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Hierarchical Growing Cell Structures:
TreeGCS

Victoria J. Hodge and Jim Austin

Abstract—We propose a hierarchical clustering algorithm (TreeGCS) based upon the Growing Cell Structure (GCS) neural network of
Fritzke. Our algorithm refines and builds upon the GCS base, overcoming an inconsistency in the original GCS algorithm, where the
network topology is susceptible to the ordering of the input vectors. Our algorithm is unsupervised, flexible, and dynamic and we have
imposed no additional parameters on the underlying GCS algorithm. Our ultimate aim is a hierarchical clustering neural network that is
both consistent and stable and identifies the innate hierarchical structure present in vector-based data. We demonstrate improved

stability of the GCS foundation and evaluate our algorithm against the hierarchy generated by an ascendant hierarchical clustering

dendogram. Our approach emulates the hierarchical clustering of the dendogram. It demonstrates the importance of the parameter

settings for GCS and how they affect the stability of the clustering.

Index Terms—Unsupervised, growing, neural, network, hierarchical, cluster, topology.

1 INTRODUCTION

THE ability to introduce hierarchical structured knowl-
edge into a system using autonomous learning of
examples has received much attention, see, for example,
[15], [8], [11], or [2], where the papers” authors describe the
implementation of a variety of hierarchical systems.
Proponents argue that humans intuitively cluster informa-
tion and, in real-world situations, concepts are related and
frequently organized into a generalization hierarchy by a
human subject [10]. However, it is very difficult for a
human to construct a hierarchy by hand that is both
consistent and does not introduce redundancy. By imple-
menting an autonomous clustering process, we can rapidly
organize the data space for the system and its users while
overcoming the inconsistency and innate redundancy of
human-generated abstractions. The hierarchical structure
generated may then be used to discover trends and
generalization information, to allow knowledge to be stored
at the requisite level of granularity, and for further
processing in the system. The system using the hierarchy
can utilize the distances between nodes in the hierarchy to
calculate the similarity of concepts. The hierarchy can be
exploited to restrict data searches to regions of the
hierarchy, thus minimizing the search space and progres-
sively refining the search from general concepts to specific
concepts. Searching is computationally expensive and, by
restricting the search to subregions of the hierarchy, the
computational expense can be minimized. Hierarchical
clustering is frequently used in Information Retrieval to
cluster words based on the frequency of occurrence of the
words or to cluster documents using the words in the
documents as indexing values, see, for example [16].
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Clustering may be defined as a process of partitioning a
multidimensional input data space into groups of similar
objects. The similarity of the objects is determined by a
cardinal similarity measurement over the object attributes.
A frequently used similarity measure is Euclidean distance.
The clustering arranges the objects so that objects within a
cluster are more similar to each other than to objects in
another cluster; the intracluster similarity is higher than the
intercluster similarity.

Clustering algorithms have been investigated previously
and cover a vast range of methodologies (see, for example,
Jain and Dubes [7] for a discussion of the statistical
approaches or Song and Lee [15] for a discussion of neural
network techniques). The clustering algorithms described in
[7] and [15] are used in a wide variety of applications,
including pattern recognition, information retrieval, image
processing, and natural language processing. However,
nearly all clustering techniques suffer from at least one of
the following;:

1. They assume specific forms (for example, a normal
form) for the probability distribution of the input
space being modeled,

2. They require unique global minima of the input
probability distribution,

3. They cannot handle identical cluster similarities, i.e.,
where two pairs of clusters have equal similarity,

4. They do not scale well as the training time is often
O(n?) with respect to the number of input vectors, or

5. They require prior knowledge of the data to allow
the cluster topology to be specified and more
knowledge to allow the parameters to be set for
the clustering method.

Hierarchical clustering superimposes a structure onto the
clusters below. In the hierarchy produced, each leaf node
represents one object from the entire set of objects and
the root node represents the whole set of objects. Thus,
the generality of the clusters in the hierarchy increases

1041-4347/01/$10.00 © 2001 IEEE
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monotonically from leaf nodes to the root. The hierarchy
may be formed agglomeratively (bottom-up) by progres-
sively merging the most similar clusters. Once two
clusters are merged, their union becomes the new cluster
and this union is used for later comparisons and merging.
Alternatively, the hierarchy may be obtained divisively
(top-down) by iteratively dividing a supercluster into
finer-grained subclusters, according to some metric. The
subclusters are then treated as the objects for future
subdivisions.

Probably the most commonly used statistical hierarchical
clustering approach is the dendogram [3]. For dendograms,
there is initially one data point per cluster. The algorithm
iteratively determines the distance between each pair of
clusters and the two clusters with the smallest distance are
merged, producing a branch in the cluster tree. The merging
of the most similar clusters is repeated until only one cluster
is left, which represents the entire set of input data points.
There are many flavors of dendograms; the difference
results from the various similarity criteria employed [3]. We
use Ward’s method [3] as a comparison for our new method
(TreeGCS) in this paper.

One of the problems with dendograms is that they
cannot be visualized for large data sets as the diagram is
just too complex with too many leaf nodes and branches to
allow comprehension. Dendograms also have problems
when more than one pair of clusters have equal similarities,
as only one new data item may be assimilated at each
iteration. If there are two pairs of clusters with identical
values, then one pair must be merged on the current
iteration and the other pair on the next iteration. The order
of the two merges is arbitrary. Therefore, we feel the
dendogram is ideal for structure and cluster comparison,
but would not be suitable for the learning system outlined
in the first paragraph, as it fails on points 3 and 4 above.

Connectionist methods model the brain’s fundamental
systems through a parallel, distributed processing system
comprising units linked by weighted connections. A pattern
is input to the network and every unit is used to calculate
the network output using the input values and connection
weights. Probably the most common connectionist cluster-
ing approach is Self-Organizing Maps (SOMs) [9]. SOMs
induce a topological map of relationships among vectors in
the input data space, mapping each input vector to a single
neuron in a lattice topology. However, SOMs only form a
flat cluster topology; they are not hierarchical.

