White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Estimation of carbon-carbon bond lengths and medium-range internuclear distances by solid-state nucler magnetic resonance

Carravetta, M., Edén, M., Johannessen, O.G., Luthman, H., Verdegem, P.J.E., Lugtenburg, J., Sebald, A. and Levitt, M.H. (2006) Estimation of carbon-carbon bond lengths and medium-range internuclear distances by solid-state nucler magnetic resonance. Journal of the American Chemical Society, 123 (43). pp. 10628-10638. ISSN 0002-7863

Full text not available from this repository.

Abstract

We describe magic-angle-spinning NMR methods for the accurate determination of internuclear dipole−dipole couplings between homonuclear spins-1/2 in the solid state. The new sequences use symmetry principles to treat the effect of magic-angle sample-rotation and resonant radio frequency fields. The pulse-sequence symmetries generate selection rules which reduce the interference of undesirable interactions and improve the robustness of the pulse sequences with respect to chemical shift anisotropies. We show that the pulse sequences may be used to estimate distances between 13C spins in organic solids, including bond lengths in systems with large chemical shift anisotropies, such as conjugated systems. For bond-length measurements, the precision of the method is ±2 pm with a systematic overestimate of the internuclear distance by 3 ± 1 pm. The method is expected to be a useful tool for investigating structural changes in macromolecules.

Item Type: Article
Academic Units: The University of York > Chemistry (York)
Depositing User: York RAE Import
Date Deposited: 03 Apr 2009 10:40
Last Modified: 03 Apr 2009 10:40
Published Version: http://dx.doi.org/10.1021/ja016027f
Status: Published
Publisher: ACS American Chemical Society
Identification Number: 10.1021/ja016027f
URI: http://eprints.whiterose.ac.uk/id/eprint/6907

Actions (login required)

View Item View Item