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Abstract

Reliable feature detection is a prerequisite to higher level

decisions regarding image content. In the domain of spec-

trogram track detection and classification, the detection

problem is compounded by low signal-to-noise ratios and

high variation in track appearance. Evaluation of standard

feature detection methods in the literature is essential to

determine their strengths and weaknesses in this domain.

With this knowledge, improved detection strategies can be

developed. This paper presents a comparison of line detec-

tors and a novel, multi-scale, linear feature detector able

to detect tracks of varying gradients. We outline improve-

ments to the multi-scale search strategies which reduce run-

time costs. It is shown that the Equal Error Rates of exist-

ing methods are high, highlighting the need for research

into novel detectors. Results demonstrate that the proposed

method offers an improvement in detection rates when com-

pared to other, state of the art, methods whilst keeping false

positive rates low. It is also shown that a multi-scale im-

plementation offers an improvement over fixed scale imple-

mentations.

1. Introduction

Typically, acoustic data received via passive sonar sys-

tems is transformed from the time domain to the frequency

domain using the Fast Fourier Transform (FFT). This allows

for the construction of a spectrogram image, in which time

and frequency are are variables along orthogonal axes and

intensity represents the power received at a particular time

and frequency. It follows from this that, if a source which

emits narrowband energy is present during some consecu-

tive time frames then a track, which is often linear, will be

present within the spectrogram. The problem of detecting

these tracks is an ongoing area of research with contribu-

tions from a variety of backgrounds ranging from statistical

modelling [13] and image processing [7, 1, 9] to expert sys-

tems [8]. This problem is a critical stage in the detection

and classification of sources in passive sonar systems and

the analysis of vibration data. Applications are wide rang-

ing and include identifying and tracking marine mammals

via their calls [11, 10], identifying ships, torpedoes or sub-

marines via the noise radiated by their mechanics [15, 2],

distinguishing underwater events such as ice cracking [4]

and earth quakes [6] from different types of source, meteor

detection and speech formant tracking [14].

The key step in all of these applications and systems

is the detection of the low-level, linear features. Tradi-

tional detection methods perform poorly when applied to

low SNR images, such as those tested in this paper. There-

fore, it is valuable to conduct an evaluation of the standard

line detection methods to measure performance, determine

weaknesses and strengths which will give insight into the

development of novel detection methods for application to

this area. We also evaluate the performance of two novel

feature detectors, the proposed and a Principal Component

Analysis (PCA) supervised learning detector [7].

The problem is compounded not only by the low Signal-

to-Noise Ratio (SNR) in spectrogram images but also the

variability of the structure of tracks. Structure can vary

greatly, including vertical straight tracks, sloped straight

tracks, sinusoidal type tracks and relatively random tracks.

A good detection strategy should be able to detect all of

these.

A variety of standard line detectors have been pro-

posed in image analysis literature, e.g. the Hough transform,

Laplacian filter and convolution. There are methods from
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Figure 1. Examples of synthetic spectrogram images exhibiting a variety of feature complexities at a SNR of 16 dB.

statistical modelling such as Maximum A Posteriori (MAP).

Nayar et al. [12] describe a more recent parametric detec-

tor, proposing that a feature manifold can be constructed us-

ing a model-derived training set (in this case a line model)

which has been projected into a lower dimensional subspace

through PCA. The closest point on this manifold is used to

detect a feature’s presence within a windowed test image.

This paper is structured as follows: in Section 2 we

present the detection methods which have been evaluated

with respect to spectrogram images and outline a novel de-

tector. In Section 3, the results of these feature detectors

applied to spectrogram images are presented and discussed.

Finally, we present our conclusions in Section 4.

2. Method

Three examples of synthetic spectrogram images are pre-

sented in Fig. 1, these illustrate the sort of images to which

we apply the feature detection methods. The following

methods from the literature are applied: the Hough Trans-

form applied to the original grey-scale spectrogram image,

the Hough transform applied to a Sobel edge detected im-

age, Laplacian line detection [5], parametric feature detec-

tion [12], pixel value thresholding [5], Maximum A Poste-

riori (MAP) detection [3] and convolution of line detection

masks [5]. Together with these we also test two novel meth-

ods; a detector utilising a bar operator, presented below, and

PCA based feature learning which is described in [7]. The

parametric feature detection implementation in Matlab was

found to be computationally expensive, taking 1.8 hr to per-

form the detection in one spectrogram. The cause of this

was found to be the fine resolution of the parameter vari-

ations proposed by the authors to form the manifold. We

found it necessary to restrict the manifold to model only

orientation variations which resulted in a large reduction in

execution time.

2.1. Bar Operator

Here we describe a simple line detection method which

is able to detect linear features at a variety of orientations,

translations and scales (width and length) within an image.

