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Summary. Accurate feature detection is key to higher level decisions regarding
image content. Within the domain of spectrogram track detection and classification,
the detection problem is compounded by low signal to noise ratios and high track
appearance variation. Evaluation of standard feature detection methods present in
the literature is essential to determine their strengths and weaknesses in this domain.
With this knowledge, improved detection strategies can be developed. This paper
presents a comparison of line detectors and a novel linear feature detector able
to detect tracks of varying gradients. It is shown that the Equal Error Rates of
existing methods are high, highlighting the need for research into novel detectors.
Preliminary results obtained with a limited implementation of the novel method are
presented which demonstrate an improvement over those evaluated.

1 Introduction

Acoustic data received via passive sonar systems is conventionally transformed
from the time domain into the frequency domain using the Fast Fourier Trans-
form. This allows for the construction of a spectrogram image, in which time
and frequency are are variables along orthogonal axes and intensity is repre-
sentative of the power received at a particular time and frequency. It follows
from this that, if a source which emits narrowband energy is present dur-
ing some consecutive time frames a track, or line, will be present within the
spectrogram. The problem of detecting these tracks is an ongoing area of
research with contributions from a variety of backgrounds ranging from sta-
tistical modelling [1], image processing [2, 3, 4] and expert systems [5]. This
problem is a critical stage in the detection and classification of sources in pas-
sive sonar systems and the analysis of vibration data. Applications are wide
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and include identifying and tracking marine mammals via their calls [6, 7],
identifying ships, torpedoes or submarines via the noise radiated by their me-
chanics [8, 9], distinguishing underwater events such as ice cracking [10] and
earth quakes [11] from different types of source, meteor detection and speech
formant tracking [12].

The key step in all of the applications and systems is the detection of the
low level linear features. Traditional detection methods such as the Hough
transform and the Laplacian line detector [13] degrade in performance when
applied to low SNR images such as those tested in this paper. Therefore, it
is valuable to conduct an evaluation of the standard line detection methods
to evaluate performance, determine weaknesses and strengths which will give
insight into the development of novel detection methods for application to
this area. We also evaluate the performance of two novel feature detectors,
the “bar” detector and a Principal Component Analysis (PCA) supervised
learning detector [2].

The problem is compounded not only by the low Signal to Noise Ratio
(SNR) in spectrogram images but also the variability of the structure of tracks.
This can vary greatly, including vertical straight tracks, sloped straight tracks,
sinusoidal type tracks and relatively random tracks. A good detection strategy,
when applied to this area, should be able to detect all of these.

A variety of standard line detectors have been proposed in image analysis
literature, e. g. the Hough transform, Laplacian filter and convolution. There
are methods from statistical modelling such as Maximum A Posteriori detec-
tion. Nayar et al. [14] describe a more recent, parametric detector, proposing
that a feature manifold can be constructed using a model derived training set
(in this case a line model) which has been projected into a lower dimensional
subspace through PCA. The closest point on this manifold is used to detect
a feature’s presence within a windowed test image.

This paper is laid out as follows: in Section 2 we present the detection
methods which have been evaluated with respect to spectrogram images and
outline a novel bar detector. In Section 3 the results of these feature detectors
applied to spectrogram images are presented and discussed. Finally, we present
out conclusions in Section 4.

2 Method

The following feature detection methods found in the literature are applied to
spectrogram track detection in this evaluation: the Hough Transform applied
to the original grey scale spectrogram image, the Hough transform applied to
a Sobel edge detected image, Laplacian line detection [13], parametric feature
detection [14], pixel value thresholding [13], Maximum A Posteriori (MAP)
[15] and convolution of line detection masks [13]. Together with these we also
test two novel methods; the bar method, presented below, and PCA based
feature learning which is described in [2]. Parametric Feature Detection [14]
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Fig. 1. Examples of synthetic spectrogram images exhibiting a variety of feature
complexities at a SNR of 16 dB.

was found to be too computationally expensive to fully evaluate (on such a
large data set), although initial experimental results proved promising. Three
examples of synthetic spectrogram images are presented in Fig. 1.

2.1 Bar Detector

Here we describe a simple line detection method which is able to detect linear
features at a variety of angles, widths and lengths within an image. It is
proposed that this method will also correctly detect linear structure within 2D
non uniform grid data, and, can easily be extended to detect structure within
3D point clouds. The method allows for the determination of the detected
line’s angle. It can also be easily extended to detect a variety of shapes, curves,
or even disjoint regions.

