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A Comparison of Standard Spell Checking
Algorithms and a Novel Binary Neural Approach

Victoria J. Hodge and Jim Austin

Abstract—In this paper, we propose a simple, flexible, and efficient hybrid spell checking methodology based upon phonetic matching,

supervised learning, and associative matching in the AURA neural system. We integrate Hamming Distance and n-gram algorithms

that have high recall for typing errors and a phonetic spell-checking algorithm in a single novel architecture. Our approach is suitable

for any spell checking application though aimed toward isolated word error correction, particularly spell checking user queries in a

search engine. We use a novel scoring scheme to integrate the retrieved words from each spelling approach and calculate an overall

score for each matched word. From the overall scores, we can rank the possible matches. In this paper, we evaluate our approach

against several benchmark spellchecking algorithms for recall accuracy. Our proposed hybrid methodology has the highest recall rate

of the techniques evaluated. The method has a high recall rate and low-computational cost.

Index Terms—Binary neural spell checker, integrated modular spell checker, associative matching.

�

1 INTRODUCTION

ERRORS, particularly spelling and typing errors, are
abundant in human generated electronic text. For

example, Internet search engines are criticized for their
inability to spell check the user’s query which would
prevent many futile searches where the user has incorrectly
spelled one or more query terms. An approximate word-
matching algorithm is required to identify errors in queries
where little or no contextual information is available and
using some measure of similarity, recommend words that
are most similar to each misspelled word. This error
checking would prevent wasted computational processing,
prevent wasted user time, and make any system more
robust as spelling and typing errors can prevent the system
identifying the required information.

We describe an interactive spell checker that performs a

presence check on words against a stored lexicon, identifies

spelling errors, and recommends alternative spellings [9].

The basis of the system is the AURA modular neural

network [3] described later. The spell checker uses a hybrid

approach to overcome phonetic spelling errors and the four

main forms of typing errors: insertion, deletion, substitu-

tion, and transposition (double substitution). We use a

Soundex-type coding approach (see Kukich [10]) coupled

with transformation rules to overcome phonetic spelling

errors. “Phonetic spelling errors are the most difficult to

detect and correct” [10] as they distort the spelling more

than the other error types so a phonetic component is

essential. We use an n-gram approach [13] to overcome the

first two forms of typing errors and integrate a Hamming

Distance approach to overcome substitution and transposi-

tion errors. N-gram approaches match small character

subsets of the query term. They incorporate statistical
correlations between adjacent letters and are able to
accommodate letter omissions or insertions. Hamming
Distance matches words by left aligning them and matching
letter for letter. Hamming Distance does not work well for
insertion and deletion where the error prevents the letters
aligning with the correct spelling, but works well for
transposition and substitutions where most characters are
still aligned. We have developed a novel scoring system for
our spell checker. We separate the Hamming Distance and
n-gram scores so the hybrid system can utilize the best
match from either and overcome all four typing-error types.
We add the Soundex score to the two separate scores to
produce two word scores. The overall word score is the
maximum of these two values.

Our approximate matching approach is simple and
flexible. We assume the query words and lexicon words
comprise sequences of characters from a finite set of
30 characters (26 alphabetical and four punctuation char-
acters). The approach maps characters onto binary vectors
and two storage-efficient binary matrices (Correlation
Matrix Memories described in Section 2.3) that represent
the lexicon. The system is not language-specific so may be
used on other languages; the phonetic codes and transfor-
mation rules would just need to be adapted to the new
language. Our spell checker aims to high recall1 accuracy
possibly at the expense of precision.2 However, the scoring
allows us to rank the retrieved matches so we can limit the
number of possibilities suggested to the user to the top
10 matches, giving both high recall and precision.

Some alternative spelling approaches include the Le-
venshtein Edit distance [10], Agrep [15], [14], aspell [2], and
the two benchmark approaches MS Word 97 and MS Word
2000. We evaluate our approach against these alternatives.
The reader is referred to Kukich [10] for a thorough treatise
of spell checking techniques. We compare our hybrid
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system with all of the aforementioned approaches for
quality of retrieval—the percentage of correct words
retrieved from 600 misspelled words giving a figure for
the recall accuracy with noisy inputs (misspellings).