We propose that this method will also detect linear struc-

ture within 2D non uniform grid data, and, can easily be

extended to detect structure within 3D point clouds. It can

also be easily extended to detect a variety of shapes, curves,

or even disjoint regions using different operators.

Initially we outline the detection of an underlying

line’s angle and subsequently determine its length and

width. We define a rotating bar of length l and width

w, which is pivoted at one end to a pixel, g = (xg, yg)
where xg ∈ {l, . . . , N − 1} and yg ∈ {0, . . . , M −
l − 1}, in a spectrogram image, S = [sij ]M×N (see

Fig. 2). The values of the pixels which lie under the bar,

F = {p = (j, i) |Pl(p, θ, l) ∧ Pw(p, θ, w)}, where

Pl(p, θ, l) ⇐⇒ 0 ≤ [cos(θ), sin(θ)][p − g]T < l

Pw(p, θ, w) ⇐⇒
∣

∣[− sin(θ), cos(θ)][p − g]T
∣

∣ < w
2 (1)

are summed, such that

B(θ, l, w) =
1

|F |

∑

(j,i)∈F

sij (2)

where θ is the angle of the bar with respect to the x axis.

To reduce the computational load of this calcu-

lation, p = (j, i) in Eq. (1) can be restricted to

j = xg − (l + 1), . . . , xg + (l − 1) and i = yg, . . . , yg +
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Figure 2. The bar operator with width w, length l and angle θ.

(l−1) (assuming the origin is in the bottom left of the spec-

trogram) instead of determining Pw(p, θ, l) and Pl(p, θ, l)
for every point in the spectrogram. Also, a set of masks

which represent each combination of the parameters θ, l and

w can be derived and stored prior to runtime to be convolved

with the spectrogram.

To detect the presence and angle of any underlying line

the bar is rotated through 180° with a fixed width, calcu-

lating B(θ, l, w) at increasing lengths. Normalising the re-

sult forms a brightness invariant response, B̄(θ, l, w) [12],

which is also normalised with respect to the background

noise, such that

B̄(θ, l, w) =
1

σ(B)
[B(θ, l, w) − µ(B)] (3)

where µ(B) and σ(B) are the mean and standard deviation

of B(θ, l, w).
Statistics regarding the variation of B(θ, l, w) can be cal-

culated to enable the estimation of an underlying line’s an-

gle, θ̂, which passes through the pivoted pixel g. For exam-

ple, the maximum response can be used, such as

θ̂ = arg max
θ

1

L

L
∑

n=0

B̄(θ, lmin + n∆l, w) (4)

where θ ∈ {−π
2 ,−π

2 + ∆θ,−π
2 + 2∆θ, . . . , π

2 }, L =
⌊(lmax − lmin)/∆l⌋, ∆l and ∆θ control the length and an-

gle search resolutions and w = 1. A recursive arg max
can be implemented for the detection of multiple lines. As-

suming that noise present in the local neighbourhood of a

spectrogram image is random the resulting responses will

be relatively low. Conversely, if a line is present, the re-

sponses will exhibit a peak in one configuration, as shown

in Fig. 3. Comparing the response at the detected angle

B̄(θ̂, l, w) with a threshold t allows the differentiation of

these cases, preventing the search for a line’s length and

width parameters at each pixel if none exists. The threshold

will be chosen such that it represents the response obtained

when the bar is not fully aligned with a line.
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Figure 3. The mean response of the bar operator when it is cen-

tred upon a vertical line 21 pixels in length (of varying SNRs) and

rotated. The bar operator is varied in length between 3 and 31

pixels.

Once the line’s angle, θ̂, has been determined and iff

B̄(θ̂, l, w) ≥ t we can proceed to analyse B̄(θ̂, l, w) as l
and w are varied, such that lmin ≤ l ≤ lmax and wmin ≤
w ≤ wmax, to estimate the underlying line’s length and

width. The response of B̄ is dependent on these param-

eters, as their values increase, and extend past the correct

line parameters, it follows that the peak in the response will

decrease, illustrated for the length parameter in Fig. 3. An

estimate of the length, l̂, and width, ŵ, of the line can there-

fore be obtained by determining the maximum bar length

and width in which the response remains above a threshold

value, so that

(l̂, ŵ) = max(Lp) (5)

where max(Lp) is defined as max(u, v) = (max u, max v)
where (u, v) ∈ Lp and

Lp = {(l, w) | B̄(θ̂, l, w) >
3

4
max(B̄(θ̂, l, w))} (6)

where l ∈ {lmin, lmin + ∆l, lmin + 2∆l, . . . , lmin + L∆l},

w ∈ {wmin, wmin + ∆w, wmin + 2∆w, . . . , wmin + W∆w},

∆w controls the width search resolution and W = ⌊(wmax−
wmin)/∆w⌋. The threshold is taken to be equal to 3/4 of the

maximum response found in B̄(θ̂, l, w) but could instead be

equal to t.