Therefore, SOMs have been extended to Hierarchical
SOMs (HSOMs) [12], which are multilayered SOMs and
thus allow a cluster hierarchy to be formed. Each neuron in
the lattice on a metalayer points to an entire SOM on the
layer below. The sublayer is a finer grained representation
of the knowledge in the higher layer. Mangiameli et al. [11]
demonstrated SOMs superiority to seven bottom-up hier-
archical clustering methods with respect to accuracy,
robustness, and ease of use. However, HSOMs generally
require prior knowledge of the input distribution to predict
a suitable topology. For example, in [13], the author
describes the DISCERN system and states that one of the
main liabilities of the DISCERN system is that “much of the
internal knowledge structures are fixed and specified in advance.”

Therefore, Song and Lee [15] have produced the Structu-
rally Adaptive Intelligent Neural Tree (SAINT) system that
automatically determines a cluster hierarchy composed of
SOM networks, removing the need to prespecify the
structure. Where the mapping error from the input vector
to the best matching node is high, new nodes are added.
Any superfluous nodes are deleted and nodes that are very
similar are merged. This dynamically creates a tree-
structured SOM. However, the lattice topology within the
SOM subnetworks fixes the number of neighbors attached
to each node and loses flexibility. SOMs also cannot form
discrete (disconnected) clusters, thus inhibiting the data
representation. The clusters have to be determined by hand
after the algorithm terminates and this introduces the innate
subjectivity of human judgements. We need a hierarchical
methodology that maintains the superiority of SOMs over
statistical techniques, but automatically and dynamically
determines the cluster hierarchy, thus minimizing human
intervention, does not confine nodes to a strict lattice
structure, and allows the network to split into separate
clusters.

In this paper, we propose and develop such a hierarch-
ical clustering algorithm, called TreeGCS, which is based on
Fritzke’s GCS neural network [5]. TreeGCS is an unsuper-
vised, growing, self-organizing hierarchy of nodes able to
form discrete clusters. In TreeGCS, high dimensional inputs
are mapped onto a two-dimensional hierarchy reflecting the
topological ordering of the input space. We selected
Fritzke’s GCS as our foundation rather than Fritzke’s
Growing Neural Gas (GNG) [6] or Bruske and Sommer’s
Dynamic Cell Structures (DCS) [1], as GNG and DCS
maintain the input data dimensionality in the network
representation. Thus, visualization of the hierarchy would
not be possible with GNG and DCS unless the input data
was limited to an impractical three-dimensions or less to
permit visualization. It is also far simpler to superimpose a
cluster hierarchy on top of a two-dimensional cluster
representation. We feel that these two benefits of dimen-
sionality reduction outweigh the possible drawback of
dimensionality reduction where mapping on to a lower-
dimensional topology can distort the data and lose
similarity information. Fritzke [4] has demonstrated the
superiority of this mapping for GCS compared to SOMs. We
demonstrate how our hierarchical structure emulates the
similarity structure produced by a dendogram in Section 4.
TreeGCS is preserving the similarities in the input data
space identified by the dendogram.

Our algorithm is similar to HiGS [2]. HiGS (see Fig. 1) is a
top-down, self-organizing hierarchy that aims to map the
input vector distribution onto a two-dimensional hierarch-
ical structure. The HiGS algorithm inserts a node every
second iteration in the subnetwork below the root that has
the greatest error’ and iteratively in each subnetwork below
this also with the maximum error to spread and reduce the
error. Prior to insertion, the HiGS algorithm collates all
signal counters and, if all counters are approximately
equivalent, a new subcluster is generated for each node to

1. The maximal mean Euclidean distance between the winning node and
all other nodes for each input where the winner lies in the respective
subnetwork.
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Fig. 1. lllustration of HIGS topology.

allow the hierarchy to grow down. Superfluous nodes are
deleted from leaf networks if few inputs map onto them.
However, the structure generated from HiGS does not
match our requirements. The topology induced for HiGS is
not a tree configuration as the parent must be a member of a
cluster of cardinality at least three (see Fig. 1). The HiGS
algorithm generates child clusters and periodically deletes
superfluous children so, at any particular time, the tree
representation may be incorrect (i.e., a superfluous child
cluster may be due for deletion). Our proposal maintains
the correct cluster topology at each epoch.

In the remainder of this paper, we describe and evaluate
Fritzke’s GCS in Section 2 and identify two weaknesses with
the stability and the criticality of the parameter settings. In
Section 3, we detail our hierarchical extension and how we
improve these two GCS limitations. We qualitatively
evaluate TreeGCS against a dendogram to demonstrate
our improved stability in Section 4. In Section 4, we also
demonstrate the importance of the parameter settings and
posit recommendations for selecting suitable values. We
further analyze the results in Section 5 and summarize and
provide future recommendations in Section 6.

2 GCS

Here, we outline the GCS algorithm that forms the
foundation for our hierarchical methodology. The initial
topology of GCS is a two-dimensional structure (triangle) of
cells (neurons) linked by vertices. Each cell has a neighbor-
hood defined as those cells directly linked by a vertex to the
cell. The input vector distribution is mapped onto the cell
structure by mapping each input vector to the best
matching cell. Each cell has a vector attached denoting the
cell’s position in the input vector space; topologically close
cells have similar attached vectors. On each iteration, the
attached vectors are adapted toward the input vector. The
adaptation strength is constant over time and only the best
matching unit (bmu) and its direct topological neighbors are
adapted, unlike SOMs, where the adaptation occurs in a
progressively reducing radius of neurons around the bmu.
Cells are inserted where the cell structure under-represents
the input vector distribution and superfluous cells which
are furthest from their neighbors are deleted. Each cell has a
“winner counter” variable denoting the number of times that
cell has been the bmu. The winner counter of each cell is
reduced by a predetermined factor on every iteration. The

Fig. 2. lllustration of cell insertion: A new cell and associated connections
are inserted at each step.

aim is to evenly distribute the winner counter values so that
the probability of any cell being a bmu for a random input is
equivalent, i.e., the cells accurately represent the input
space.