The paper is organized into the following sections: In
Section 2, we provide a brief description of the alternative
techniques used for the empirical comparison against our
technique. Section 2.3 is a detailed description of the AURA
neural architecture and our hybrid spelling technique using
integrated AURA modules. In Section 3, we provide a
qualitative comparison of the recall accuracy of our
technique and those alternative approaches described in
Section 2. Section 4 provides our analysis of the recall
results and Section 5 contains our conclusions and sugges-
tions for possible further developments for our technique.

2 SOME ALTERNATIVE SPELL CHECKING

APPROACHES

2.1 Levenshtein Edit Distance

Levenshtein edit distance produces a similarity score for the
query term against each lexicon word in turn. The score is
the number of single character insertions, deletions, or
substitutions required to alter the query term to produce the
lexicon word, for example, to go from “ him” to “ham” is one
substitution or “ham” to “harm” is one insertion. The word
with the lowest score is deemed the best match.

fð0; 0Þ ¼ 0 ð1Þ

fði; jÞ ¼ min½ðfði� 1; jÞ þ 1; fði; j� 1Þ þ 1;

fði� 1; j� 1Þ þ dðqi; ljÞ�

where dðqi; ljÞ ¼ 0 if qi ¼ lj else dðqi; ljÞ ¼ 1:

ð2Þ

For all words, a function fð0; 0Þ is set to 0 and then a
function fði; jÞ is calculated for all query letters and all
lexicon-word letters, iteratively counting the string differ-
ence between the query q1q2 . . . qi and the lexicon word
l1l2 . . . lj. Each insertion, deletion, or substitution is awarded
a score of 1, see (2). Edit distance is OðmnÞ for retrieval as it
performs a brute force comparison with every character (all
m characters) of every word (all n words) in the lexicon and,
therefore, can be slow when using large dictionaries.

2.2 Agrep

Agrep [15], [14] is based upon Edit Distance and finds the
best match, the word with the minimum single character
insertions, deletions, and substitutions. Agrep uses several
different algorithms for optimal performance with different
search criteria. For simple patterns with errors, Agrep uses
the Boyer-Moore algorithm with a partition scheme (see [15]
for details of partitioning). Agrep essentially uses arrays of
binary vectors and pattern matching, comparing each
character of the query word in order, to determine the best
matching lexicon word. The binary vector acts as a mask so
only characters where the mask bit is set are compared,
minimizing the computation required. There is one array
for each error number for each word, so for k errors there
are kþ 1 arrays (R0 . . .Rk) for each word. Rj denotes step j

in the matching process of each word and Rjþ1 the next
step. RShift is a logical right shift, AND and OR denote

logical AND and OR, respectively, and Sc is a bit vector
representing the character being compared c. The following
two equations describe the matching process for up to

k errors 0 < d � k.

Rd
0 ¼ 11 . . . 100 . . . 000 with d bits set ð3Þ

Rd
jþ1 ¼Rshift½Rd

j � AND Sc OR

Rshift½Rd�1
j � OR Rshift½Rd�1

jþ1 � OR Rd�1
j :

ð4Þ

For a search with up to k errors permitted, there are kþ 1

arrays as stated previously. There are two shifts, one AND,
and three OR operations for each character comparison (see
[15]), so Wu and Manber quote the running time as Oððkþ

1ÞnÞ for an n word lexicon.

2.3 Our Integrated Hybrid Modular Approach

We implement all spelling modules in AURA. AURA [3] is

a collection of binary neural networks that may be
implemented in a modular fashion. AURA utilizes Correla-

tion Matrix Memories (CMMs) [3] to map inputs to outputs
(see Fig. 1) through a supervised learning rule, similar to a
hash function. CMMs are binary associative m � n matrix

memory structures that store a linear mapping � between a
binary input vector of length m and a binary output vector
of length n (see (5)). The input vector i addresses them rows

of the matrix and the output vector o addresses the
n columns of the matrix (see Fig. 2).

