), we get from [2, Th. 3] thabw, s, 1 is the ~ 2) For everyN and the choice (20) ofw, the outer function
solution to (13) and from Section IV of the cited paper that the value ~ wi1/3..,1/-, IS Lipschitz-continuous o of exponenty.
of this problem is indeed one. Now, (12) follows immediately from 3) If fV k€ C(T) and|f — 2| < r on J, and if for everyN

EN = B (20)

(14). ] we choosesn as given by (20), then
Notice that,&? is definedby (1;) so that the weigh&rl/ﬁ?o, e lim fo = 0. @1)
depends orp, ¥, and  through ... Hence, (13) is an implicit N—oo

c—0

equation, and the right value for. is the one that makes the infimum

equal to one. That such a value is unique will follow from Lemma P 70OF
2.2 below. 1) Observe from the convexity of the s8¢, ,,,, and of the norm
We are now in a position to establish our main result. function || [|7,~ that 3. is a decreasing convex function of
Proof of Theorem 2.1:The first step is to construct a trigono- env and hence is continuous.
metric polynomial px, say of degreed, depending onao, - -, Now, px|, € C(I) which is contained in thé.*(I) closure
axn, b1, -+, byr and interpolation pointsg, -« -, zx, z1, -+, Zhy. of H..|, (see [2]), so (16) and (17) imply th@t. — 0 as
Here, we can use standard robustly convergent interpolation proce- v — 0. Thus, forey large enoughf < ex.
dures as in [11], [14], and [18] (in reality, we also use conjugate Thenletex — 0. Assume thati.. < ex so thatin particular
values at conjugate interpolation points). foc — 0. In view of (17), and sinceg’x remains bounded on
However,pn cannot serve as a model because it does not belong /. this impliespx € He..; see [2, Proposition 3], which is a
to A(D) in general. Ifpx € A(D) for someN and someu,’s, we contradiction. Hencejs. > ex eventually, which proves 1)
simply setT, x ar(ag, -+, an. by. -+, bas) = px, which meets by the intermediate value theorem.
all our requirements. We now assume throughout the proof that2) Since the gauge function is assumed to be:-Lipschitz
pn ¢ A(D), and we notice in this case that, cannot be the trace of on.J, so iscoy from its definition (16) and alsd/ox as
any H.. function onl. If ¢ were such a function,”(py — g) € Heo on > =n > 0. Hence, writinguy = wi/p 1/ fOr
would vanish on/, hence should vanish identically, yieldipg: = ¢ simplicity
so thatpn would be in A(D). (18 = 1/en = 1/an(cFia), onT,
Let lwn| = {1/01\]7 onJ
on(z) =r(z)+en, VzelJ (16) is u-Lipschitz on T, and it remains for us to show thatx

is alsou-Lipschitz. By standard arguments, this reduces to the
analogous result on conjugate functions, see [7, I, Th. 1.3].
This achieves the proof of 2).

3) By the construction opn

for a sequencé: ) of positive numbers to be determined later. This
defines gu-Lipschitz-continuous positive functiony on J.
The next stage is to get a functigiiy € B, Solution to the
following bounded extremal problem:
win {||px = gll1,00: 9 € Boy.py } Vh:n%o S lpx = £V hlle = 0. (22)
= [|IPN — JN oo:/oo]\f- 17 . .
o = flls, feol V) (7) Choosesy = (. for eachV, as this is possible by 1), and
For simplicity, we will write in the sequeb.. = 5. (V). It follows assume that (21) is false. Then, (22) implies that fodarge
from Proposition 1 that., > 0 and thatfy does exist, is unique, enough and small enough we will gellpn — 2|7, < en,
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and, since|f — ] < r on J by hypothesis, it turns out that assumes different values dnand.J. Therefore

|f —pn| < on onJ. Hence, for suchV ande, f € Bs . py ‘ 5

and necessarilyo. < ||py — fll1, s, Which, still from (22), Ac(61) < max <é— lpNwiss,,1/(ctm = Voo llT, 00
tends to zero a&v — oo, ¢ — 0, a contradiction. This proves !

