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Optimal Pilot Placement for
Frequency Offset Estimation and

Data Detection in Burst Transmission Systems
Yeqiu Ying, Student Member, IEEE and Mounir Ghogho, Member, IEEE

Abstract— In this letter, we address the problem of pilot design
for Carrier Frequency Offset (CFO) and data detection in digital
burst transmission systems. We consider a quasi-static flat-fading
channel. We find that placing half of the pilot symbols at the
beginning of the burst and the other half at the end of the burst
is optimal for both CFO estimation and data detection. Our
findings are based on the Cramér-Rao bound and on empirical
evaluations of the bit error rate for different pilot designs. The
equal-preamble-postamble pilot design is shown to provide a
significant gain in performance over the conventional preamble-
only pilot design.

I. INTRODUCTION

P ILOT Symbol Assisted Transmission (PSAT) is a prac-

tical technique in wireless communication systems. Pilot

symbols, which are usually time-division multiplexed with the

information bearing symbols, are used for carrier recovery

and channel estimation. In a burst-mode transmission, the

way the pilot symbols are placed in each burst often affects

the performance of the system. Recent papers have derived

optimal pilot designs for channel estimation and data detection

in the context of time/frequency-selective channels e.g. [1],

[4]. The issue of optimal pilot design when there is a mismatch

between the transmitter and receiver carrier frequencies has

received little attention in the literature. This frequency mis-

match or Carrier Frequency Offset (CFO), which is caused

by oscillator instability and Doppler effect in mobile commu-

nications, needs to be accurately estimated and compensated

for, particularly in the case of large size constellations (see

e.g. [2], [3] and references therein). In [5], a white training

sequence was shown to be asymptotically optimal for joint

CFO and channel estimation using the worst-case asymptotic

CRB. However, the pilot symbols were grouped into a single

cluster and optimal pilot placement was not investigated. In

[6], for OFDM systems, the CFO was estimated using null-

subcarriers and optimal placement of these null-subcarriers

was derived.

In this letter, we consider a single carrier burst transmission

system and a quasi-static flat fading channel, i.e. the channel

is a complex scalar which is fixed over each burst but changes

across the bursts. The system is also affected by a CFO which

may vary across the bursts. This might occur in mobile satellite

communications where the frequency mismatch can signifi-

cantly vary over time. Here, we derive the pilot placement
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that minimizes the Bit Error Rate (BER). We achieve this by

minimizing the CRB on the CFO and channel estimations and

through Monte-Carlo simulations.

II. SIGNAL MODEL AND PRELIMINARIES

Consider a single carrier burst transmission system oper-

ating over a quasi-static flat fading channel. Assuming that

timing is perfectly synchronized, the received burst signal after

matched filtering and sampling can be modelled as [2]

x(n) = ρej(ωn+φ)s(n) + v(n) n ∈ [0, 1, . . . , N − 1] (1)

where N is the burst length, ρ and φ are respectively the

magnitude and phase of the channel, ω (−π < ω ≤ π) is the

normalized CFO, {s(n)} is the transmitted symbol sequence

which encompasses both pilot and information-bearing (or

data) symbols, and v(n) is an additive noise with variance

σ2.

In burst-by-burst processing, the CFO and the channel are

estimated at each burst by making a number, say P , of the N
transmitted symbols known to the receiver. Our objective is to

find the optimal placement of these pilot symbols in terms of

CFO and channel estimation accuracy and BER. In our pilot

design, we make the following assumptions:

(A1) The P pilot symbols have the same magnitude, as-

sumed unity without loss of generality.

(A2) v(n) is a circularly symmetric white Gaussian noise.

Note that (A1) is usually made in PSAT systems, where the

pilots are chosen to be either BPSK or QPSK constellations.

However, this assumption could be relaxed by allowing the pi-

lot symbols to have different magnitudes. The design problem

in this case is outside the scope of this letter.

Let P and D denote complementary subsets of {0, ..., N −
1} which respectively represent the placements of the pilot

and data symbols in a burst. In coherent PSAT systems, ω,

φ and ρ are first estimated using {x(n), n ∈ P}; let these

estimates be denoted by ω̂, φ̂ and ρ̂. These estimates are then

used to compensate for the distortions due the CFO and the

channel. This provides a soft decision on the data symbols,

which is given by

ŝ(n) = f(ρ̂)e−jψ̂nx(n), n ∈ D (2)

where ψ̂n = ω̂n + φ̂ is an estimate of the overall phase to

be compensated for, ψn = ωn + φ, and f(ρ̂) = 1/ρ̂ in the

case of zero-forcing equalization and f(ρ̂) = ρ̂/(ρ̂2 + σ2)
in the case of minimum mean square error equalization. The

data detection is then performed on a symbol-by-symbol basis

by minimizing the Euclidian distance between ŝ(n) and the

constellations points used in the symbol mapping stage of data
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generation. It is therefore imperative to obtain an accurate

estimation of the ψn’s and ρ in order to achieve good detection

performance.

