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Worst-case Analysis of Identification-BIB0 
Robustness for Closed-Loop Data 

J. R. Partington and P. M. M&kila 

Abstract-This paper deals with the worst-case analysis of identifica- 
tion of linear shift-invariant (possibly) infinite-dimensional systems. A 
necessary and sufficient input richness condition for the existence of 
robustly convergent identification algorithms in I' is given. A closed- 
loop identification setting is studied to cover both stable and unstable 
(but BIBO stabilizable) systems. Identification (or modeling) error is then 
measured by distance functions which lead to the weakest convergence 
notions for systems such that closed-loop stability, in the sense of BIBO 
stability, is a robust property. Worst-case modeling error hounds in 
several distance functions are included. 

I. INTRODUCTION 

This paper deals with the worst-case analysis of identification of 
stabilizable systems and to a smaller degree with the robustness of 
feedback stabilization of linear systems. Here we shall be concerned 
with the case when stabilization is equivalent to the closed-loop sys- 
tem being a bounded-input bounded-output (BIBO) stable operator, 
cf. I' optimal control [29], [2]. 

There are several ways to represent system uncertainty to deal with 
both stable and unstable systems: one is by considering perturbations 
of the graph of the system and another is by looking at perturbations 
of coprime factorizations of the system. The quantitative measure for 
the size of the perturbations depends on the particular space in which 
the graph, or the coprime factorization, is defined. We mention here 
the rich theory developed in the 1' ( L 2 )  Hilbert space setup (see 
e.g., [32], [ 5 ] ,  [28], [8], [33], [7] ,  [20]). Furthermore, several papers 
dealing with various aspects of identification of systems in the gap, 
graph, and/or chordal metrics have appeared recently [14], [26], [27], 
[16]. It appears possible to develop an equally rich theory with many 
applications in the I" input/output signal space setup [3], [30], [ l ] ,  

There is a large literature on the identification of controlled 
autoregressive (ARX) and controlled autoregressive moving average 
(ARMAX) models of systems [13], [25], [19], [18]. In the present 
work we are interested in a special type of ARX model: namely, in 
ARX models in which the AR part and the X part are coprime. It 
turns out that knowledge of a stabilizing controller for the unknown 
system is enough information to parameterize the ARX model in this 
way. Here it is possible to use the schemes described in [9], [22], [23]. 
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The following is a brief overview of the present work. In Section I1 
we present some background material on coprime factorizations and 
the graph topology. In Section I11 we consider BIBO stable systems 
and the question of robustly convergent identification algorithms 
and input design. Section IV introduces ARX models for causal 
linear systems, and closed-loop identification is considered. Section 
V provides some error bounds for closed-loop identification in the 
framework of this paper. In Section VI we discuss briefly some 
generalizations to multivariable systems. 

11. MATHEMATICAL PRELIMINARIES 

Let ( I p .  1 1  . [ I p )  (1 5 p 5 CO) denote the usual (real) sequence 
spaces. A linear discrete-time system is defined as a linear convo- 
lution operator G: l p  + l P .  As usual the linear system G is called 
l p  stable if 

Here llGll(p) is the induced operator norm, or the system gain, over 
Z p .  We shall often simplify the notation somewhat and write simply 

Let S p  denote the Banach space of linear shift-invariant causal 
l p  stable systems equipped with the operator norm (1). It is well 
known that SO= is isometrically isomorphic to I' . Thus, for a system 
G E S", we shall let G denote also the (unit) impulse response 

A convenient way of representing both l P  stable and unstable 
systems ( p  E [l. x]) is to consider the quotient field F ( S P )  of 
Sp.  F ( S P )  can be thought of as the set of all pairs (P. Q), Q # 0, 
of elements in Sp.  Two elements (P. Q ) ,  (R.  S) in F ( S P )  are equal 
if PS = RQ. Equivalently, we can say that F ! S P )  is the set of 
all systems with transfer functions of the form P ( z ) / Q ( z ) ,  where 
P, Q E S p ,  and Q # 0. Here P ( z )  = E,,, p p z k ,  where { p k }  are 
the coefficients of the (unit) impulse response of P. 