The GCS learning algorithm is described below; the
network is initialized in point 1 and points 2 to 7 represent
one iteration. An epoch comprises an iteration (points 2 to 7)
for each input vector in the data set.

1. A random triangular structure of connected cells
with attached vectors (w,, € #") and E representing
the winner counter (the number of times the cell has
been the winner) is initiated.

2. The next random input vector ¢ is selected from the
input vector density distribution. The input vector
space is represented as real-valued vectors of
identical length.

3. The best matching unit (bmu) is determined for ¢
and the bmu’s winning counter is incremented.

where || || is the

bmu = & — We llmincnesmon

Euclidean distance
AEbmu =1

4. The best matching unit and its neighbors are adapted
toward £ by adaptation increments set by the user:

A’wbmu = ebmu(g - wbmu)
Aw, = ¢(§ —w,) (Vn € neighborhood).

5. If the number of input signals exceeds a threshold
set by the user, a new cell (wy,,) is inserted between
the cell with the highest winning counter (w,,) and
its farthest neighbor (ws)—see Fig. 2. The weight of
the new unit is set according to:

Wnew = (wbmu + wf)/2

Connections are inserted to maintain the triangular
network configuration. The winner counter of all
neighbors of w,,, is redistributed to donate fractions
of the neighboring cells’” winning counters to the
new cell and spread the winning counter more
evenly,

AE, = ———FE, Vn € neighborhood of wyey-

|n |
The winner counter for the new cell is set to the total
decremented:

1
Enew = Z <— E, Vn € neighborhood of wnﬁw).

|n|
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Fig. 3. lllustration of cell deletion: Cell A is deleted. Cells B and C are
within the neighborhood of A and would be left dangling by removal of
the five connections surrounding A, so B and C are also deleted.

6. After a user-specified number of iterations, the cell
with the greatest mean Euclidean distance between
itself and its neighbors is deleted and any cells within
the neighborhood that would be left “dangling” are
also deleted (see Fig. 3). Any trailing edges are
deleted to maintain the triangular configuration:

Del =

MAT cenetwork MVTL € neighborhood | .
card(n)

7. The winning counter variable of all cells is decreased
by a user-specified factor to implement temporal
decay:

AE. = —(E, Vc € network.

The user-specified parameters are: the dimensionality of
GCS, which is fixed at 2 here; the maximum number of
neighbor connections per cell; the maximum cells in the
structure, €,,; the adaptation step for the winning cell, ¢;
the adaptation step of the neighborhood, 53; the temporal
decay factor; the number of iterations for insertion; and the
number of iterations for deletion.

The algorithm iterates until a specified performance
criterion (e.g., network size) is met. If the maximum number
of epochs along with the maximum number of cells is
specified as the termination criterion, then new cells are
inserted until the maximum number of cells is reached.
Once the maximum has been reached, adaptation continues
on every iteration and cells may be deleted. The cell
deletion reduces the number of cells to below the maximum
allowing one or more new cells to be inserted until the
maximum number of cells is reached again. Deletion
removes superfluous cells while creating space for new
additions in underrepresented regions of the cell structure,
so the input distribution mapping is improved while the
maximum number of cells is maintained.

Fritzke has demonstrated superior performance for the
GCS over SOMs [4]. Superiority with respect to:

e Topology preservation, with similar input vectors
being mapped onto identical or closely neighboring
neurons ensuring robustness against distortions.

e Neighboring cells having similar attached vectors,
ensuring robustness. If the dimensionality of the
input vectors is greater than the network dimension-
ality, as in our evaluation in Section 4, then the

mapping usually preserves the similarities among
the input vectors.

e Lower distribution-modeling error (which is the
standard deviation of all counters divided by the
mean value of the counters). This increases fault
tolerance as each cell is only related to a small
fraction of the input vector space, so any error will
only affect a small region of the cell structure.

2.1 GCS Evaluation

The run-time complexity for GCS is: Determine the bmu by
calculating the distance between the input vector and each
cell’s attached vector for every dimension which is
(numberCells « dimension). This calculation is performed
for every input vector on each epoch. The run-time for the
GCS is therefore

(numberCells * dimension x numberInputs x epochs).

During evaluation of the GCS algorithm, we discovered
that it was susceptible to the order of the input data. We
rearranged the order of the input vectors, e.g., the first
vector was switched to become the last, the second vector
was switched to become the second last, etc., until a
completely new ordering of the input data space was
generated. Each input ordering was presented to GCS. For
each input ordering, the cluster topology altered. The
algorithm is comnsistent—an identical cluster topology is
generated for an identical input space but is unstable—a
different configuration is produced if the input space is
reordered. We define consistency as generating the same cell
structure when the algorithm is run repeatedly with the
same input vector order. We define stability as generating
the same cell structure if the algorithm is run repeatedly
with the same input vectors, but the vectors are input in
different orders. We investigated an adaptation of the
GCS algorithm in which the quantization error® is used to
determine insertion and deletion, thus minimizing the
overall quantization error (as recommended by Fritzke
[5]). However, this did not improve cluster stability and
generated inappropriate cluster cardinalities, for example,
76 cells for a cluster that represented six input vectors and
six cells representing 36 input vectors as concurred by
Fritzke. We concluded that the original winning counter
implementation was most appropriate, but that it appeared
to be committing to clusters too early and could not recover.
We amended the deletion step so that cells may only be
deleted once 90 percent of the total required cells have been
added to the cell structure. We empirically evaluated
various values and found 90 percent to be most consistent;
lower values commit to clusters too early and 100 percent
can inhibit cluster splitting. While not eliminating the
instability problem completely, it was significantly amelio-
rated during 1,680 epochs by delaying deletion until
90 percent of the maximum number of cells are present.

