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We have used spherically bent quartz crystal to image a laser-generated shock in a foam medium.

The foam targets had a density of 0.16 g /cm3 and thickness of 150 �m, an aluminum/copper

pusher drove the shock. The experiment was performed at the Titan facility at Lawrence Livermore

National Laboratory using a 2 ns, 250 J laser pulse to compress the foam target, and a short pulse

�10 ps, 350 J� to generate a bright Ti K� x-ray source at 4.5 keV to radiograph the shocked target.

The crystal used gives a high resolution ��20 �m� monochromatic image of the shock compressed

foam. © 2008 American Institute of Physics. �DOI: 10.1063/1.2982237�

Foams have found a large number of applications espe-

cially in inertial confinement fusion �ICF� and astrophysics.

In laboratory astrophysics experiments foams allow the study

of supercritical radiative shocks due to the large heating of

the foam induced by compression and to the long mean free

path of radiation in the low-density material.
1,2

In indirect

drive ICF, foams have been suggested as an alternative to the

use of gas-filled holhraums to prevent the hydrodynamic ex-

pansion of the wall material.
3

Due to such large interest,

there is a need for a precise characterization of foam mate-

rials under the action of intense laser light generating pres-

sures in the megabar range and, in particular, there is a need

to obtain equation-of-state �EOS� data for foams along the

Hugoniot, i.e., under the action of an intense shock.

In the past few years several works have demonstrated

the validity of shock wave experiment as a tool for EOS

studies. This approach requires that two parameters, usually

the shock and fluid velocity, are measured to infer the ther-

modynamics properties of the material. Only a few experi-

ments have been carried out to study foam EOS and

opacities.
4,5

The impedance mismatch technique has been

used in foam EOS experiments. In this technique, the deter-

mination of only the velocity of the shock leads to a large

error in the determination of the density as a consequence of

error amplification through the Rankine–Hugoniot equations.

The Rankine–Hugoniot equations are composed of three

equations with five unknown parameters. These relations

give the error resulting in the determination of the density

�� = �0�u�D + D�u

�D − u�2 � ,

with U and D being the fluid and shock velocity measured.

This error is greatly larger to the error given by a direct

measurement of the density using x-ray radiography. X-ray

radiography is one of the main techniques used for imaging

various stages of hydrodynamics. Until recently, hydrody-

namic experiments utilized x-ray backlighters
6,7

based on

thermal emission from laser-generated plasmas. Some recent

experiments have used K� radiation from the interaction of a

short pulse with matter.
8

In these experiments, the emitted

light is polychromatic which makes the analysis more diffi-

cult to perform. In this paper, we present two-dimensional

�2D� x-ray monochromatic images of shocked foam obtained

with a high temporal resolution.

The interaction of an ultrahigh-intensity laser

��1017 W /cm2� produces K� fluorescence x rays from the

interaction between hot electrons and cold atoms. This tech-

nique provides a better temporal resolution ��10 ps� and

readily achieves the brightness required for high definition

radiography.
9,10

The short duration of the K� x-ray source

reduces the blurring due to the shock velocity to a value well

below the spatial resolution of the imaging, for example, a

typical shock of velocity 20 km/s travels only 0.2 �m in 10

ps while the spatial resolution of the imaging optic is

24 �m.

The experiment was performed on the Titan facility at

the Lawrence Livermore National Laboratory.
11

The experi-

mental setup is presented in Fig. 1. The short pulse beam,

270 J in 10 ps at 1.053 �m, is focused by a f /3 off-axis

parabola on a titanium foil to generate an extended source

of K� photons. The titanium foil is placed at an out-of-focus

plane to produce a focal spot of 700�210 �m2 full width at

maximum with an average intensity of 1.6�1016 W /cm2.

This source foil was located 2 mm from the target and

irradiated on its opposite side to the target. The long pulse

target is composed of an ablator pusher comprised of

21 �m Al /4.2 �m Cu. The shock then propagates in a

150 �m layer of 0.16 g /cm3 carbonized resorcinol formal-

dehyde �CRF� foam 3.9 �m. Au is glued to the back of the

foam layer for a relativistic electron transport experiment,

which is not discussed here. The long pulse used to generate

the shock had a 2 ns square temporal profile and is able to

deliver 250 J at 0.53 �m, the second harmonic wavelength.
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The timing between the short and the long pulse that drives

the shock has a 150 ps jitter.