The system G E F ( S p )  is said to have a coprime factorization 
(c.f.) (AV, D )  over S p  if G = &/D, D # 0, iY. D E S p ,  and there 
exist -71: Y E Sp such that S X  + Dk' = 1. Let C F (  S p )  denote the 
set of all causal systems in F ( S P )  that have a c.f. over S p .  Note that 
if G E Sm(S1) then G E S p  for any p E [l. x?]. It follows that if 
G E CF(S" )  (CF(S1)) then G E C F ( S p )  for any p E [l. x]. 
Furthermore, if G E C F ( S m )  ( C F ( S 1 ) )  has a c.f. (-Y. D )  over 
S"(S')  then (AV, D )  is also a c.f. of G over Sp for any p E [l. x?]. 
We shall often say simply that G has a c.f. when it is clear over which 
S p  space the c.f. is defined. Note that we use the two notations Gpl 
and l / G  for the inverse operator to G. 

It is natural to consider the question of existence of coprime 
factorizations for causal systems in the quotient field F (  Sx ) of S". 
The following result, which is a counterpart of a result of Smith [24] 
in the S2 case, shows that the class of stabilizable systems is the 
same as the class of systems with coprime factorizations. 

Theorem 2.1: A causal system G E F(Sx) has a coprime 
factorization over 5" (i.e., belongs to C F ( S " ) )  if and only if there 
exists a controller in CF(S* )  stabilizing G in the I" sense. 

Proof(If-part): Let l i o  = X/I' E C F ( S X ) ,  where (X. lr) 
is a c.f. of I<" over S=, be a controller such that the closed-loop 
operator matrix H (  G, I<o ), defined as 

IlG11. 

( s k I k 2 0  of G. Then llGll(cr) = IlGlll = Ck20 lskl < =. 

H ( G .  l i o )  = [y  ] [l + GI<o]-l[I<o 11 (2) 
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consists of I" stable elements. (Closed-loop stability means that 
H (G, lie) is a BIBO stable operator.) H (  G, l i a  ) can be expressed 
as 

(3) 

Now, there exist (by coprimeness of S and I-) -\I, E E S" such 
that 41-X + E l -  = 1. Using this identity and the expression for 
H ( G .  lie) we see that l / ( I - + S G ) .  G/ (17+SG)  E S", too. But 
then (G/( I -  + S G ) .  l /( l- + S G ) )  is a c.f. of G over S". The 
only-if-part follows by a result in [28, p. 3641. 

By this fact, the set of systems C F ( S " )  is really the 'largest' 
set of causal linear shift-invariant systems in which we can study 
identification of the unknown system from closed-loop time series. 

It is possible to introduce the so-called graph topology in the set 
C F ( S P ) ,  making C F ( S P )  a topological space [31], [28] exactly as 
in the thoroughly studied finite energy 1' ( H ' )  setup. Here we are 
concerned with the S" setting. Now continuity in the graph topology 
is a necessary and sufficient condition for closed-loop feedback 
stability to be a robust property. C F ( 5 " )  is a meterizable space, 
and it is possible to introduce several distance functions and metrics 
which induce the graph topology; we refer to [I71 for details. 

One further distance function may be defined as follows. 
A c.f. (S, D )  of G E C F ( S m )  over S" is said to be normalized 

(cf. [28]) if i< (Z) :<7(z )  + f i ( F ) f i ( z )  = 1 for any lzl = 1. It is 
established in [ 171 that each G E CF(  S,) has a normalized c.f. 
over Sx which is unique up to within multiplication by -1. Let 
G I ,  GZ E CF(S=).  Introduce the notation 

A, = [;;I, i = 1 , 2  (4) 

where (S,, D ,  ) is any coprime factorization (c.f.) of G, over S" 
Define the quantity 

Take e-, = l / i . The above inequality then gives S, + X and 
D ,  + D. This completes the proof of the theorem. 

Thus K ,  like all the distance functions presented in [17], can be 
used to quantify the identification error in a way compatible with the 
needs of robust control design. 

We end this section with a striking example illustrating some of 
the differences between the S" and SZ settings. 

Example 2.1: Consider the system G with transfer function 
G ( z )  = t e x p [ - n ( 1  + z ) / ( l  - 3 ) ] ,  where (1 > 0 is a constant. 
The induced 2' norm of the system G is equal to sups I G( e'' ) I  = 1, 
so that G does not amplify the energy of any 1' signal. We see 
directly, however, that G is not Is stable. 