However, over a greater number of epochs (e.g., 30,000)
the stability still remains problematic. We further improved

2. The quantization error is the accumulated distance squared between
the cell reference vector and all input signals for which the cell is the bmu.
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Fig. 4. lllustration of cluster subdivision.

the stability over many epochs by cycling through different
data orders (i.e., the order of the vectors in the input space
was altered). In this paper, we utilize three data orderings
to illustrate the initial susceptibility of the algorithm to the
input data order and how cycling improves the stability.
The GCS reads the first data order for one epoch, the second
for the next, the third and back to the first, etc., until the
requisite number of epochs has been completed. This
enables the different data orders to counteract each other
and, thus, introduces more stability, as demonstrated in
Section 4.

There is also a criticality of parameter settings. Kohle and
Merkl [12] observed the problem and we illustrate the
phenomenon and from the results suggest possible para-
meter settings.

3 TReeGCS

The tree is constructed from, and superimposed onto, the
standard GCS algorithm exposited above. A tree root node
points to the initial cell structure and incorporates a list of
all cells from the GCS.

When the cluster subdivides, new nodes are added to the
tree to reflect the additional clusters (see Fig. 4) and the lists
are updated with each leaf node holding a list of all cells in
its associated cluster. Only leaf nodes maintain a cluster list.
A parent’s cluster list is implicitly a union of the children’s
cluster lists and is not stored for efficiency—minimizing
memory usage. No constraints are imposed on the tree,
hence, it is dynamic and requires no prior data knowl-
edge—the tree progressively adapts to the underlying cell
structure. The hierarchy generation is run once after each
GCS epoch. The running time is O(cells) as we essentially
breadth-first search through the entire cell structure.

3.1 Algorithm (in pseudocode)

For each epoch,
Execute the GCS epoch, forming an unconnected graph
representing the disjoint clusters.
Breadth first search from the final winning cell for the
epoch to determine which cells are present in the
cluster.
While some cells remain unprocessed,
Breadth first search from the next unprocessed cell
to determine which cells are present in the cluster.
If the number of clusters has increased from the
previous epoch, then any tree nodes that point to
multiple clusters are identified and child nodes are
added for each new cluster formed (see Fig. 4). The

cluster list of the parent is deleted and cluster lists are
updated for the child nodes. If a cluster is formed from
new cells (cells inserted during the current epoch), then
a new tree node is added as a child of the root and the
new cluster cells added to the new node’s list.

Else if the number of clusters has decreased, a

cluster has been deleted and the associated tree

node is deleted. The tree is tidied to remove any
redundancy (see Fig. 5).

For each unprocessed cluster, the tree node that
points to that cluster is determined, the cluster list
emptied, and the new cells are added.

Once the requisite number of GCS epochs have been
completed, the GCS cells are labeled. Each input vector is
input to the GCS and the cell identifier of the bmu is
returned. The bmu can then be labeled with the input vector
(or other label as appropriate). All tree nodes except leaf
nodes have only an identifier and pointers to their children.
The leaf nodes have an identifier, but also maintain a list of
the identifiers of the GCS cells in their cluster. When the
GCS bmu is identified, the associated leaf node can be
identified and the tree can be traversed to find all ancestor
nodes.

The superimposed tree will be symmetrically equivalent;
it is right/left independent. Trees that appear superficially
dissimilar can, in fact, represent identical cluster topologies.

The tree may be degenerate if the clustering subdivides
degenerately. This obviously induces an inefficient repre-
sentation, but is necessary for soundness and completeness
of the clustering breakdown.

In the next section, we demonstrate our stability
improvement for the underlying GCS algorithm. We restrict
when cell deletion may commence in all test runs. We
demonstrate how cycling through different data orders
produces more stable clusters than just inputting a single
data order repeatedly. We also demonstrate the criticality of
the parameter settings for GCS and outline how we aim to

Q)
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s e

Fig. 5. lllustration of cluster deletion. The rightmost cell cluster is deleted
during an epoch (Step 2)—this leaves a dangling pointer. The node with
the dangling pointer is removed (Step 3), leaving redundancy in the
hierarchy. The redundancy is removed in the final step.
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overcome the problem. Selecting suitable parameter settings
is a combinatorial problem and affects many statistical and
neural clustering methods [3], [15]. We make recommenda-
tions for a simple method of parameter selection for GCS.

We evaluate the algorithm on a small data set to permit a
simple and concise illustration of the cluster structure
produced. Fritzke has previously demonstrated GCS’s
ability to accurately map benchmark data sets. Fritzke
demonstrates GCS’s superior performance with respect to
the number of training epochs compared to three common
neural networks for the spiral benchmark [5]. He also
identified GCS’s superiority with respect to correctly
classified test patterns over six common neural network
approaches and the nearest-neighbor approach for mapping
the vowel recognition benchmark data set [5]. We do not
aim to recreate Fritzke’s cluster accuracy evaluations, but
focus our evaluation on improving cluster stability and
selecting parameter settings.

4 EVALUATION
4.1 Evaluation

The data set for the stability investigation is comprised of
41 47-dimensional real-valued vectors with no missing
values, representing data for 41 countries in Europe:

(z1,29,...,247) € RY, BuroData = {z', 2%, ..., 2"},

The attributes were geographical, population, economic,
communication, and transportation factors obtained from
the World Factbook [17]. Each vector in the data set has a
clear label (the country name), so the position of each
country’s vector in the hierarchical clustering is easily
identified. This allows us to qualitatively compare the
various hierarchies. A very similar data set is used in [8].
SOMs have been criticized for their inability to map input
distributions with a higher dimensionality than the number
of input vectors as stated previously in Section 2. Here, we
can use such a data set to demonstrate the stability
improvements we have made and also to demonstrate our
technique’s ability to accurately map such a data set onto a
two-dimensional hierarchy emulating a dendogram cluster-
ing. We compare stability by assessing the similarity of the
hierarchical cluster topology produced for the respective
input data orders and comparing the cluster contents. Is the
topology a similar shape? Do the same countries fall into
each half of the hierarchy? Are the same countries

consistently clustered together across the input data orders?
We use three different orderings of the data to evaluate
stability.