2.1.1 Length and Width Search

The detection of a line’s length and width using the linear

search outlined above is particularly inefficient and leads to

high run-time costs. To reduce this, we propose to replace

the uniform search with the more efficient 2D modified bi-

nary search algorithm outlined in Alg. 1. Implementing

the search in this way reduces the associated search costs

from O(LW ) to O(log L log W ), allowing searches to be

performed for a large number of line lengths and widths.
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Figure 4. Spectrogram detections (2.18 dB SNR in the frequency domain) using the proposed method (left) and the parametric manifold

detection (right).

Algorithm 1 Line parameter binary search.
Input: lmin & lmax, the minimum & maximum length to search for,

wmin & wmax, the minimum & maximum width to search for, Δl

and Δw the length and width search resolutions, t, the detection

threshold, θ̂, the line’s orientation, S, a spectrogram image.

Output: l̂ & ŵ, the length and width of an underlying line.

1: while lmax − lmin > Δl ∨ wmax − wmin > Δw do

2: l ← ⌊ lmin+lmax

2
⌋

3: w ← ⌊wmin+wmax

2
⌋

4: if B̄(θ̂, l, w) ≥ t then

5: lmin ← l

6: wmin ← w

7: else {the line’s length & width have been exceeded}

8: if B̄(θ̂, l, wmin) ≥ t then

9: lmin ← l

10: else {the line’s length has been exceeded}
11: lmax ← l

12: end if

13: if B̄(θ̂, lmin, w) ≥ t then

14: wmin ← w

15: else {the line’s width has been exceeded}
16: wmax ← w

17: end if

18: end if

19: end while

20: l̂ ← lmin

21: ŵ ← wmin

22: return l̂, ŵ

3. Experimental Results

In this section we present a description of the test data

and the results obtained during the experiments.

3.1. Data

The methods were tested on a set of 730 spectrograms

generated from synthetic signals 200 seconds in length with

a sampling rate of 4 kHz (examples of which were presented

in Fig. 1). The spectrogram resolution was taken to be 1 sec

with 0.5 sec overlap and 1 Hz per FFT bin. These exhibited

SNRs (frequency domain) ranging from -3.5 to 9.5 dB and

a variety of track appearances, ranging from constant fre-

quencies (vertical lines), ramp up frequencies (non-vertical

lines) (with a gradient range of 1 to 16 Hz/sec at 1 kHz)

to sinusoidal (with periods ranging from 10, 15 & 20 sec-

onds and amplitudes ranging from 1–5% of the centre fre-

quency). The test set was scaled to have a maximum value

of 255 using the maximum value found within a training

set (except when applying the PCA detector as the original

spectrogram values were used).

The ground truth data was created semi automatically

by thresholding (where possible) high SNR versions of the

spectrograms. Spurious detections were then eliminated

and gaps filled in manually.

3.2. Nayar Parametric Detection

First we use the feature detector proposed by Nayar

et al. as a comparison method. This, like the method pro-

posed, is a model based feature detector. The primary dif-

ference between the two is that Nayar et al. propose to con-

struct a sampled manifold in a feature space derived through

PCA. Detection is achieved by calculating the closest point

on the manifold to a sample taken from an image and thresh-

olding the distance if necessary. The proposed method per-

forms the detection without the construction of the mani-

fold, instead, the image sample’s responses as the model is

varied are analysed and the best fit is found from these. This

avoids the loss of information that is an effect of dimension-

ality reduction.

The execution times of the proposed method and

that outlined by Nayar et al. were measured within one

398 × 800 pixel spectrogram using Matlab 2008a and a

dual-core 2.0 GHz Intel PC. As the comparison method is

not multi-scale we fixed lmin = lmax = 13 in the bar op-

erator model. Additionally, the parametric manifold was

constructed using the same parameter range and resolution

as was used with the bar operator. The proposed method

performed the detection in 5.5 min whereas the compari-

son performed the detection in 3.4 min, the resulting detec-
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Figure 5. Receiver Operator Curves of the evaluated detection methods.

tions can be seen in Fig. 4. The threshold for each method

which resulted in a True Positive Rate (TPR) of 0.7 was

found to allow an equivalent False Positive Rate (FPR) to

be compared. The comparison method resulted in an FPR

of 0.1626 and the proposed method an FPR of 0.0251.