III. OPTIMAL PLACEMENT OF PILOT SYMBOLS

The criterion we use to derive the optimal pilot placement is

based on the CRB, which is an algorithm-independent measure

of performance. Indeed, the CRB is a lower bound on the

variance of any unbiased estimator. The use of the CRB is

also motivated by the fact that the performance of maximum

likelihood (ML) estimation asymptotically achieves the CRB.

A. Cramér-Rao Bound

Let θ = [ρ, φ, ω]T be the parameter vector to be estimated.

The CRB is obtained from the diagonal elements of the inverse

of the Fisher Information Matrix (FIM), which is given by [7]

F := −E

{

∂2L(xP |θ)

∂θ∂θ
T

}

where E {·} denotes the statistical expectation operator and

L(xP |θ) is the log-likelihood function of xP := {x(n), n ∈
P} given θ. Under assumptions (A1)-(A2), L(xP |θ) is, after

removing irrelevant terms, given by

L(xP |θ) = −
1

σ2

∑

n∈P

[−2ρℜ{x(n)s∗(n)e−j(ωn+φ)} + ρ2]

where ℜ{·} is the real part operator. The FIM is found to be

F =
2ρ2

σ2

⎡

⎢

⎢

⎣

P
ρ2 0 0

0 P
∑

n∈P

n

0
∑

n∈P

n
∑

n∈P

n2

⎤

⎥

⎥

⎦

Thus, the CRBs for ρ, φ and ω are given by:

CRB(ρ) =
σ2

2P
(3)

CRB(φ) =
1

2 SNR

∑

n∈P

n2

P
∑

n∈P

n2 −
(

∑

n∈P

n
)2 (4)

CRB(ω) =
1

2 SNR

P

P
∑

n∈P

n2 −
(

∑

n∈P

n
)2 (5)

where SNR := ρ2

σ2 is the Signal-to-Noise Ratio (SNR).

Using the inverse of the FIM, the CRBs for ψm, m ∈ D,

are obtained as

CRB(ψm) =
1

2 SNR

m2P − 2m
∑

n∈P

n +
∑

n∈P

n2

P
∑

n∈P

n2 −
(

∑

n∈P

n
)2 , m ∈ D

(6)

B. Optimal Pilot Placement

Since the CRB for ρ is independent of P , only the CRBs

for {ψm, m ∈ D} are relevant in the pilot placement design.

We therefore propose the following optimum pilot placement

P∗ = arg min
P

∑

m∈D

CRB(ψm) (7)

Preamble Data Postamble

Fig. 1. Optimal pilot placement design.

Solving the above optimization problem analytically seems

untractable. Hence, we resort to computer analysis. By car-

rying out an exhaustive evaluation of the design criterion

over all possible pilot placements, P∗ is found to consist

of a preamble (i.e. a cluster of symbols at the beginning of

the burst) and a postamble (i.e. a cluster of symbols at the

end of the burst) of equal size; see Fig. 1. If P is odd,

either the preamble or the postamble can have one more

symbol than the other without affecting the design criterion.

Interestingly, the conventional preamble-only design gives the

worst performance, as illustrated in Figs. 2 and 3 (details are

given in Section IV). The following results have also been

obtained by computer analysis:

• The equal-preamble-postamble (EPP) pilot design also

minimizes the CRB for ω.

• The pilot placement that minimizes the CRB for φ is also

a preamble-postamble placement. However, the size of

the postamble is either one or two symbols. Neverthless,

the CRB for φ when the preamble and postamble are of

equal size is quite close to the minimum of CRB(φ).
• The EPP pilot design also minimizes the CRB(ψm)’s

individually.

We now make the following relevant comments.

1) It is worth recalling that in the absence of CFO, the CRB

for φ is independent of P . Therefore, it is the presence of an

unknown CFO that makes the CRB of φ dependent on the

pilot placement.