1. Alphabetical order of the country names (i.e., the
47-dimensional vectors that represent each country
are arranged in the input vector space according to
the alphabetical order of the respective countries).

2. Middle to front—the second half of the alphabetical
order file was moved to the front.

3. Numerical order—sorted on the first attribute of
each vector.

4.1.1 Dendogram

We qualitatively evaluate the hierarchies produced by
TreeGCS against the hierarchy generated by a bottom-up
hierarchical dendogram utilizing Ward’s algorithm. The
dendogram hierarchically illustrates similarities. In evalua-
tions by Mangiameli et al. [11], Ward’s method proved
superior to six other hierarchical bottom-up methods with
respect to classification accuracy, so Ward’s method should
be best for structure comparison. In Ward'’s algorithm, the
two clusters to merge at each step are selected to maximize
an objective function (error sum of squares), thus, informa-
tion loss is minimized (see Fig. 9 for an example of a
dendogram hierarchy).

We presented the three different data orders described
above to the dendogram to produce three hierarchies. There
were some minor variations in the dendogram hierarchies
produced from the three data orders, but the contents of the
clusters were identical for all hierarchies. See Fig. 9 for the
hierarchy produced from the alphabetical vector order. If
we take the dendogram as showing three clusters, the
clusters produced are:

e {Den, Fra, Ger, It, UK}

e {Lux}

e {Alb, And, Aus, Bel, Bos, Bul, Cro, Cyp, Cze, Eir, Est,
Far, Fin, Gib, Gre, Hun, Ice, Lat, Lie, Lit, Mac, Mal,
Mon, NL, Nor, Pol, Rom, SM, Ser, SIk, Sln, Spa, Swe,
Swi, Ukr}.

4.1.2 TreeGCS

The parameter settings for TreeGCS throughout the
evaluation were: €y, = 0.02, ¢, = 0.002, 8 = 0.0002, and a
maximum of 10 connections per cell. These values
produced the maximal consistency for the input data
during a brief empirical assessment and using our
parameter selection approach recommended in Section 4.2
where we reduce ¢, by scale factor 10 to give ¢;, which we
further reduce by scale factor 10 to give 5. The maximum
number of cells in the structure was set to 123; there are
three times as many cells as countries to ensure maximal
spread with minimal redundancy. The number of iterations
before a cell insertion was set to one; the insertion value is
set to ensure that all input vectors are used for cell insertion
in turn. The number of iterations between each delete was
set to 5,000; this value ensures maximal adaptation before
any cells are deleted. The algorithm was set to run for
30,000 epochs for a thorough evaluation of stability.

Each of the nine data orders (three single-pass and six
cyclic) was presented to TreeGCS to allow us to compare
the stability of a single data order input to TreeGCS
repeatedly against cycling through three different data
orders. For the single-pass, the single data order was
presented repeatedly for 30,000 epochs. For the cyclic
approach, each data order was presented in turn for one
epoch, allowing us to cycle through the three data orders in
three epochs. There are six permutations of the three data
orders (1,2,3)(1,3,2)(2,3,1)(2,1,3)(3,1,2)(3,2,1) with respect to
the data order numbers in Section 4, giving six hierarchies.

As stated in Section 2.1, the running time is
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Fig. 6. lllustration of the cluster topology for the three single pass TreeGCS runs. (a) = alphabetical order, (b) = middle-to-front, and (c) = sorted
numerically by the first attribute. The numbers indicate the number of GCS cells in the cluster.

(numberCells x dimension x numberInputs x epochs)

for the GCS foundation and O(cells), run once per epoch for
the hierarchy generation. The algorithm took, on average,
440 seconds to run 30,000 epochs on a 180 MHz MIPS
R10000 Processor with the European data.

4.1.3 Single-Pass TreeGCS

We obtained the following cluster configurations from the
three single-pass TreeGCS (the numbers in the listings
correlate to the numbers in the nodes in the figures):

1. Alphabetical order of countries (see Fig. 6).
34 {Lux, Ukr}
9 {Den, Fra, Ger, It, Spa, UK}
80 {Alb, And, Aus, Bel, Bos, Bul, Cro, Cyp, Cze, Eir,
Est, Far, Fin, Gib, Gre, Hun, Ice, Lat, Lie, Lit, Mac,
Mal, Mon, NL, Nor, Pol, Rom, SM, Ser, Slk, SIn, Swi}
3 {Swe}

2. Middle to front order of countries (see Fig. 6).
11a {Den, Fra, Ger, It, Spa, UK}
11b {Aus, Bel, NL, Swe, Swi, Ukr}
12 {Cze, Fin, Gre, Nor, Rom}
13 {Bul, Eir, Hun, Pol, Slk}
14 {Lux, Ice}
65 {Alb, And, Bos, Bul, Cro, Cyp, Est, Far, Gib, Lat,
Lie, Lit, Mac, Mal, Mon, SM, Ser, SIn}

3. Numerical order of first attributes (see Fig. 6).
29 {Aus, Bel, Den, Fra, Ger, It, NL, Spa, Swe, Swi,
UK}
69 {Alb, And, Bos, Bul, Cro, Cyp, Est, Far, Gib, Ice,
Lat, Lie, Lit, Mac, Mal, Mon, Pol, Rom, SM, Slk, SIn}
8 {Hun, Lux, Ser}
20 {Cze, Eir, Fin, Gre, Nor, Ukr}

4.1.4 Cyclic TreeGCS

For the six permutations of the cyclic approach, the
parameter settings for TreeGCS were the same as pre-
viously detailed. The following six hierarchies were
obtained for the six possible permutations of the three data
orders (in the following: D = alphabetical data order, M =
middle to front, and S = sorted numerically by the first

attribute). Again, the numbers in the listings correlate to the
numbers in the nodes in the figures:

1. DMS (see Fig. 7).
18 {Den, Fra, Ger, It, NL, Spa, UK}
108 {Alb, And, Aus, Bel, Bos, Bul, Cro, Cyp, Cze, Eir,
Est, Far, Fin, Gib, Gre, Hun, Ice, Lat, Lie, Lit, Lux,
Mac, Mal, Mon, Nor, Pol, Rom, SM, Ser, Slk, Sln,
Swe, Swi, Ukr}

2. DSM (see Fig. 7).
30 {Bel, Den, Fra, Ger, It, NL, Spa, Swe, UK}
8 {Aus, Lux, Ser, Swi, Ukr}
88 {Alb, And, Bos, Bul, Cro, Cyp, Cze, Eir, Est, Far,
Fin, Gib, Gre, Hun, Ice, Lat, Lie, Lit, Mac, Mal, Mon,
Nor, Pol, Rom, SM, Slk, SIn}

3. MSD (see Fig. 7).
10 {Den, Fra, Ger, It, Spa, UK}
116 {Alb, And, Aus, Bel, Bos, Bul, Cro, Cyp, Cze, Eir,
Est, Far, Fin, Gib, Gre, Hun, Ice, Lat, Lie, Lit, Lux,
Mac, Mal, Mon, NL, Nor, Pol, Rom, SM, Ser, SIk, SIn,
Swe, Swi, Ukr}

4. MDS (see Fig. 7).
17 {Den, Fra, Ger, It, NL, Spa, UK}
32 {Aus, Bel, Cze, Fin, Gre, Nor, Rom, Swe, Swi, Ukr}
11 {Bul, Eir, Hun, Lux, Ser, Slk}
66 {Alb, And, Bos, Cro, Cyp, Est, Far, Gib, Ice, Lat,
Lie, Lit, Mac, Mal, Mon, Pol, SM, SIn}

5. SDM (see Fig. 7).
18 {Den, Fra, Ger, It, NL, Spa, UK}
5 {Cze, Gre, Lux, Ser}
15 {Aus, Bel, Rom, Swe, Swi}
12 {Eir, Fin, Hun, Nor, Ukr}
76 {Alb, And, Bos, Bul, Cro, Cyp, Est, Far, Gib, Ice,
Lat, Lie, Lit, Mac, Mal, Mon, Pol, SM, Sk, SIn}

6. SMD (see Fig. 7).
23 {Bel, Den, Fra, Ger, It, NL, Spa, UK}
90 {Alb, And, Bos, Bul, Cro, Cyp, Cze, Eir, Est, Far,
Fin, Gib, Gre, Hun, Ice, Lat, Lie, Lit, Lux, Mac, Mal,
Mon, Pol, SM, Ser, Slk, SIn}
13 {Aus, Nor, Rom, Swe, Swi, Ukr}
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Fig. 7. lllustration of the cluster toplology for the six cyclic TreeGCS runs.

4.2 Parameter Settings

Next, we demonstrate the importance of the parameter
settings for GCS that underlies TreeGCS. Kohle and Merkl
[12] intimated at the problem for GCS. Parameter selection
is a combinatorial problem and affects many statistical and
neural network techniques [3], [15]. We make recommenda-
tions for effective parameter combinations for TreeGCS that
are easily derived. We take the three parameters e, €;,
and § and fix two while altering the third for each
parameter in turn (see Table 1) to measure the criticality
of each parameter in turn. We then cycle through seven
combinations of parameters where each parameter is
reduced by a factor of 10 in the order €., € to 3 (see
Table 2). For all evaluations, we list the final epoch for
deletion from the TreeGCS hierarchy and the final epoch of
insertion into the TreeGCS hierarchy for a run of 90,000
epochs. We assume the hierarchy is static when there are no
more insertions or deletions of nodes. The data is comprised
of 52 630-dimensional real-valued vectors. The hierarchy
becomes static for the 47-dimensional European data with
most parameter settings, so we use the higher dimension-
ality data for our evaluation and also demonstrate our
system’s ability to accommodate such high-dimensional
data.

We can see differences regarding when the hierarchy
becomes static for each parameter variation. From the last
three lines of Table 1, varying ¢; between 0.002, 0.02, and
0.05 when the other two parameters are fixed creates the
largest variation in final deletion/insertion from never
static to static in approximately 4,000 epochs to never static.
N.B., a static hierarchy, does not necessarily imply cluster
quality. Some settings where the hierarchy becomes static
early produce poor quality clusters as there are too few
clusters and the clusters produced are too general.

Again looking at Table 2, we can see variations in when
the hierarchy becomes static, but there is a general trend of
“U”-shape with respect to the final deletion/insertion.

5 ANALYSIS

We can see that the cyclic approach we have introduced is
more stable than the original single-pass as the different

data orders counteract each other and reduce the instability.
The shapes of the hierarchies for the cyclic runs are more
similar than those from the single-pass. For the cyclic, the
DMS and MSD hierarchies have identical shapes as do SMD
and DSM and also SDM and MDS. All cyclic hierarchies are
very similar, differing only with subdivisions of larger
clusters. Although the single pass finds a {Den, Fra, Ger, I,
Spa, UK} cluster, it is not consistently in one-half of the
hierarchy. There are two further notable inconsistencies for
the single-pass: For the alphabetical order, {Den, Fra, Ger, It,
Spa, UK} is a subcluster of the main branch with {Lux, Ukr}
forming the separate half. For the numerical order, {Aus, Bel,
NL, Swe, Swi} are included with the {Den, Fra, Ger, It, Spa,
UK]} cluster. The single-pass approach does not consistently
group the same countries across the three hierarchies. For
the cyclic approach, the different orderings seem to
counteract each other and cancel out the hierarchical
variations. Cyclic TreeGCS consistently finds the {Den,
Fra, Ger, It, NL, Spa, UK} cluster and has the remaining
countries as the other half of the cluster.