Now G E C F ( S ' )  as G is l 2  stable but G $! CF(S" ) .  This we 
see as follows. Assume to the contrary that G E CF(S=) .  Then 
there exists a coprime factorization (S. D )  of G over S". But then 
as f i ( t ) G ( z )  = and both -<-(z)  and D ( t )  are continuous on 
the unit circle while G ( z )  is discontinuous at z = 1, necessarily 
fi( 1) = 0. But then A<-( 1)  = 0 as G( t) is bounded on the unit circle. 
Thus N and D can not be coprime. This contradiction establishes 
the claim. 

In fact, by an analogous reasoning it is seen that no system whose 
transfer function is bounded but not continuous on the unit circle can 
have a coprime factorization over S". 

Note that the system G above is in the quotient field F ( S = )  of 
S" (e.g., G = z ( l - z ) e x p [ - a ( l + t ) / ( l - z ) ] / ( l - ~ ) ,  where both 
the nominator and denominator are in 5"). Now as G $! C F ( S " ) ,  
it then follows by Theorem 2.1 that G can not be stabilized in the 
I" sense by any controller in C F ( 5 " )  (and yet G is 1' stable)! 

111. WORST-CASE IDENTIFICATION OF STABLE SYSTEMS 

Worst-case identification of BIBO stabilizable feedback systems 
is closely related to the theory of identification of BIBO stable 
systems. Therefore we begin by considering the question of robust 
identification of BIBO stable systems from the point of view of input 
design. 

where the infimum is thus taken over all BIBO stable c.f.'s of G I  
and GZ with unit norm as indicated. We get the following result. 

Theorem 2.2: Let G E C F ( S m ) ,  and let {G,}  be a sequence in 
CF(S" ) .  Then K(G, G,)  + 0 if and only if G, -+ G in the 5" 
graph topology. 

Prooj  Consider first the if part. Let G, + G in the S" graph 

We suppose that we are given the stable model y = k * 11 + 71, 

with h E l 1  unknown, 11 E I ,  comprising the noise, with 71 E 1, 
being the input, and with y the measured output. (Here * denotes the 
convolution product.) It is desired to choose u( t )  for t 2 0 such that 
given y(O), . . . , y( 1 % )  we may construct an identified model h,, such 
that the following robust convergence condition is satisfied 

topology. Let (S, D )  be a c.f. of G such that 1 1  [ f ]  1 1  = 1. Then 
there exists a sequence { ( ATz. D z ) } ,  where ( D,  ) is a c.f. of G , ,  

such that AV, -+ 5, D,  + D .  Let a,  = 1 1  [ y ; ]  1 1 .  Denote 
lirn sup Ilkn - k i l l  = 0. (9)  

117 I I - S ~  7 1 - 3 2  e-0 

By the triangle inequality 11 - b ,  I I a ,  I 1 + b,. Now, b ,  + 0, so 
that a ,  + 1. Again by the triangle inequality 

so that K ( G ,  G , )  + 0 by definition (5). Consider now the only if 
part. Let K(G. G , )  -+ 0. For each 1 ,  e ,  > 0, there exist, directly by 
definition ( 5 ) ,  c.f.'s (-Tz, D , )  and (S, D )  of G,  and G, respectively, 

satisfying 1 1  [ 1 1  = 1, 1 1  [ y ]  ( 1  = 1, such that 

It is known [21], [ I l l  that with U chosen to be an impulse or step no 
such algorithm can exist. On the other hand it is known [15], [27] 
that some input designs (e.g., Galois sequences) do guarantee the 
existence of such an algorithm. In [4] a sufficient condition is given. 
The following result gives a necessary and sufficient condition. It has 
the further consequence that for a large class of inputs one cannot 
identify k E 11 even asymptotically, unless one is given further prior 
information. 

We state the result in a general case when the input u ( f )  can be 
nonzero (but is unknown) for t < 0. This corresponds to input over 
which we have no control, and we make only the assumption that (1 ( t  ) 
is bounded for f < 0. Let us write U = U +  + U - ,  where 7 i + ( t )  = 0 
for f < 0 and ~ ( t )  = 0 for t 2 0. In fact the question whether 
I L L  = 0 does not affect the existence or otherwise of an algorithm. 