3.3. Results

Here we compare the proposed method to the remaining

line detectors using the following parameters. The Lapla-

cian and convolution filter sizes were 3 × 3 pixels. The

threshold parameters for the Laplacian, bar, convolution and

pixel thresholding were varied between 0 and 255 in steps of

0.2. Using a window size of 3 × 21 pixels the PCA thresh-

old ranged from 0 to 1 in increments of 0.001. The bar op-

erator’s parameters were set to wmin = wmax = 1, lmin = 6
and lmax = 20. The class probability distributions for the

MAP were estimated using a gamma pdf for the signal class

and a exponential pdf for the noise class. The PCA method

was trained using examples of straight line tracks and noise.

The Receiver Operator Curves (ROC) were generated by

varying a threshold parameter which operated on the out-

put of each method - pixel values above the threshold were

classified as signal and otherwise noise. The ROC curves

for the Hough transforms were calculated by varying the pa-

rameter space peak detection threshold. The TPR and FPR

were calculated using the number of correctly/incorrectly

detected signal and noise pixels.

3.3.1 Existing Methods

The MAP detector highlights the problem of high class dis-

tribution overlap and variability; achieving a TPR of 0.0510

and a FPR of less than 0.0002. This rises to a TPR of

0.2829 and a FPR of 0.0162 when the likelihood is evalu-

ated within a 3 × 3 pixel neighbourhood (as no thresholding

is performed ROCs for these methods are not presented).

It can be seen in Fig. 5 that the threshold and convolu-

tion methods achieve almost identical performance over the

test set, with the Laplacian and Hough on Sobel line detec-

tion strategies achieving considerably less and the Hough

on grey scale image performing the worst. We think that

the Hough on edge transform outperformed the Hough on

grey scale due to the reduction in noise occurring from the

application of an edge detection operator. However, both

of these performed considerably less well than the other

methods due to their limitation of detecting straight lines.

The PCA supervised learning method proved more effective

than all of these, exceeding the performance of the closest

two (thresholding and convolution) indicating that the learn-

ing method is capturing the correct type of information. As

previously mentioned, the PCA method was trained using

vertical, straight track examples only, limiting its sinusoidal

and gradient track detection abilities. We think that with

extended training, this method could improve further.

3.3.2 Fixed-Scale Bar Operator

Preliminary tests were performed using a fixed length detec-

tor. The maximum of the operator’s response, B̄(θ̂, l, w),

where θ̂ is defined by Eq. (4) and lmin = lmax = 21, was

taken as the pixel’s value and thresholded to perform the

detection. It can be seen in Fig. 5 that the proposed de-

tecor with a fixed-scale bar operator outperforms the meth-

ods from the literature.

3.3.3 Multi-Scale Bar Operator

The multi-scale abilities of the proposed method allow it to

better fit piecewise linear features and approximate curvi-

linear features. These properties translate to a ROC curve

which has greater separation from existing line detection



methods than the fixed length implementation, and thus

it achieves much higher TPRs and lower FPRs. Taking

an example TPR of 0.7 the best detectors are, from worst

to best; Convolution (FPR: 0.246), PCA (FPR: 0.215),

Bar Fixed-Scale (FPR: 0.181) and Bar Multi-Scale (FPR:

0.133). These results show that the combination of intensity

and structural information, rather than relying on intensity

information alone, increases detector reliability.

4. Conclusions

This paper has presented a performance comparison of

line detection methods present in the literature applied to

spectrogram track detection. We have also presented and

evaluated a novel line detector. The results show an im-

provement upon results obtained without multi-scale detec-

tion and also upon standard line detection methods when

applied to this problem. Thresholding is found to be very

effective and it is believed that this so because spectro-

grams with a SNR of 3 dB or more constitute 70% of the

test database, circumstances which are ideal for a simple

method such as thresholding. However, when lower SNRs

are encountered it is believed that thresholding will fall be-

hind more sophisticated methods. Also, thresholding only

provides a set of disjoint pixels and therefore a line detec-

tion stage is still required. It is noted that the PCA method

was trained using examples of straight tracks but was eval-

uated upon a data set containing a large number of tracks

with sinusoidal appearance, reducing its effectiveness but

still allowing it to surpass the other existing methods.

When compared to the detection method proposed by

Nayer et al. the proposed method offers a significant im-

provement in FPRs when comparable TPRs are achieved

in low SNR conditions. This performance improvement is

achieved at the expense of a slight increase in execution

time. Conducting orientation detection through a multi-

scale strategy could possibly reduce this difference.

The evaluation of standard feature detection methods has

highlighted the need to develop improved methods for spec-

trogram track detection. These should be more resilient to

low SNR, invariant to non stationary noise and allow for the

detection of varying, unknown, feature appearances.

Improving first stage detection methods reduces the

computational burden and improves the detection perfor-

mance of higher level detection/tracking frameworks such

as those presented in [7, 13]. A detection method may not

outperform others alone, however, it may have desirable

properties for the framework in which it is used and there-

fore, in this case, provide good detection rates.
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