Comparing the cyclic hierarchies with the dendogram,
the dendogram similarities are emulated except that cyclic
TreeGCS includes NL and Spa with the {Den, Fra, Ger, I,
UK} cluster, unlike the dendogram, omitting NL from the
cluster in one instance. Looking at the dendogram, two of
the most similar countries to {Den, Fra, Ger, It, UK} are NL
and Spa, so this is neither unexpected nor undesirable. The
two possible anomalies in cyclic TreeGCS are the inclusion
of Bel with the {Den, Fra, Ger, It, NL, Spa, UK} cluster for the
SMD cyclic and Bel and Swe for the DSM cyclic, but these
are minor in comparison with the anomalies of the single-
pass approach. We feel our cyclic approach improves
cluster stability.

From Figs. 6 and 7, we can see that the number of cells
per cluster is proportional to the number of countries in the
cluster for the cyclic approach, but not for the single pass. In
fact, in only seven instances do two countries have the same
cell as their bmu in all six permutations of the cyclic
approach: {Aus and Swi: DSM}, {Nor and Ukr: DMS), {Slk and
Bul, Eir and Hun: MDS}, {Cze and Gre: MSD)}, {Cze and Gre:
SDM} and {Eir and Fin: SMD}. In all cases, these countries
are similar according to the dendogram. An unknown input
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TABLE 1
Whether the Hierarchy Became Static Over 90,00 Epochs when the First and Second,
Second and Third, and First and Third Parameters Are Fixed while the Other Is Varied

€bmu € 8 | Epoch | Last Delete | Last Insert | Stability
0.09 | 0.002 | 0.0002 | 90000 89928 89943 | F
0.09 | 0.002 | 0.002 | 90000 89928 89943 | F
0.09 | 0.002 | 0.005 | 90000 38865 38073 | T
0.09 | 0.05 | 0.0002 | 90000 18437 18988 | T
0.09 | 0.05| 0.002 | 90000 1361 1988 | T
0.09 | 0.05 | 0.005 | 90000 - 1085 | T
0.09 | 0.02 | 0.0002 | 90000 24681 22401 | T
0.09 | 0.02 | 0.002 | 90000 2049 2325 | T
0.09 0.02 0.005 | 90000 - 1085 | T
0.02 | 0.002 | 0.0002 | 90000 89958 89836 | F
0.2 | 0.002 | 0.0002 | 90000 11781 11873 | T
0.4 | 0.002 | 0.0002 | 90000 89805 89851 | F
0.02 | 0.04 | 0.005 | 90000 67251 67250 | T
0.2 | 0.04 | 0.005| 90000 49148 49378 | T
0.4 | 0.04 | 0.005| 90000 33219 33234 | T
0.05 | 0.002 | 0.0005 | 90000 24681 25981 | T
0.05 | 0.02 | 0.0005 | 90000 4253 2098 | T
0.05 | 0.05 | 0.0005 | 90000 - 10419 | T
0.3 | 0.002 | 0.003 | 90000 89943 89897 | F
0.3 | 0.02] 0.003| 90000 4023 3977 | T
0.3 | 0.05| 0.003| 90000 89025 88719 | F

For the final column, a “T” indicates a static hierarchy and “F” indicates that the hierarchy never became static.

TABLE 2
The Effect of Progressively Reducing the Parameters by Scale Factor of 10

€bmu € 8 | Epoch

0.02 | 0.002 | 0.0002 | 90000
0.05 | 0.005 | 0.0005 | 90000
0.09 | 0.009 | 0.0009 | 90000
0.2 | 0.02 ] 0.002 | 90000
0.3 | 0.03] 0.003 | 90000
0.4 | 0.04 | 0.004 | 90000
0.5 | 0.05] 0.005 | 90000

Last Delete | Last Insert | Static
89958 89836 | F
64680 64511 | T

7282 5951 | T
31260 31444 | T
1529 2845 | T
36157 36172 | T
89852 89607 | F

For the final column, a “T” indicates a static hierarchy and “F” indicates that the hierarchy never became static.

can be uniquely identified in all but these cases by finding
the bmu for the unknown vector and identifying the
appropriate country for which that cell is a bmu. Our cyclic
approach has spread the probability of a cell being a bmu
for any given input data vector more evenly than the
probability spread for the single-pass approach.

For the parameter investigations, we can observe the
importance of the three settings. As mentioned previously,
there is a trade-off between a static hierarchy and cluster
quality. Parameter settings, where the hierarchy is static
after relatively few epochs, produce poor quality clusters
that are too general. Also, we should note that the number
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Fig. 8. lllustration of the recognition problem. Node A is deleted and the
hierarchy tidied, then A’ is inserted. If A’ is then deleted, the cluster
composition and entire node hierarchy will have changed from A, so
indentifying A’ as equivalent to A is difficult.

of deletions/insertions varies for parameter settings that
become static at the same time, i.e., the epoch when the
hierarchy becomes static is not proportional to the number
of insertions/deletions. For the parameter settings,
evmu = 0.2, ¢, = 0.02, and ( = 0.002, there are no deletions/
insertions between epoch 2,493 and epoch 31,000, then two
deletions and three insertions occur up to epoch 31,444 and
then no more. However, for many parameter settings, the
deletions/insertions are occurring constantly throughout
the run.

In many cases, the movement in given layers of the
hierarchy is due to the innate dynamism of the network
below and is caused by repeated deletion and reinstatement
of the same clusters. This is difficult to detect at run-time if
the contemporaneity of the hierarchy is maintained, i.e., the
splitting/deleting of the network clusters is mirrored
exactly by the hierarchy (see Fig. 8). During the 1,000
epochs between the first cluster deletion and the second
cluster deletion in Fig. 8, the composition of the clusters will
have changed, with new cells being added and existing cells
deleted, so matching the clusters through their cell contents
is not possible. One solution would be to maintain a list of
the hierarchy nodes removed with details of parents and
siblings. If a deleted cluster was reinstated, the parent will
still be the same, but this would slow the algorithm and
introduce a storage overhead of a shadow hierarchy.
Another solution would be a posteriori manual inspection
of the run-time output. Again, the parentage of deleted/
reinstated nodes could be compared and any oscillating
detected.