Theorem 3.1: Given U +  E I ,  and output measurements 
yo. y1 . " ' .  where y = h * 11 + I' and 1' is noise, as above, then 
there is a robustly convergent identification algorithm using y if and 
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only if I / +  satisfies 

3C > 0 such that for all k E I I .  Ilk * t 1 + 1 1 ~  2 CJJkJJ1. 
(10) 

Proof(Sufficiency); Note that, by compactness, condition (1 0) 
is equivalent to the following condition: there exists C > 0 such 
that for all p 2 0 there is a number l i p  such that if k 6 I I  and 
k = (ko .  k1:...kP. 0. O:..), then I(k * i r + ) ( j ) l  2 Cllklll for 
some 0 5 j 5 1 1 ~ '  (although the value of C here is not the same). 
Without loss of generality we can assume that n p  > p .  It is also 
true that we may assume that j > p if we wish; for suppose that 
k = (ko .  k I : . . . k p .  0. O:..) is such that I(k * ~ r + ) ( j ) l  < E l l k l l l  

for j > p ;  now consider the vector 

I ; r= (ko .k~ . "o .k " ' " " . ko .k~ . ' ' ' . k , . 0 . ' ' ~ )  

(11) 
with -11 repetitions of k .  We find that 

l l h r  * 11+11, < F l I h I I 1  + Il~~+ll"llklll < 2 F / 1 ~ . ~ 1 1 I I  (12) 

for sufficiently large JI. 
Given dapi ( y (0 )  : . . . g (  n ) ) ,  72 = n p  choose ii, = 

( i n ( 0 )  . . . . .  h n ( p ) .  O:..) to minimize n =maxIl<J<,, l ( k r l  * 
I I +  - y ) ( j ) ( .  Write Pph = ( h ( 0 )  :... h ( p ) .  0. O:..). Clearly 

0 I 1141= + II4lmllh - PPhlll (13) 

since = P,h is one candidate. . 

for some p < j 5 12 and hence 
Now if l l j I , L  - Pphlll = 6,  then I ( ( / / ? ,  - Pph) * u + ) ( j ) I  2 CS 

l((in - t i )  * u + ) i j ) j  2 ~6 - I I ~ ~ I I ~ I I ~  - Pphlll. (14) 

But 

l (( iT1 - h )  * u + ) ( j ) /  I 0 + l y ( j )  - * ic+)( j) l  

I a + 1l~' l Ix + Ilh - ~ p ( h ) l l ~ l l ~ ~ l l r .  (15) 

Combining these equations, we obtain 

iiin - P J I I ~  5 ( i /c ) (wX+ 311h - P ~ ( ~ ) I I ~ I I ~ I I I ~ )  (16) 

which shows that l l j /T l  - hill + 0 as p -+ x, i.e., 71 -+ x and 
11i,11.* -+ 0. (If n is not an n p  for any 11 we can if we wish ignore 
all data after the largest r i p  5 n.)  

(Necessity): Since we have no control over U - ,  to obtain the 
necessity condition we need only prove necessity in the case 11 - = 0. 

Robust convergence implies that for all n sufficiently large and E 

sufficiently small, given any ( g ( 0 )  : . . . g (  1 2 ) )  with l g ( j ) (  5 e for all 
j, the model k ,  satisfies ~ ~ ~ ~ z ~ ~ l  < 1, since the output y could be 
produced by taking h = 0 and y = ( h  * I / + )  + 1' = 11 and so must 
converge in norm to zero. 

If (10) is not satisfied, choose / I  E I I  with llhlll = 2 and with 
Ilh * U +  l l m  < E .  Now given g ( j )  = ( 1 1  * U + ) (  j )  for j = 0,. . . . n ,  n 
large, the identified model k71  must converge to h in 11 since 1 1  = 0. 
But since 1111111 = 2 and llh.LII < 1 this is a contradiction. 

As a result we see that no sequence I I  E CO, that is a sequence 
tending to zero, can be used as the input if we require a robustly 
convergent identification algorithm. 

Corollary 3.1: If I / +  E CO then there is no robustly convergent 
algorithm using measurements of the output y = h * I I  + 1 3 .  

Pro08 Given any E > 0 there exists an index 71 such that 
(u(t ) l  < ~ / 2  if t 2 1 1 .  Write ur  = P,,II = ( ~ ( 0 )  :... ~ ( n ) .  (I:..). 
Let 

(17) h.,- = (l/.\-. 1/-\-. . ' ' . l/-Y. 0. 0. ' ' .) 

with S nonzero terms. Then Jlh \ 111 = 1, but Ilh \ * 7 1 r l l m  I 
( n  + 1 ) 1 1  I I  l l c c  /AY since U' has only n + 1 nonzero terms. Hence 

(18) 

for sufficiently large S, which means that condition (10) fails to hold 
and so there IS no robustly convergent algorithm available. 