� : f0; 1gm ! f0; 1gn: ð5Þ

AURA does not suffer from the lengthy training problem
of other neural networks as training is a single epoch
process (Oð1Þ for each association) generating the network’s
high speed. Storage is efficient in the CMMs as new inputs
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Fig. 1. Diagram of the hybrid spell checker as implemented in the AURA

modular system.



are incorporated into the matrix and do not require
additional memory allocation. AURA is also able to
partially match inputs in a single step process and is much
faster than conventional symbolic approaches [8]. In the
implementation described in this paper, there are no false
positive or false negative matches as CMMs retrieve all
expected matches during single iteration partial matching
[12]. We also use orthogonal vectors to uniquely identify
each output word. Retrieval is faster for orthogonal vectors
compared to the nonorthogonal compressed variant be-
cause no validation is necessary as there are no ghost
matches caused by bit interference, which is a problem for
nonorthogonal vectors where multiple bits are set [12].
Modern computers have sufficient memory to handle the
small memory increase when using the longer orthogonal
vectors. We provide the implementation details and
theoretical running time for our AURA spell checker in
the following sections.

2.4 Our Methodology

In our system, we use two CMMs: one CMM stores the
words for n-gram and Hamming Distance matching and the
second CMM stores phonetic codes for homophone match-
ing. The CMMs are used independently, but the results are
combined during the scoring phase of the spell checker to
produce an overall score for each word.

2.4.1 Hamming Distance and n-gram

For Hamming Distance and n-gram, the word spellings
form the inputs and the matching words from the lexicon
form the outputs of the CMM. For the inputs, we divide a
binary vector of length 960 into a series of 30-bit chunks.
Words of up to 30 characters may be represented, (we need
two additional character chunks for the shifting n-gram
described later). Each word is divided into its constituent
characters. The appropriate bit is set in the chunk to
represent each character (see Fig. 3 for a table listing which
bit represents which character), in order of occurrence. The
chunks are concatenated to produce a binary bit vector to
represent the spelling of the word and form the input to the
CMM. Any unused chunks are set to all zero bits.

Each word in the alphabetical list of all words in the text
corpus has a unique orthogonal binary vector to represent
it. The binary vector forms the output from the CMM for
that word so we can identify when the word has been
retrieved as a match. A single bit is set corresponding to the
position of the word in the alphabetical list of all words (see
(6)). Essentially, we associate the spelling of the word to an
orthogonal output vector to uniquely identify it and
maintain the system’s high speed as no output validation
is necessary. When we output a vector from the CMM, it is a
simple task to lookup the bit set and use the position to
index the words in the alphabetical list of all words and
return the matching word at that position.

bitV ectorp ¼ pth bit set 8p for p ¼ positionfwordsg: ð6Þ

2.4.2 Training the Network

The binary patterns representing the word spellings or
phonetic codes are input to the appropriate CMM and the
binary patterns for the matching words form the outputs
from the respective CMM. The diagram (Fig. 4) shows a
CMM after one, two, and three patterns have been trained.
The CMM is set to one where an input row (spelling bit)
and an output column (word bit) are both set (see Fig. 4).
After storing all spelling-word associations, the CMM
binary weight wkj, where wkj 2 f0; 1g for row j column k,
where _ and ^ are logic “or” and “and,” respectively, is
given by (7)

wkj ¼
_

all i

inputSpellingij ^ outputWordik

¼

�

X

all i

inputSpellingij ^ outputWordik

�

:
ð7Þ

2.4.3 Recalling from the Network—Binary Hamming

Distance

We essentially count the number of aligned letters (same
letter and same position in the word) between the input
spelling and the lexicon words. For recall only, the spelling
input vector is applied to the network. The columns are
summed as in (8)

outputj ¼
X

alli

inputi ^ wji where wji 2 f0; 1g ð8Þ

and the output of the network thresholded to produce a
binary output vector (see Fig. 5). The output vector
represents the words trained into the network matching
the input spelling presented to the network for recall. We
use the Willshaw threshold (see [3]) set to the highest
activation value to retrieve the best matches (see Fig. 5).
Willshaw threshold sets to 1 all the values in the output
vector greater than or equal to a predefined threshold value
and sets the remainder to 0 (see Fig. 6). The output vector is
a superimposition of the orthogonal vectors representing
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Fig. 2. The input vector i addresses the rows of the CMM and the output

vector o addresses the columns.

Fig. 3. Table indicating which bit is set in the 30-bit chunk representing each character.



the words that match the maximum number of the input
word’s characters. This partial match provides a very
efficient and rapid single-step mechanism for selecting
those words that best match. The CMM retrieval is (Oð1Þ) as
one input presentation retrieves all matching outputs.