If the users felt that the cluster quality was higher for an
oscillating parameter combination, then we would recom-
mend using those. However, we would generally recom-
mend using a parameter combination where the hierarchy
becomes static, but not too early, e.g., 24,000 to 40,000
epochs for the 630-dimensional data. As parameter setting
is a combinatorial problem, we recommend using the scale
factor 10 reduction technique shown in Table 2 and
selecting the optimal combination from there if possible.
This is how we selected the GCS parameters we used for
our stability investigation runs in Section 4.1. This mini-
mizes the search space for parameter settings. Only if a
suitable cluster quality is not found do we recommend a
further combinatorial investigation.

6 CONCLUSION AND FUTURE DEVELOPMENT

We have introduced a hierarchical, dynamically formed
clustering neural network extending and refining the GCS
of Fritzke and partially overcoming an instability problem
inherent in the GCS approach. The algorithm adaptively
determines the depth of the cluster hierarchy; there is no
requirement to prespecify network dimensions as with
most SOM-based algorithms. Our superimposed tree will
adapt to any variations in the cell structure below and there
are no user-specified parameters for the hierarchy. The
clustering produced by the cyclic variant is similar to the
dendogram, while being able to handle identical similarities
and maintaining the superiority of the SOM mapping
approach over dendograms, as posited by Mangiameli et al.
[11]. A further advantage of our approach over dendograms
is that leaf nodes in our hierarchy represent groups of input
vectors. In dendograms, each leaf node represents a single
data point which precludes visualization of dendograms for
large data sets as there are too many leaf nodes and
branches to visualize. Due to our use of the GCS that maps
high-dimensional input distributions to a two-dimensional
network topology, we can visualize the superimposed
hierarchical clustering as and when required. We feel
TreeGCS is appropriate for any system that requires a
hierarchical data representation where the structure needs
to be flexible and cannot be prespecified, for example, the
number of clusters or the hierarchical depth. We intend
using TreeGCS to generate a hierarchical thesaurus for an
Information Retrieval system.

With an unsupervised dynamic algorithm, there is no
guarantee of the cluster configuration—the ideal algo-
rithm should be totally consistent and stable to the order
of data presentation. We have improved the stability of
the GCS base by introducing a cardinality threshold for
deletion and cycling through different data orders, so the
topological variances may counter each other. One
possible extension that may improve the stability further
would be to present the various data orders and combine
the resulting cluster configurations to produce a single
average cluster configuration. There are three possible
methods of combination: Bagging, Boosting, or a simple
ensemble [14]. All three methods generate an ensemble of
classifiers and combine them to give a single classifier.
For Bagging and Boosting, the input data set is varied
and, for the simple ensemble, the standard training set is
used for each classifier, but the parameter settings of the
classifier are varied. Bagging uses a random redistribution
of the input data set to train each classifier, while the
input data space for each classifier in Boosting is selected
based on the performance of the earlier classifiers.
However, Boosting “can create ensembles that are less
accurate than a single classifier—especially with neural net-
works.” Bagging, however, could be used to combine the
cluster hierarchies and produce a single combined cluster
topology, but the training sets would need to be altered
and it may be more difficult to provide cyclic data sets.
We feel the most appropriate for TreeGCS would be a
simple ensemble. Opitz and Maclin [14] noted that a
simple ensemble of neural networks where each network
differs only in the parameter settings is “surprisingly



HODGE AND AUSTIN: HIERARCHICAL GROWING CELL STRUCTURES: TREEGCS

217

T.uxemb.
Finland
Czech

Italy
France
Spain
NI
Serbia
Poland

Romania
Greece
Sweden
Ukraine
Norway.
Belgium
Switz
Austria

UK

Germany.

Denmark

E‘|7
24
El
=]

Sloveni:
Croatia
Slovakic
Bulgari
Lithuania
Estonia
Tatvia
Cyprus
T.iechten
Bosnia
Gibraltar
Monaco.
Faroe
Andorra.
Malta
Maccdonia
Teeland
Albania

Eire
San Marin

Fig. 9. lllustration of the ascendant hierarchical clustering for the alphabetical data order. The links are logarithmic and rounded.

effective.” The hierarchies produced by the single pass
TreeGCS approach were very dissimilar and there is little
commonality. Opitz and Maclin state that the classifiers in
the ensemble need to be accurate. Our improved cyclic
approach produces more consistent clusters that could be

run with different parameter settings and readily com-
bined to identify an average combined cluster. If the user
preferred any individual cluster produced by the cyclic
approach, then they could use that cluster. However, if
the user wanted a consensus, then they could produce a
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number of cyclic cluster hierarchies using different
parameters, knowing that our stability improvement has
minimized cluster instability and determine the average
combined cluster topology.

We have ensured that unknown inputs can be identified
as each country maps to a different cell in nearly all
instances (discussed in Section 5) using only three times as
many cells as countries. We can input an unknown vector,
determine the bmu, and identify the country for which that
cell is a bmu. We have highlighted the criticality of the
parameter setting and recommended selecting parameters
that stabilize between 24,000 to 40,000 epochs to ensure an
equitable trade-off between quality and stability.

In future work, we will demonstrate TreeGCS against
SOMs with higher dimensionality data; SOMs are criticized
for skewing the representation for high dimensionalities
when mapping on to the lower-dimensional network
topology [4]. Also, we will demonstrate TreeGCS with a
larger data set (higher number of input vectors) to evaluate
the scalability. We will demonstrate the use of the hierarchy
and its subsequent traversal, allowing the system to handle
the specificity and generality of concepts. We can zoom in
to the hierarchy at the required level of specificity and
traverse the hierarchy from there. We will demonstrate the
utility of the hierarchy for a hierarchical thesaurus and how
it may be linked to documents for document similarity
retrieval and estimation.
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