White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Plasma induced microstructural, compositional, and resistivity changes in ultrathin chemical vapor deposited titanium nitride films

Kröger, R., Eizenberg, M., Marcadal, C. and Chen, L. (2002) Plasma induced microstructural, compositional, and resistivity changes in ultrathin chemical vapor deposited titanium nitride films. Journal of Applied Physics, 91 (8). pp. 5149-5154. ISSN 0021-8979

Full text not available from this repository.

Abstract

Extremely thin titanium nitride (TiN) barrier layers for Cu based interconnects were deposited using metal organic chemical vapor deposition. The effect of the subsequently performed nitrogen/hydrogen plasma treatment on the microstructure, composition, and electrical properties of these films is studied using conventional and high resolution transmission electron microscopy, Auger electron spectroscopy, and four point probe resistivity measurements. In the studied system the crystallization of the TiN film starts from an amorphous matrix and a polycrystalline morphology is developed upon the H2/N2 plasma treatment. After a short plasma treatment, most of the film is already crystalline and consists of grains of a few nanometers in diameter. Continued plasma treatment leads to grain growth and a significant reduction of contaminants such as oxygen and carbon. The resistivity of the films drops with plasma treatment time, and a correlation between resistivity and oxygen content is found, which suggests that oxygen in the grain boundaries plays a decisive role for the resistivity of the films. It is shown that the oxygen in the grain boundaries leads to an electron reflectance of 0.9. Thus, the oxygen accumulation in the grain boundaries is the limiting factor for the reduction of film resistivity by plasma treatment.

Item Type: Article
Institution: The University of York
Academic Units: The University of York > Physics (York)
Depositing User: York RAE Import
Date Deposited: 20 May 2009 13:45
Last Modified: 20 May 2009 13:45
Published Version: http://dx.doi.org/10.1063/1.1459750
Status: Published
Publisher: American Institute of Physics
Identification Number: 10.1063/1.1459750
URI: http://eprints.whiterose.ac.uk/id/eprint/6489

Actions (repository staff only: login required)