Ilh\ * 1/11" 5 E / 2  + ( n  + 1 ) I I I L I I " / S  < 

IV. COPRIME ARX MODELS 

A convenient way to represent the input/output signal dependency 
of causal linear shift-invariant systems in C F (  Sm ) is to use ARX 
models [13]. Thus consider 

(19) 

where q-' is the backward shift operator (i.e., q - l y ( t )  = y ( f  - 1) 
etc.), y is the output, I /  is the input, (1 is a bounded disturbance, and 
A( z ) .  B( z ) ,  interpreted as complex-valued functions of the complex 
variable 2 ,  are functions analytic in the open unit disk with absolutely 
convergent Fourier series. Here it is usual to take A(0) # 0. 

We write (19) now as a convolution operator equation 

d ( q - l ) y ( t )  = l 3 ( q - l ) u ( t )  + I ' ( t )  

Ay = l3rc + 7,' (20) 

where the meaning of the symbols is obvious from (19). -4 and B 
are 1" stable operators. 

A problem with the ARX representation as above is that care must 
be taken to avoid problems caused by possible appearance of common 
factors, as these can make the estimation of the unknown system 
unreliable in the graph topology (common stable minimum phase 
factors, however, are allowed). 

This problem can be avoided if knowledge of some stabilizing 
controller for the unknown system is available. This is usually a 
realistic assumption in applications. Thus let li~ E C F (  S" 1 denote 
a stabilizing controller for the unknown system G E CF(S=) .  Let 
(-YO. E L )  denote a c.f. of li0 over 5". Let A \ 7 ~ ,  DO E 5" be such 
that the Bezout identity ,\-OXO +DOE; = 1 is satisfied. By the Youla 
parameterization of all plants in C F ( S z )  stabilizable by I<o, we 
can express (20) as 

(21) D o g  - -Y"a = R ( l o g  + I ~ u )  + 1' 

where R E 5". 
The unknown system G is given by the Youla parameterization 

G = ( S o  + REL)(Do - R-Xo)-'. (22) 

This can be thought of as a reversal of the roles of plant and controller. 
Thus we see that "all" we need to do is to identify R accurately 

enough in the 5" norm (which is the same as to identify accurately 
the impulse response of R in the 1' norm), and we are then guaranteed 
to get a good approximation to the unknown system G in the 5" 
graph topology. 

The R-scheme as described above becomes particularly transparent 
when the input is chosen as follows [9 ] .  Define 

where T I  and r2 are bounded reference inputs. The reference inputs r l  

and r2 are to act as probing signals to guarantee sufficient information 
about the c.f. (S. D )  of the unknown plant, S = J-0  + RI;, and 
D = DO - RXO. With the above choice of U ,  we see that 

(24) 

For our purposes it is useful to make the following choices of TI 

and r2 (cf [23]) .  Take r1 = AV~ou: and r2 = D O I L ~ ,  where U' is a 
bounded signal. Then 

(25) 

D o g  - 2VO:OU = R(Xor.1 + Ebr2) + 1 ' .  

Dog - -\'07/ E R u ~  + (1. 
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Note that the common reference signal generator IC acts now as a 
simple bounded input in (25). In the sequel we shall refer to the 
above scheme as the R-scheme. 

Let A denote a closed-loop identification algorithm mapping the 
assumed experimental information Yn = { (Doy ) ( t ) - ( ( :Vo lL ) ( t ) } ;~ ' ,  
W,, = { w ( t ) } , " z i  into a model A(Yn. W n )  E CF(S" )  of the 
unknown system G. Here n is the number of available input/output 
pairs. We shall say that A is untuned if it only uses the a priori 
information about the unknown system that it is stabilizable by a 
known controller l i o .  

Theorem 4.1: There exists a bounded reference input U' and an 
untuned closed-loop identification algorithm A such that 

lirii SUP ,n(G - A(l:2. Tt-,l)) = 0 (26) 
II.(t 1 I 5 

l u ( t ) l<n .  t < O  

n--z . tLO 

for any G E CF(S" )  stabilized by l i o  E CF(S" ) ,  and for any 
CI 2 0. Here m = d. p. 5. 7, or K (see Section V). 