3) and the lemma. | lpxvws sy 1 ceary — vsyllu, x)

To complete the proof of Theorem 2.1, choese= j... It follows
from 2) of Lemma 2.1 thapywi s, .1/0, IS p-Lipschitz hencea =A.(6:) max <6_2 1),
fortiori Dini-continuous onT, and the Carleson-Jacobs theorem [7, ‘ b1
IV, Th. 2.1] implies that the solutiomy to (19) belongs tad(D). Taking &, < & shows thatA. is decreasing, and theh < &
Again from 2) of Lemma 2.1 shows that it is continuous.

As a continuous and positive decreasing map, has a limit
at co. Given ¢ > 0, there exists a functioy € H., such that
is continuous (since it ig-Lipschitz) so that (lPa w1y = 9l 7, 20 < € DECAUSO NWY 1 /(cqr) € Hoo + C(T)
and H. |, is dense inC'(.J) (this follows at once from Fact 1) in
Section ). For everyr > 0, we have

WP, oy = (wl//ﬂoo,l/o'N)

N =vNnwsg o
lies in A(D).
We finally verify thatT,, n, as (a0, -+, an, b1, -+, b)) = fn
does the job. Indeed, oi we have the inequalityf — fx| < which implies that forn large enough
|/ —p~| =+ |p~v — f|, and the last term is equal th. by (18); thus, 1
(22) and (21) give the desired behavior fn Ac(n) < max <—||pmu111/(g+r) — gl 00s
Moreover, onJ, we get|h — fn| < |h — pn| + |pn — fn] and, "
sinceon = r + S0, the result forJ follows from (18), (21), and
(22). This establishes (7) and ends the proof of Theorem 2.1m
Remark 3: If the data are obtained by the dius transform of ¢ ¢ is arbitrarily small, we necessarily gitns .. A.(8) = 0. To
measurements in continuous time, the question arises as to Whe%lyze the behavior &LE whens — 0, we write
the inverse transform ofxy = T, ~, m(ao, -+, an, b1, -+, bar) IS
the transfer function of a BIBO-stable system. The answer is yes.
Indeed, it follows from [15] that the solutiomy of the Nehari
problem associated to the-Lipschitz functionpywy /s 1/0, iS
itself p-Lipschitz and hence haH' derivative. Hence, so doefy. PN/t = v “”‘5’1”*“)‘
Transforming back to the half-plane yields a functi6Ghy whose ) . i .
derivative is inH*(IL, ). Mimicking the classical proof of Hardy’s We claim that if the first argument of theax remains boun_ded as
inequality [7, II, ex. 8], one obtains tha is the Laplace transform ¢ — 0, then the second does not. Indeeglys., would otherwise be
of some impulse response belongingtb(0, o) plus the constant & family of He. functions converging t@xwi /s, 1/(e+) in L7 (1)
#x(1) which is bounded in modulus by (1)] 4 7(1). a§§ tends to zero t_aut remaining poundedlxnn view opr ¢ Heo,
Having established Theorem 2.1, we must tie one loose end to m&Ris Would contradict [2, Proposition 3] (Fact 2) of Section | rephrased
the proof constructive, namely how does one find in practicein " the disc). Thus, we gém, o A-(8) = oc. This shows thath.
order to solve the Nehari problem (19) and to seleetaccording 'S ONto (0, o). n

to (20). This can be done by a dichotomy procedure which rests orBY Leémma 2.2, we can associate to every> 0 a unique
Lemma 2.2 below. Bse() > 0 such thatA. (5 (=)) = 1, andS (=) may be computed

For every= > 0, define the map\. by a dichotomy procedure in view of the monotonicity 4f.
' : Given py, which in turn definesA., what we want to find now