A phase zone plate �PZP� is used to generate a flat focal

spot of 200 �m diameter; the resulting intensity of the target

is �1014 W /cm2. A 1.6 cm aperture SiO2 2023 quartz crys-

tal bent to a radius of 38 cm and operating at 1° off normal

incidence imaged a plane centered in the shocked target.
12

It

produces an 11� magnified image onto an image plate �Fuji

BAS-MS2025� via a 500 �m beryllium filter placed in front

of the image plate. The resolution was tested using a 300 lpi

�lines per inch� mesh placed at the position of the long pulse

target; the resolution achieved is 24 �m.

Figure 2 shows a backlit image of an unshocked target.

The pusher made of aluminum and copper is opaque to the

4.5 keV x rays. Similarly, gold at the back surface target is

opaque to 4.5 keV photons. The transmission of the cold

foam is measured from the lineout in Fig. 2�b�. The target

width of 600 �m and the CRF foam density of 0.16 g /cm3

gives an opacity of 31 cm/g. The theoretical opacity given by

the center for x-ray optics �CXRO� �Ref. 13� is

33 cm2
/g cm3; it agrees within 10% with the experimental

value. The small difference is presumably due to the pres-

ence of an oxide layer on the side of the target that modifies

the transmission of the foam.

The shock propagation in the foam was imaged at 2.7,

4.2, and 6.2 ns delay. Figure 3 shows the shock at these

times. The pusher propagating in the foam is clearly visible

since it is opaque to 4.5 keV x rays. At 6.2 ns, the shock has

reached the gold layer at the back of the target. The back-

lighter intensity profile is fitted using a hypergaussian. The

absorption of x ray in matter is given by the Beer–Lambert

law, I= Io�exp�−��z�, where � is the opacity, z is the path

length, and � is the density. The cold value of the opacity is

used in calculations since the temperature in the shock is

below 30 eV, which does not change significantly the value

of the opacity.

The use of PZP phase plate creates a symmetrical focal

spot for the shock driver that allows the use of the Abel

inversion technique. A three-point Abel deconvolution tech-

nique algorithm is used.
14

The Abel inversion technique be-

ing sensitive to the noise, the data have to be fit by a poly-

nomial function. Figure 4 shows the resulting Abel inverted

density profile at 4.2 ns. Various profiles have been taken at

different positions in the shock front given the density profile

in the whole shock front. The density profile is peaked at the

FIG. 1. �Color online� Schematic of the experimental arrangement.

A B

FIG. 2. �Color online� Radiography of the unshocked target. The left part of the line-out �indicated by the horizontal line through the image� is attenuated part

on the signal due to the cold foam; the right part on the line-out is the nonattenuated part on the signal. The signal is fitted using a hyper-Gaussian either

attenuated or not.

FIG. 3. Images of the shock at different time delays, the laser comes from

the left. �a� 2.7 ns, �b� 4.2 ns, and �c� 6.2 ns. The spot of the left part of the

image is due to the bremsstrahlung caused by the interaction of the long

pulse laser with the pusher.
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shock front and rapidly decreases when going toward the

symmetry axis. This decrease is due to the spatial profile of

the long pulse focal spot. The maximum of the density is

0.92�0.12 g /cm3, which corresponds to a compression of

5.6�0.78. This value of the peak density does not reflect the

value of the density in the shock front but the result of the

convolution of the density profile with the resolution of the

crystal imager �24 �m�.
We have modeled our experiment using a 2D radiation-

hydrodynamics code h2d.
15

In simulations, we used the laser

parameters of 250 J in 2 ns in a 200 �m focal spot. The code

correctly models the position of the pulse at different time

delays; at 4.2 ns the shock front has traveled 100 �m in the

foam on the image. This leads to a mean velocity of the

shock in the foam of 24 km/s. The simulation gives a pusher

position of 130 �m at 4.2 ns, which is in good agreement

with the experimental data.

In conclusion we used a crystal at 4.5 keV imager to

imager the propagation of a aluminum/copper pusher in a

foam medium. Images have been made at different times

of the pusher propagation in the foam. Its position as a func-

tion of time is in good agreement with 2D radiation-

hydrodynamics simulations. This technique provides high

quality data about the propagation of a laser-generated shock

in a foam medium. It will give us crucial data in the very

challenging study of EOS of foam medium.
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FIG. 4. Density and compression profiles along the shock front. 10 �m

from the pusher �black diamond�, 20 �m �dashed curve black circle�,
30 �m �black curve�, and 40 �m �black curve black square� from the

pusher. The compression is calculated black diamond curve.
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