We are able to use the “?” convention from UNIX for
unknown characters by setting all bits in the chunk
(representing a universal OR), i.e., the chunk represents a
“don’t care” during matching and will match any letter or
punctuation character for the particular letter slot. For
example, if the user is unsure whether the correct spelling is
“separate” or “seperate,” they may input “sep?rate” to the
system and the correct match will be retrieved as the chunk
with all bits set will match “a” in the lexicon entry
“separate.”

2.4.4 Recalling from the Network—Shifting n-grams

This stage counts the number of n-grams in the input
spelling present in each lexicon word. We use exactly the
same CMM for the n-gram method as we use for the
Hamming Distance retrievals. However, we use three
n-gram approaches, unigrams for spellings with less than
four characters, bigrams for four to six characters, and
trigrams for spellings with more than six characters.
Misspelled words with less than four characters are
unlikely to have any bigrams or trigrams found in the
correct spelling, for example, “teh” for “the” have neither
common. Spellings with four to six characters may have no
common trigrams but should have common bigrams and
words with more than six characters should match
trigrams. Again, we can employ the “?” convention from
UNIX by setting all bits in the appropriate input chunk. We

describe a recall for a 7-letter word (“theatre”) using
trigrams below and in Fig. 7. All n-gram techniques used
operate on the same principal, we essentially vary the size
of the comparison window.

We take the first three characters of the spelling “the”
and input these left aligned to the spelling CMM as in the
left-hand CMM of Fig. 7. We wish to find lexicon words
matching all three letters of the trigram, i.e., all words with
an output activation of three for their first three letters. In
the left-hand CMM of Fig. 7, “theatre” and “the” match the
first three letters so their corresponding output activations
are three. When we threshold the output activation at the
value three, the bits set in the thresholded output vector
correspond to a superimposition of the bits set to uniquely
identify “theatre” and “the.” We then slide the trigram one
place to the right, input to the CMM, and threshold at three
to find any words matching the trigram. We continue
sliding the trigram to the right until the first letter of the
trigram is in the position of the last character of the spelling.
We match the length of the input plus two characters as
nearly all spelling mistakes are within two letters of the
correct spelling [10]. We logically OR the output vector
from each trigram position to produce an output vector
denoting any word that has matched any of the trigram
positions. We then move onto the second trigram “hea,” left
align, input to the CMM, threshold, and slide to the right
producing a second trigram vector of words that match this
particular trigram in any place. When we have matched all
n trigrams {“the,” “hea,” “eat,” “atr,” “tre”} from the
spelling, we will have n output vectors representing the
words that have matched each trigram, respectively. We
sum these output vectors to produce an integer vector
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Fig. 4. Diagram showing three stages of network training.

Fig. 5. Diagram showing system recall. The input pattern has 2 bits set

so the CMM is thresholded at 2. Fig. 6. Diagram showing Hamming Distance matching.



representing a count of the number of trigrams matched for
each word. We then threshold at the maximum value of the
output activation vector to produce a thresholded output
vector with bits set corresponding to the best matching
CMM columns (words), i.e., the columns (words) with the
highest activation.

2.4.5 Phonetic Spell Checking

Our methodology combines Soundex-type codes with
phonetic transformation rules as with Phonix [6] to produce
a four-character code for each word. However, we use
fewer rules than Phonix which was designed for name
matching and includes Dutch rules. We also wish to
minimize the rule base as much as possible to maintain
speed. We studied the etymology of the English language
detailed in the Concise Oxford Dictionary and spelling
errors garnered from Internet NewsGroups and hand-
written text, and integrated a small subset of rules derived
from Phonix and aspell [2] that we felt were particularly
important for a generic spell checker. We also use a larger
number of codes than Soundex and Phonix. We use 14 codes
compared to seven in Soundex and nine in Phonix to
preserve the letter pronunciation similarities while prevent-
ing too many dissimilar letters mapping to the same code
value. The letters are translated to codes indexed from 0-D
(hexadecimal) to allow a single character representation of
each code value and ensure only four character codes are
generated. We minimize false positives as only similar
sounding words map to the same four-character code. Both
Soundex and Phonix have low precision as they generate
many false positives [16] due to the limited number of code
permutations.