As(n) < ||p1’V“Jl/n,l/(5+r') - f]’“fl/n,LHoc

||PNlU1,1/(s+r) - g”J,oo) <&

1
A;(6) = max <g ([pNw 1) (etry — Vs W, 1], 0,

A2 ]0, 0o[—]0, oc] is the unique value = =y for which 3. () = £ so that both (19)
§+— min |lpywi/ei/etr) — Vlloo- and (20) are satisfied. In view of the monotonicity asserted in 1) of
v e Lemma 2.1, this can again be solved by dichotomy.
Lemma 2.2:If py ¢ H., then for every= > 0, the mapA. is This process, which is somehow similar in spirit to théeration
defined from(0, oc) onto (0, o), is continuous, and is monotonically used in H..-control, settles our constructive approach to Theorem
decreasing. 2.1. However, it requires solving a series of Nehari problems, the

Proof of Lemma 2.2:Let = > 0. Then for every reab > 0, the solution of which can be numerically estimated only when the
function pnwi/s1 /(-4 € Heo + C(T). Hence, by [7, IV, Th. 1.3, function to be approximated is continuous. Indeed, in this case, it
Th. 1.7], there is a unique function, € H., such that can be represented arbitrarily well i¥°(T) by a rational function
(using for instance the Jackson polynomials previously introduced
to computepn) whose Hankel operator has finite rank and thus
Let &, 6, > 0, 6, # 8. Then, from the definition of., we get possesses a finite singular-value decomposition allowing one to solve

the associated Nehari problem in various fashions (see, e.g., [4] and
Ac(61) <|lpNw1 /sy 1/(c4r) = Waa /sy, 1 Vs, ||oo [5]).
=|lwsy/s,,1 (PNW1 /85,17 (c4r) — V85) |00 Now, the typical Nehari problem we must solve here is associated

. . . . ) to a function of the form
That the inequality above is strict follows from the uniqueness of

vs and the fact thaﬁmz/gl’ 1 Vs, F Vs, . Indeed,|pr1/él, 1/(etr) — PNWL/s1)(c4r) (24)
vs,| = Ac(61) and|pawiysy, 1/(e+r) — vsy| = Ac(62) are constant
a. e. onT, while

A@(h) = ||p7\77”1/5,1/(€+7') - 7)5”()(;- (23)

for some positive numbers and 6, and such a function is clearly
discontinuous at™'* in general. However, (24) is continuous at any
[PNW1 s, 1 (etr) — Woy 80,1 Vsy| = Ac(b2)|ws, /s, 1] other point onT, because it is evem-Lipschitz there; indeed, an outer
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Fig. 1. (a)dist(pn, H>) = 0.0236 and (b) the gauge functions, andr; on J.

function whoselog-modulus isu-Lipschitz in the neighborhood of is clearly equivalent to (19) under the transformation= g +
some point is itselfi-Lipschitz at this point. This is the local versionpw, s 1 /.4y and consequently assumes the same value. The di-
of 2) of Lemma 2.1, and it is proved in the same manner excegliotomy procedures described before may now be performed numer-

that we must appeal, this time, to a local version of the regulariwa”y by solving (25) iteratively, and this was done in the example
theorem for conjugate functions (see the proof of [7, lll, Corona%resented in Section IIl.

1.4]). To circumvent the discontinuity problemat'®, we introduce
another Nehari problem, equivalent to (19). lebe the first-order
trigonometric polynomial which coincides withy at e*** so that
(PN — P)wiys1 /(4 IS CONtinuous onll. The Nehari problem

Proof of Theorem 2.2:We are given that the points:.) and
(z3) are thexth roots of unity for some integet. We take hereh
to be the functiore (..., defined by (6). The approximate valulgs
] of & on .J will be taken to bee, (z;,). This choice is mainly for
ey Ipn = P)wiys/ce+n) = glloe (25 definiteness and is not essential, although it leads to simpler estimates.
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Fig. 2. (a) gauge functiomy, 5. = 0.0122, and (b) gauge functiom;, 5. = 0.003 28.