This result follows directly from the above description of the R-  
scheme, using the results of [I71 and an explicit construction for 
robustly convergent 1' identification algorithms given in Section 111; 
see also [I51 and [26], [27]. 

It is desirable to have some additional prior information about the 
unknown system G to derive useful worst-case identification error 
bounds after a given finite number 11 of data points-it suffices to have 
information which defines a relatively compact set of R operators; 
see [I51 or [ l l ] .  

V. ERROR BOUNDS 

In this section we shall derive error estimates in the various distance 
functions given in [I71 based on 1) I' error bounds for the operator 
R in the R-scheme of Section IV and 2) 1' modeling error bounds 
for the factors of a c.f. (A7, D )  of the unknown system. Combining 
the derived error bounds with 1' identification error bounds for the 
respective stable operators (which have been considered in [26], [27], 
[lo], [15], [ l l ]  as well as in Section 111) gives then a general approach 
for deriving identification error bounds compatible with the notion of 
robustness of B IB0 stability. 

Let us suppose that 

G = (3'0 + RYo)/(Do - RXo) (27) 

is the true system and that 

is the identified model, an approximati2n to G produced by Laking an 
estimate R for R. Let 6(G. G), ?(G. G) .  p(G. G), d(G. G) denote 
the subspace gap, the projection gap, the rho function, and the graph 
metric distance, respectively, for G and G. Detailed definitions of 
these quantities can be found in [17]. 

Theorem 5.1: Let P be the projection 

and P the corresponding projection using R in place of R .  Then 

Proofi This follows immediately from the definitions of the 
and 5 from projections P and P ,  together with the properties of 

[17], on noting that 

It is also convenient to obtain a bound for the graph metric d ,  
and to do this we require a quantitative version of the theorem in 
[ 171 that guarantees the existence of normalized coprime factors. 
Note that we shall use the notation llHlll x y m  1h.I for any 
H ( e " )  = c y m  hncZ8  having an a.c.F.s. on the unit circle, i.e., for 
any H with llHlll < W. 

We recall (cf. [17]) that if G = :V/D is a coprime factorization 
over S" and we write F(e")  = l / ( ~ 8 ( e z g ) ~ *  + lD(e7')1'), then 
1/F has an a.c.F.s. If we then write lnF(e" )  = Erm n,e"", 
I,(;) = u0/2 + ET u r r i " ,  and U(Z) = exp1'(3), then G = 

Theorem 5.2: Let G = S / D  and G = *T/D be two not 
necessarily normalized coprime factorizations over Sm.  Let F (and 
analogously F )  be defined as above and let AVIT/DCT, S I - / D U  be 
corresponding normalized coprime factorizations. Let AA\* = - AY, 
A D  = D - D  and A F  = F-F. Then the distance d(G. G) between 
G and G in the graph metric is at most (see (32) at the bottom of the 
page) provided that IIAF/FII1 < 112. If LY. A D  are small enough 
this is bounded by l imax(IIANII1, 11AD111) for some constant li 
depending only on W and D. 

Proofi Note that IlAF/FII1 is well defined since l / F  has 
an a.c.F.s. We have that I n F  = 1 n F  + l n ( 1  + A F I F )  and 

II In (1  + A F / F ) I I I  I 2(ln2)11 AF/F I l l  if IIAF/FIII < 1/2, as 
may be seen by considering the Taylor expansion of In (1 + x ) .  

= L- I ; ' ,  where I" = e x p ( c  - 1') and hence, since 

Ili- - I 2(ln2)11AF/F111, also, we have /IC' - 1111 I 
e x p ( ~ ~ L 7 - 1 7 ~ ~ ~ ) - l  5 C ~ ~ V - L r ~ ~ ~ ,  whereCisthemaximumvalue 
of the increasing function (expx - l ) /z  in the range [0, - 1711~]. 
But if IIAF/FIII < 112 then - I'll1 < In2 and so C 5 l / l n2 .  

DIT  is a normalized coprime factorization. 