For our method, any applicable transformation rules are
applied to the word. The phonetic transformation rules are
given in Table 1. The code for the word is generated
according to the algorithm3 in Fig. 8 using the codes given
in Table 2. The letters c, q, and x do not have a code as they
are always mapped to other letters by transformation rules:
c ! s or c ! k, q ! k, and x ! z or x ! ks. The function
Soundex() returns the code value for the letter as detailed in
the code table in Table 2. If the code produced from the

algorithm contains less than four characters, then any
empty characters are padded with 0s.

For phonetic spelling, the phonetic codes form the inputs
and the matching words from the lexicon form the outputs
of the CMM. Each word is converted to its four character
phonetic code. For the input (phonetic) vectors, we divide a
binary bit vector of length 62 into an initial alphabetical
character representation (23 characters as c, q, and x are not
used) and three 13-bit chunks. Each of the three 13-bit
chunks represents a phonetic code from Table 2 where the
position of the bit set is the hexadecimal value of the code.
The chunks are concatenated to produce a binary bit vector
to represent the phonetic code of the word and form the
input to the CMM.

As with the Hamming Distance and n-gram module,
each word in the alphabetical list of all words in the text
corpus has a unique orthogonal binary bit vector to
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3. The prefixes {hough, cough, chough, laugh, rough, tough, enough,
trough} are converted to their respective phonetic codes and any remaining
letters in the word are then converted as per the algorithm. For example,
laughs, the prefix “laugh” is converted to “l3” and the remaining letter “s” is
converted to “B” using the algorithm in Table 8 giving a phonetic code
“l3B0” after padding with 0s to produce the four-character code.

Fig. 7. Diagram showing a trigram shifting right.

TABLE 1
Table of the Phonetic Transformation Rules in Our System

Italicized letters are Soundex codes—all other letters are standard
alphabetical letters. ^ indicates “the beginning of a word,” indicates “the
end of the word” and + indicates “1 or more letters.” Rule 1 is applied
before rule 2.



represent it and form the output from the phonetic CMM. A
single bit is set corresponding to the position of the word in
the alphabetical list of all words (see (9)).

bitV ectorp ¼ pth bit set 8p for p ¼ positionfwordsg: ð9Þ

2.4.6 Recalling from the Network—Phonetic

The recall from the phonetic CMM is essentially similar to
the Hamming Distance recall. We input the 4-character
phonetic code for the search word into the CMM and recall
a vector representing the superimposed outputs of the
matching words. The Willshaw threshold is set to the
maximum output activation to retrieve all words that
phonetically best match the input word.

2.4.7 Superimposed Outputs

Partial matching generates multiple word vector matches
superimposed in a single output vector after thresholding
(see Fig. 6). These outputs must be identified. A list of all
words in the lexicon is held in an array. The position of any
set bits in the output vector corresponds to that word’s
position in the array (see (6) and (9)). By retrieving a list of
the bits set in the output vector, we can retrieve the matched
words from the corresponding array positions (see Fig. 9).
The time for this process is proportional to the number of
bits set in the output vector �ðbits setÞ, there is one
matching word per bit set for orthogonal output vectors.

2.5 Integrating the Modules

For exact matching (checking whether a word is present in a
lexicon), we use the Hamming Distance and a length match.
We perform the Hamming Distance (see Section 2.4.3),
thresholding at the length of the input spelling (number of
bits set) to find all words beginning with the input spelling.
In Fig. 6, the input would be thresholded at 3 (length of
“the”) to retrieve {“the,” “therefore”}. To count the number

of characters in each stored word, we input a binary vector
with all bits set to 1 and threshold the output at the exact
length of the input spelling (number of bits set). There is
1-bit per character, so, if all bits are activated and summed,
we effectively count the length of the word. We could have
stored the length of each word with the word array, but we
felt the additional storage overhead created was unneces-
sary particularly as our exact match is extremely rapid
(0.03 seconds for a 29 letter word on a 180MHz MIPS
R10000 processor and 30,000 word lexicon) using the CMM.
From Fig. 6, if all bits are set in the input and the output
thresholded at exactly 3 this will retrieve the three letter
words {“the,” “are,” “she”}. We can then logically AND the
Hamming Distance output vector with this vector (the
length vector), to retrieve the exact match if one exists, i.e.,
matching all input characters AND the exact length of the
input. The bit set in the ANDed bit vector indexes into the
word array to retrieve the matching word {“the”}.