Initially we outline the detection of a line with a fixed length, along
with its angle, and subsequently we extend this to the determination of its
length. We define a rotating bar which is pivoted at one end to a pixel,
g = [xg, yg] where g ∈ S, in the first row of a time updating spectrogram im-
age, S where s = [xs, ys], and extends in the direction of the l previous observa-
tions, see Fig. 2. The values of the pixels, F = {s ∈ S : Pl(s, θ, l)∧Pw(s, θ, w)},
Eq. (1), which lie under the bar are summed, Eq. (2).

Pl(s, θ, l) ⇐⇒ 0 ≤ [cos(θ), sin(θ)][s − g]T < l

Pw(s, θ, w) ⇐⇒
∣

∣[−sin(θ), cos(θ)][s− g]T
∣

∣ <
w

2
(1)

where θ is the angle of the bar with respect to the x axis (varied between -π
2

and π
2

radians), w is the width of the bar and l is its length. To reduce the
computational load of determining Pw(s, θ, l) and Pl(s, θ, l) for every point in
the spectrogram, s can be restricted to xs = xg − (l + 1), . . . , xg + (l − 1)
and ys = yg, . . . , yg + (l − 1) (assuming the origin is in the bottom left of
the spectrogram) and a set of masks can be derived prior to runtime to be
convolved with the spectrogram.
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Fig. 2. The bar operator with width w, length l and angle θ.

B(θ, l, w) =
1

|F |

∑

f∈F

f (2)

The bar is rotated through 180 degrees, θ = [−π
2
, π

2
], calculating the underly-

ing summation at each ∆θ.
Normalising the output of B(θ, l, w), Eq. (3), forms a brightness invariant

response, B̄(θ, l, w) [14], which is also normalised with respect to the back-
ground noise.

B̄(θ, l, w) =
1

σ(B)
[B(θ, l, w) − µ(B)] (3)

Once the rotation has been completed, statistics regarding the variation
of B(θ, l, w) can be calculated to enable the detection of the angle of any
underlying lines which pass through the pivoted pixel g. For example, the
maximum response, Eq. (4).

θl = argmax
θ

B̄(θ, l, w) (4)

Assuming that noise present in a local neighbourhood of a spectrogram image
is random the resulting responses will exhibit a low response. Conversely, if
there is a line present the responses will exhibit a peak in one configuration,
as shown in Fig. 3. Thresholding the response at the detected angle B̄(θl, l, w)
allows the differentiation of these cases.

Repeating this process, pivoting on each pixel, g, in the first row of a spec-
trogram image and thresholding allows for the detection of any lines which
appear during time updates. Thus, we have outlined a method for the detec-
tion of the presence and angle of a fixed length line within a spectrogram.

We now extend this to facilitate the detection of the length, l, the detection
of the width, w is synonymous to this and therefore we concentrate on the
detection of lines with a fixed width w = 1 for simplicity. To detect the line’s
length we replace Eq. (4) with Eq. (5) to facilitate the detection of the angle
over differing lengths.
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Fig. 3. The mean response of the bar when it is centred upon a vertical line 21
pixels in length (of varying SNRs) and rotated. The bar is varied in length between
3 and 31 pixels.

θl = argmax
θ

∑

l∈L

B̄(θ, l, w) (5)

where L is a set of detection lengths. Once the line’s angle, θl, has been
determined we can analyse B̄(θl, l, w) as l increases to detect a line’s length.
The response of B̄ is dependent on the bar’s length, as this increases, and
extends past the line, it follows that the peak in the response will decrease,
Fig. 3. The length of a line can thus be detected and its response tested against
a threshold. This threshold will be chosen such that it represents the response
obtained when the bar is not fully aligned with a line.

3 Results

In this section we present a description of the test data and the results ob-
tained during the experiments.

3.1 Data

The methods were tested on a set of 730 spectrograms generated from syn-
thetic signals 200 seconds in length with a sampling rate of 4,000 Hz. The
spectrogram resolution was taken to be 1 sec with 0.5 sec overlap and 1 Hz
per FFT bin. These exhibited SNRs ranging from 0 to 8 dB and a variety
of track appearances, ranging from constant frequencies, ramp up frequencies
(with a gradient range of 1 to 16 Hz/sec at 1 kHz) to sinusoidal (with periods
ranging from 10, 15 & 20 sec and amplitudes ranging from 1 - 5% of the centre
frequency). The test set was scaled to have a maximum value of 255 using the
maximum value found within a training set (except when applying the PCA
detector when the original spectrogram values were used).
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Fig. 4. Receiver Operator Curves of the evaluated detection methods.