2) Let am and bm denote the amplitude and angle of the

data symbol s(m). Thus, from (1), the soft detection output

in eq. (2) can be expressed as:

ŝ(m) = f(ρ̂)ρamej(bm+∆ψm) + ṽ(m), m ∈ D

where ∆ψm = ψm − ψ̂m and ṽ(m) = f(ρ̂)v(m). Since

the estimation performance for ρ is independent of P , it is

reasonable to expect that the probability of detection error

for each data symbol, s(m), is minimized when the mean

square of ∆ψm is also minimized, which is obtained with the

EPP pilot design. Although this statement lacks a rigorously

theoretical proof, it is well supported by simulation results

(see Section IV.)

3) After some algebra, the CRB for ω in eq. (5) can be

re-expressed as

CRB(ω) =
1

SNR

P
P
∑

i=1

P
∑

j=1;j �=i

(ni − nj)2

where ni, i = 1, ..., P , denote the time indexes of the pilot

symbols. This expression shows that CRB(ω) decreases with

the sum of square differences (ni−nj)
2. Using this expression,

we can analytically prove for P = 2, 3, 4 that the EPP

design minimizes CRB(ω). For P ≥ 5, the analytical proof

becomes tedious. As to why the EPP design is best in terms

of CFO estimation, we present the following explanation. For

simplicity, assume that P = 2 and that the pilot symbols
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Fig. 2. MSEs and CRBs for different preamble-postamble designs.
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Fig. 3. Bit error rate for different preamble-postamble designs.

are both equal to unity. The received pilot symbols are then

x(ni) = ρ exp(jωni + φ) + v(ni), i = 1, 2, where n1

and n2 can take any distinct values from {0, ..., N − 1}.

The maximum likelihood estimate of ω can be shown to be

ω̂ = arg{x∗(n1)x(n2)}/(n2 − n1) where arg{.} denotes the

argument (or angle) operator. The variance of the numerator is

independent of n1 and n2. Thus, the variance of ω̂ is inversely

proportional to (n2 − n1)
2. This variance is minimum when

n1 = 0 and n2 = N − 1, which is the EPP design. It is

however difficult to extend this reasoning to the case where

P > 2.

4) The EPP pilot design guarantees a full acquisition range

provided P > 2. Indeed, with P = 3, either the preamble or

the postamble consists of two consecutive pilot symbols.

5) Using the EPP pilot design and assuming P even, we

obtain the following close-form CRB expressions

CRB(ω) =
1

2 SNR

12

P [P 2 − 3NP + (3N2 − 1)]

CRB(φ) =
1

2 SNR

P 2 − 3NP + 6N2 − 6N + 2

P [P 2 − 3NP + (3N2 − 1)]

IV. SIMULATION RESULTS

Here, we illustrate the superiority of the proposed EPP

design over the conventional preamble-only design using the

CRB, the empirical MSE of the maximum likelihood (ML)

estimates and the BER. In the evaluation of the latter, we used

QPSK, 16-QAM and 64-QAM. The amplitude ρ was set to

unity and the phase φ was randomly generated using a uniform

distribution over (−π, π]. The CFO was set to ω = 0.2π. The

burst size was N = 148 and the total number of pilot symbols

was P = 26. We evaluate the CRB for ω, h := ρ exp(jφ), and

the sum of the CRBs for the ψm’s, m ∈ D, versus different

preamble-postamble designs. Figs. 2 and 3 display the results

versus the number of pilot symbols in the postamble. It can be

seen that the EPP design provides a significant improvement

over the preamble-only design in terms of both estimation

accuracy and data detection performance. It is however worth

pointing out that if the preamble and postamble are of unequal

size, the performance is close to that of the EPP design

provided that the preamble or the postamble consists of more

than two pilots. We have also run simulations (not shown here

because of space limitation) to compare the performance of the

EPP design with that of the equally spaced pilot (ESP) design

(i.e. the pilots are uniformly scattered across the block), which

is traditionally used for channel estimation [4]. Although the

EPP design outperforms the ESP design, the difference in

performance is not as significant as that between the EPP

design and the preamble-only design. However, it is worth

pointing out that unlike the EPP design the ESP design does

not provide full frequency acquisition range.

V. CONCLUSIONS

In burst-mode transmission where the carrier frequency-

offset needs to be estimated, we have proven that by split-

ting the pilot sequence into a preamble and a postamble of

equal size, a significant gain in system performance over the

preamble-only pilot design can be obtained. Although the gain

in performance over the equally spaced pilot design is not

significant, the proposed design has the advantage of providing

full frequency acquisition range. The proposed pilot design

may be particularly useful when the frequency-offset may

vary across the bursts as might be the case for some mobile

communication systems where a significant Doppler effect is

present. The disadvantage of the preamble-postamble scheme

is its unsuitability for real-time burst processing. Future work

will address the case of frequency selective channels.
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