To construct the trigonometric polynomialy we use the noisy upon this bound by considering a smoother extengiclo f. One
values (ax)r-_n of f on I together with the valuegbs) on.J way to do this would be to choose to be a function cubic (ir#)
to produce the discrete de la Ve#-Poussin polynomidls . with  which matcheg and its derivatives at the points.x (this, of course,
# 2 4s+1, asin [11]. Because = max {|ax— f(z¢)], [be=D(z)]},  assumes one is able to estimate these derivatives). To gébithe
this is equivalent to using measurementsfok £V o with an eror  gne could use in this case a cubic polynomial matching the noisy
of at moste and hence (see [11, Th. 3.1]): valuesa (v_;) anda.y, as in [14].

If = plloe < (44 2/5)(dist(f, Ps) + €). Recall now that the final modély is the solution to the extremal

Nowdist(f, P;) < gwf.(ﬁ/s+1) by Jackson’s theorem [16], which, problem (17). Moreover, by the proof of Lemma 2.1, we see that
given the definition off, implies that (10) holds. One could improve3..(N) < ||f —pn~||. This gives us the following estimates for the
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error in the identified modefx:

If = fullice <IF = pnlliee +llpn = fallnee < 201F = pllee

(2]

[3]
and onJ
|h = fn| <1h —pn|+ o = fn "
<Ih = pllse + (4 oo (N) < 7 201f = pvleo-
(5]

[ ]
[6]
IIl. NUMERICAL EXAMPLES

Our main example consists of real data measured on a hypef#
frequencies filter of the CNES. The bandwidlhis defined by
a = w/2, and we are given 801 noisy pointwise values ), so (8]
that N = 400. We first complete these data outside the bandwidth by
rough estimates, and we construct the trigonometric polynomial  [9]
using discrete de la V@k—Poussin polynomials. Fig. 1(a) shows the
result of the classical Nehari extensiongto, which gives rise to an [10]
error of value 0.0236 il °°(T). We then compute the solutigiy to
the constrained approximation problem associatgdhtdor different
gauge functiong until an acceptable tradeoff is found between
andr; these gauge functions are plotted in Fig. 1(b). If no satisfactoﬂrz]
compromise can be found, one can change the reference behavioht%

(11]

J, using the previous computations, in order to make a more accurate

choice. The corresponding results are shown in Fig. 2(a) and (b).[14]
We have also considered the functigz) = 3(z* + 1)/(z* +

2z + 5), already studied (using information on the whole circle) itto]

[8], [11], and [12]. Full details can be found in [3]. [16]

IV. CONCLUSION (17]

In this paper, we presented a framework for robust band-limitei8]
identification which extends the existing one for robust identification
on the whole axis (or circle) that was introduced in [9]. We als 9]
developed a constructive algorithm to perform such a band-limited
identification, which recovers the transfer-function on the bandwid{ho]
in a robust fashion while meeting gauge constraints at the remaining
frequencies. The procedure is very similar in spirit to the two-stage
algorithms proposed in [8], [9], [11], and [12] but appeals to a
bounded extremal problem which may be seen as a generalization
of the classical Nehari problem. We also derived error bounds in a
standard case and presented examples on real data.

There are at least two further questions which, in our opinion,
deserve further study. The first arises from the observation that
the identification procedure can be applied to any sequence of
data ao, a1, - -, by, b2, ---; the question is: “What is the limit
behavior of T, ~, s (a0, ---, an, b1, -+, by) if the data do
not converge (pointwise in.) to some interpolation sequence
flao), flar), -+, h(by), h(b2),--- with f € A(D), fV h € C(T),
and|f — k| < r on J?" The second question stems from the fact
that our identification scheme converges uniformly ftoon I but
only weak-« to f on.J. This is enough to recovef uniformly on
compact subsets of the half-plane (or of the disk) by the Poisson
formula but not to recovey itself. Now, still assuming (3), what
additional hypotheses would be needed foim order to design an
algorithm producing some stronger type of convergence? We think
both questions are important in connection with the practical value
of such schemes.
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