If the exact match process does not return any matches,
we assume the query word is spelled incorrectly. We can
then spell check using the query word and produce a list of
alternative spellings. We present the input vector for
Hamming Distance, then shift n-gram to the first CMM
and phonetic spelling to the second CMM (see Section 2.4
for details of how the input vectors are produced), and
generate a separate output vector for each method with an
activation set for each word in the lexicon. We threshold the
output activation vector from the Hamming Distance
method at the maximum attribute value of the vector to
recover the best matches. We threshold the output activa-
tion vector from the shifting n-gram method at the highest
value and also the phonetic output. The corresponding best
matching words are retrieved from the word array for each
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Fig. 8. Figure listing our code generation algorithm in pseudocode. Skip jumps to the next loop iteration.

TABLE 2
Table Giving Our Codes for Each Letter

Fig. 9. Diagram showing matching word retrieval using the set bits in the

thresholded output vector as positional indices into the word array.



thresholded vector, i.e., we identify the array locations of the
best matching words from the positions of the bits set in the
thresholded vectors. Retrieval times for Hamming Distance
and the phonetic match are Oð1Þ taking < 0:01 seconds for
both a 3-character and 29-character input and 30,000 word
lexicon on a 180MHz MIPS R10000 processor [7]. Retrieval
for the shifting n-gram is slower at OðnÞ as each n-gram is
shifted along the length of the input and the number of
shifts is proportional to input length. Retrieval ranges from
0.01 to 1.06 seconds for a 3-character to 29-character input
and 30,000 word lexicon on a 180MHz MIPS R10000
processor [7]. This compares to < 0:01 secs for a conven-
tional n-gram or 1.53 secs for standard edit distance. The
shifting n-gram is slower than a conventional n-gram
approach where no shifting is required. However, we can
exploit the same CMM for both Hamming Distance and the
shifting n-gram which would not be possible with a
conventional n-gram approach, so we minimize memory
usage. Retrieval accuracy is also higher for the shifting n-
gram compared to a conventional n-gram [7], so we feel the
superior retrieval accuracy and memory conservation
offered by the shifting n-gram mitigates the slightly slower
retrieval speed. [7].

We produce three separate scores: one for the Ham-
ming Distance best match (see (10)), one for the shifting
n-gram best match (see (11)), and one for the phonetic
best match (see (12)), which we integrate to produce an
overall word score (see (13)). We evaluated various
scoring mechanisms for recall accuracy using the UNIX
lexicon and a word list from the Reuters corpus [11]. Our
first approach was to simply sum all three scores to
produce a word score, but this favors words that match
reasonably well on both n-gram and Hamming Distance,
but they are usually complementary, as stated earlier in
this chapter. We evaluated the n-gram scoring mechan-
isms in [10] (2 � c=ðnþ n0Þ and c=maxðn; n0Þ, where c is
the number of common n-grams and n and n0 are the
lengths of the query word and lexicon word, respec-
tively), but found all were inferior to our scoring in (11).
We keep the Hamming Distance and n-gram scores
separate as they are complementary and we add the
Soundex score to each of these two scores. We normalize
both the Soundex and Hamming Distance score to give a
theoretical maximum score for each, equivalent to the
maximum score possible for the n-gram. We subtract
ðð2�jn� gramjÞ � 1Þ to normalize the Hamming Distance
toward the n-gram score. We multiply the Soundex score
by ðstrlenðqueryWordÞ � ðjn� gramj � 1ÞÞ to normalize to
the n-gram score. This ensures that none of the three
methods integrated biases the overall score, they should
all be equally influential. In the following equations:
WillThresh is the Willshaw threshold setting; strlenðÞ is
the string length;

diff ¼ ðstrlenðqueryWordÞ � strlenðlexiconWordÞÞ;

k is the length (modulus) of the n-gram or phonetic code.