The ground truth data was created semi automatically by thresholding
(where possible) high SNR versions of the spectrograms. Spurious detections
were then eliminated and gaps filled in manually.

3.2 Results

The parameters used for each method are as follows. The Laplacian and convo-
lution filter sizes were 3x3 pixels. The threshold parameters for the Laplacian,
bar, convolution and pixel thresholding were varied between 0 and 255 in steps
of 0.2. Using a window size of 3x21 pixels the PCA threshold ranged from 0 to
1 in increments of 0.001. The Bar method’s parameters were set to w = 1 and
l = 21, and the detections were performed without the normalisation outlined
in Eq. (3) and detecting θl by Eq. (4). The class probability distributions for
the MAP were estimated using a gamma pdf for the signal class and a expo-
nential pdf for the noise class. The PCA method was trained using examples
of straight line tracks and noise only.

The Receiver Operator Curves (ROC) were generated by varying a thresh-
old parameter which operated on the output of each method - pixel values
above the threshold were classified as signal and otherwise noise. The ROC
curves for the Hough transforms were calculated by varying the parameter
space peak detection threshold. True Positive Rates (TPR) and False Posi-
tive Rates (FPR) were calculated using the number of correctly/incorrectly
detected signal and noise pixels.

The MAP detector highlights the problem of high class distribution overlap
and variability; achieving a TPR of 0.051 and a FPR of less than 0.0002. This
rises to a TPR of 0.2829 and a FPR of 0.0162 when the likelihood is evaluated
within a 3x3 pixel neighbourhood (as no thresholding is performed ROCs for
these methods are not presented).
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It can be seen in Fig. 4 that the threshold and convolution methods achieve
almost identical performance over the test set. With the Laplacian and Hough
on Sobel line detection strategies achieving considerably less and the Hough on
grey scale image performing the worst. The PCA supervised learning method
proved more effective than these, and performed comparably with threshold-
ing and line convolution, marginally exceeding both within the FPR range of
0.4 - 0.15. As previously mentioned, the PCA method was trained using ver-
tical, straight track examples only, limiting its sinusoidal and gradiant track
detection abilities. It is thought that with proper training, this method could
improve further. Due to time restrictions, we present preliminary results ob-
tained with the bar method, fixing the bar length to 21 and a width of 1. At
a FPR of 0.5 it compares with the other evaluated methods, below a FPR
of 0.45 this method provides the best detection rates. It is thought that the
Hough on edge transform outperformed the Hough on grey scale transform
due to the reduction in noise occurring from the application of an edge detec-
tion operator. However, both of these performed considerably less well than
the other methods due to their limitation of detecting straight lines.

4 Conclusion

In this paper we have presented a performance comparison of line detection
methods present in the literature applied to spectrogram detection. We have
also presented and evaluated a novel line detector. Preliminary testing shows
performance improvements over standard line detection methods when applied
to this problem. These results are expected to further improve when the multi
scale ability is employed. Thresholding is found to be very effective and it
is believed that this so because spectrograms with a SNR of 3 dB or more
constitute 70% of the test database, circumstances which are ideal for a simple
method such as thresholding. When lower SNRs are encountered however it is
believed that thresholding will fall behind more sophisticated methods. Also,
thresholding only provides a set of disjoint pixels and therefore a line detection
stage is still required. It is noted that the PCA learning method was trained
using examples of straight tracks but was evaluated upon a data set containing
a large number of tracks with sinusoidal appearance, reducing its effectiveness.

The evaluation of standard feature detection methods has highlighted the
need to develop improved methods for spectrogram track detection. These
should be more resilient to low SNR, invariant to non stationary noise and
allow for the detection of varying feature appearances.

Improving first stage detection methods reduces the computational bur-
den and improves the detection performance of higher level detection/tracking
frameworks such as those presented in [2, 1]. A detection method may not out-
perform others alone, however, it may have desirable properties for the frame-
work in which it is used and therefore, in this case, provide good detection
rates.
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