_ .  _ _  

Now 

Thus IlU' - 1111 5 211AF/Flll. NOW 

by the triangle inequality, that is 

Clearly a similar estimate holds for 1106 - D17111, and this implies 
the required bound 

Finally a bound for llAF/Fll1 can be obtained showing that it is 
less than a constant (depending on S and D )  times the maximum of 

IIAAvlll and 11AD111, by noting that 

A F / F  = 

(35) - 
2S(AA\- )  + (AS) '  + 2 D ( A D )  + (AD)' 

-\-' + 2A\7(AS) + (LY)' + D2 + 2 D ( A D ) +  ( A D ) * '  

This gives the estimate for d(G. G) in the form required 
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Note that as p(G. G )  5 d(G, e) the above result provides also 

An application of this result to the R-scheme gives 

p(G. 6) 5 d(G. G) 5 IillR - All1 max(llXoII1, l l lb l l1}  (36) 

an upper bound for the rho function evaluated for G and G. 

for some constant I< > 0 and for IIR - fill1 small enough. 
Consider now the kappa function. We get the following result. 
Theorem 5.3: Let G = -I7D-', G = -<-D-' E CF(S" ) ,  

where (-A-. D )  and (-i-. D )  are coprime factorizations over S". Let 
AA\- = Ai- - -1- and A D  = D - D satisfy 

Then 

L A  

Now as (use the triangle inequality) 

the result follows by the definition of the kappa function. 
Applying this result to the R-scheme gives the estimate 

for lIR - f i l l1 small enough. 

VI. GENERALIZATIONS 

We have so far considered only single-input single-output (SISO) 
systems. The purpose of this section is to indicate generalizations to 
multi-input multi-output (MIMO) systems. 

Let G = S D - '  be a matrix operator of size m x n with 
elements in S", and D )  a smooth right coprime factorization of 
G. i.e.. -1- and D are BIBO stable matrix operators (so that their 
elements are in S=), D # 0 such that there exist BIBO stable 
matrix operators 9, k' so that the right Bezout identity (see e.g., 
[28]) -I-.\- + I -D = I is satisfied. We shall use the superscript 
to denote complex conjugate transpose, i.e., X H ( e " )  = -gT (e - " )  
where the superscript 

Theorem 6.1: Let G = S D - ' ,  where (S. D )  is a smooth right 
coprime factorization of G in the sense defined above. Then there 
exists a smooth normalized coprime factorization (31. E )  of G, i.e., a 
coprime factorization of G = ME-' such that M. E have elements 
in Sx and 

denotes matrix transpose. 

for any H E [O. h). 

Proof: Note that = L$Hj? + D H D  has a matrix-valued 
a.c.F.s, and that det (p-' ) is bounded away from zero on the unit 
circle. It follows by Wiener's famous result [12, p. 2021 that F has 
an a.c.F.s. Furthermore, F is positive definite. Thus we can define the 
matrix logarithm In F of F .  (The matrix exponential of In F satisfies 
exp ( I n p )  = F . )  The logarithm In F has an a.c.F.s by the Wiener- 
Levy theorem [12, p. 2101. Denote l n F ( e Z 8 )  = i l k c Z h ' .  
Define 

(44) 

The matrix-valued function ti(;) is analytic in the open unit disk and 
has an a.c.F.s. Define the matrix exponential i? = expV(z) .  Note 
that C-' is analytic in the open unit disk and has a matrix-valued 
a.c.F.s. Set M = NI: and E = DC.  Now 

InF(e")  = Pi(et') + C H ( e z ' )  (45) 

so that 

(??H) (e " )  = e x p [ ( i ' +  P N ) ( e z ' ) ]  = F ( e " ) .  (46) 

Thus 

SiET1Cf + E H E  = tH(-fHAiT + DHD)[- 

(47) 

so that (-11. E )  is the required smooth normalized coprime factoriza- 
tion of G. This completes the proof of the Theorem. 

It is then possible to generalize the various distance functions and 
to obtain error estimates for MIMO systems in a way rather similar 
to those given in Section V. 

- f H F - I [ -  = 1 
- 

VII. CONCLUSIONS 

A fundamental characterization of inputs which guarantee the 
existence of robustly convergent 1' identification algorithms for BIBO 
stable systems has been given. We have applied this to worst-case 
analysis of identification of feedback systems from closed-loop time 
series measuring identification error with distance functions which 
lead to the weakest convergence notions in which feedback stability 
is a robust property. Bounds on the worst-case identification error in 
these distance functions have been obtained through I' identification 
of certain stable operators. 
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