ScoreHamming ¼

2 � ðWillThresh� diff � ðð2 � jn-gramjÞ � 1ÞÞ
ð10Þ

ScoreN-gram ¼ 2 � ðWillThresh� diffÞ ð11Þ

ScorePhonetic ¼
2 � ðWillThresh� diffÞ

ð2 � jphoneticCodejÞ
�

ðstrlenðqueryWordÞ � ðjn-gramj � 1ÞÞ:

ð12Þ

The score for the word is then given by (13).

Score ¼ maxððScoreHammingþ ScorePhoneticÞ;

ðScoreN-gramþ ScorePhoneticÞÞ:
ð13Þ

3 EVALUATION

For our evaluations, we use three lexicons, each supple-

mented with the correct spellings of our test words: UNIX

“spell” comprising 29,187 words and 242,819 characters;

Beale [5] containing 7,287 words and 43,504 characters, and

CRL [1] with 45,243 words and 441,388 characters.

3.1 Quality of Retrieval

We extracted 583 spelling errors from the aspell [2] and

Damerau [4] word lists and combined 17 spelling errors

we extracted from the MS word 2000 auto-correct list to

give 600 spelling errors. The misspellings range from one

to five error combinations with a reasonably even

distribution of insertion, deletion, and substitution errors.

Three hundred twenty-nine words have one error, 188

have two errors, 61 have three errors, 14 have four

errors, and eight have five errors. We devised our

phonetic rule, code base, and scoring mechanism before

extracting the spelling error data set. For each lexicon in

turn, we counted the number of times each algorithm

suggested the correct spelling among the top 10 matches

and also the number of times the correct spelling was

placed first. We counted strictly so even if a word was

tied for first place but was listed third alphabetically,

then we counted this as third. However, if a word was

tied for 10th place (where the algorithm produced a

score) but was listed lower, we counted this as top 10. In

Table 3, we include the score for MS Word 97, MS Word

2000, and aspell [2] spell-checkers using their standard

supplied dictionaries4 for a benchmark comparison

against the other algorithms which were all using the

standard UNIX spell lexicon.5 In Table 4, we compare

our hybrid approach against the Hamming Distance,

shifting n-gram, and phonetic components (scoreHam-

ming, scoreNGram, and scorePhonetic from (13), respec-

tively) that integrate to form our hybrid approach against

agrep and Edit Distance on different lexicon sizes to

investigate the effect of lexicon size on recall accuracy.

We only compare the methods that can be trained on the

different lexicons in Table 4.
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4. We also checked that the correct spelling of each of the words not
correctly matched was present in the Word dictionary and the aspell
dictionary before counting the correct matches.

5. All lexicons included some of the misspellings as variants of the
correct spelling, for example, “miniscule” was stored as a variant of
“minuscule,” “imbed” as a variant of “embed” in MS Word. We counted
these as “PRESENT” in Table 3 and included them in the retrieved scores in
Table 4.



4 ANALYSIS

If we consider the final column of Table 3, the recall
percentage (the number of top 10 matches / (600 - number
of words present)), we can see that our hybrid implementa-
tion has the joint highest recall with aspell. Our stated aim
in the introduction was high recall. We have achieved the
joint highest recall of the methodologies evaluated, even
higher than the MS Word benchmark algorithms. Aspell
and MS Word 2000 have more first place matches than our
method. However, both aspell and MS Word were using
their standard dictionaries which makes comparison con-
tentious. Assuming a valid comparison, MS Word is
optimized for first place retrieval and Aspell relies on a
much larger rule base. We have minimized our rule base for
speed and yet achieved equivalent recall. The phonetic
component takes < 0:01 secs for a 29-letter input and
30,000 word lexicon. The user will see the correct spelling in
the top 10 matches an equal number of times for both aspell
and our method.

In Table 4, we can see that our integrated spell checker
attains far higher recall than the three components
(scoreHamming, scoreNGram, and scorePhonetic from
(13)) for both lexicons so the integration and scoring
mechanism is synergistic. We have achieved far higher

recall than either agrep or Edit Distance for the all lexicon

sizes. Of the eight words not found by our hybrid trained
with the Beale lexicon, six were not found using the

UNIX lexicon, one was present, and the other word was
retrieved at position 11. The words not found by our

spell checker trained with the UNIX lexicon were

72 percent similar to the words not found using the
CRL lexicon. One word was present in the CRL lexicon

and the remaining words were predominantly low top

10 matches. We feel this demonstrates consistency of
retrieval across the lexicons. The words our hybrid spell

checker fails to find are predominantly high error, highly

distorted misspellings such as “invermeantial” for “en-
vironmental” missed for both the UNIX and CRL lexicons

or misspelling that are more similar to many stored

lexicon words than the true correct word, for example,
our hybrid fails to find “daily” from the misspelling

“daly” for the Beale lexicon as words such as “dally” and
“dale” are retrieved as higher matches. We maintain

93 percent recall for the large 45,243 word lexicon which

we note contains many inflected forms such as verb
tenses, singular/plural nouns etc. and, thus, tests recall

thoroughly as we only count exact matches as correct.
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TABLE 3
Table Indicates the Recall Accuracy for Our Hybrid, the Three Benchmark Approaches,

Edit Distance, and Agrep Using the Standard Lexicons

Column 1 gives the number of top 10 matches, column 2 the number of first place matches, column 3 the number of spelling variants (see footnote 5)
present in the lexicon, column 4 gives the number of words not correctly found in the top 10, and the fifth column provides a recall accuracy
percentage (the number of top 10 matches / (600 - number of words present)).

TABLE 4
Table Indicates the Recall Accuracy of the Methodologies Evaluated with the Beale and CRL Lexicons



5 CONCLUSION

Spell checkers are somewhat dependent on the words in the
lexicon. Some words have very few words spelled similarly,
so even multiple mistakes will retrieve the correct word.
Other words will have many similarly spelled words, so
one mistake may make correction difficult or impossible. Of
the techniques evaluated in Table 3, our hybrid approach
had the joint highest recall rate at 93.9 percent tied with
aspell which uses a much larger rule base. We maintain
high recall accuracy for large lexicons and increase recall to
98.5 percent for the smaller lexicon. The recall for our
integrated system is far higher than the recall for any of the
individual components. Humans averaged 74 percent for
isolated word-spelling correction [10] (where no word
context is included and the subject is just presented with
a list of errors and must suggest a best guess correction for
each word). Kukich [10] posits that ideal isolated word-
error correctors should exceed 90 percent when multiple
matches may be returned.

There is a trade off when developing a phonetic spell
checker between including adequate phonetic transforma-
tion rules to represent the grammar and maintaining an
acceptable retrieval speed. To represent every possible
transformation rule would produce an unfeasibly slow
system, yet sufficient rules need to be included to provide
an acceptable quality of retrieval. We feel that our rule base
is sufficient for the spell checker we are developing as the
phonetic module will be integrated with alternative spelling
approaches (n-gram and Hamming Distance). We cannot
account for exceptions without making the transformation
rule base intractably large; we have mapped scðejijyÞ ! s
which applies with the exception of sceptic pronounced
skeptic. However, we feel our recall and coverage are
generally high for the system developed and that the
combination of the three methods should overcome any
limitations of the individual methods.

Our exact match procedure is very rapid and indepen-
dent of the length of the input spelling Oð1Þ. The best match
process is slower as the shifting triple is OðnÞ. However, we
feel the ability to reuse the Hamming Distance CMM
coupled with the superior quality of the shifting triple as
compared to the regular nonpositional trigram [13] offsets
the lower speed.

Some possible improvements include adding a facility to
handle the UNIX wild-card character “*” to enable more
flexible word matching. We have already implemented the
UNIX “?” any single character match. The wild-card is more
complicated as the letters in the word do not align. We
could not use the Hamming Distance approach due to the
nonalignment. We would also be limited with our shifting
n-gram as this only shifts along the length of the input
word. The shifting n-gram can be slow if shifted many
places to the right, so this is not an option. The phonetic
spelling match would also be problematic as this aligns the
phonetic code characters and the wild-card would preclude
alignment. If we were to implement the wild-card in a
CMM, we would probably need to use the triple mapping
approach as this matches the n-gram anywhere in the
lexicon word. This would of course require an extra CMM
to store the n-gram signature bit vectors for the lexicon
words. An alternative would be to exploit the UNIX “grep”
facility and use this or possibly “agrep” for wild-card
matching as both are fast and do not store the lexicon thus
minimizing the storage overhead.
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