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DISCRETE TIME REPRESENTATION

OF CONTINUOUS TIME

ARMA PROCESSES

MARCUS J. CHAMBERS

University of Essex

MICHAEL A. THORNTON

University of Reading

This paper derives exact discrete time representations for data generated by a con-

tinuous time autoregressive moving average (ARMA) system with mixed stock and

flow data. The representations for systems comprised entirely of stocks or of flows

are also given. In each case the discrete time representations are shown to be of

ARMA form, the orders depending on those of the continuous time system. Three

examples and applications are also provided, two of which concern the stationary

ARMA(2, 1) model with stock variables (with applications to sunspot data and a

short-term interest rate) and one concerning the nonstationary ARMA(2, 1) model

with a flow variable (with an application to U.S. nondurable consumers’ expen-

diture). In all three examples the presence of an MA(1) component in the con-

tinuous time system has a dramatic impact on eradicating unaccounted-for serial

correlation that is present in the discrete time version of the ARMA(2, 0) specifi-

cation, even though the form of the discrete time model is ARMA(2, 1) for both

models.

1. INTRODUCTION

A variety of methods can be utilized for the estimation of the parameters of lin-

ear continuous time systems, with approaches based on spectral representations,

Kalman filtering of state space forms, and exact discrete time representations hav-

ing generated the most interest in econometrics. A powerful method based on a

discrete Fourier transform of the data was proposed by Robinson (1976) and is

applicable to a wide class of stationary systems with exogenous variables that

includes higher order continuous time autoregressive moving average (ARMA)

models and models containing mixed differential-difference equations. An alter-

native spectral likelihood–based method was suggested by Robinson (1993) for
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estimating continuous time ARMA systems that may include exogenous variables

and mixtures of stocks and flows, and Phillips (1991) proposed spectral regession

methods for the estimation of cointegrating vectors in cointegrated continuous

time systems. Kalman filtering techniques based on state space representations

have the advantage of being able to handle a wide range of models, including

higher order systems, moving average (MA) disturbances, mixtures of stock and

flow variables, exogenous variables, stochastic trends, cointegration, and irreg-

ularly sampled data, with important contributions being made by Harvey and

Stock (1985, 1988) and Zadrozny (1988). Continuous time ARMA systems dis-

playing fractional integration and driven by Lévy processes can also be handled

by the state space/Kalman filtering approach, as in Brockwell (2001, 2004) and

Brockwell and Marquardt (2005).

The advantages of using exact discrete time representations of stochastic differ-

ential equation systems were eloquently conveyed in Bergstrom (1990), and the

algorithms currently available are able to deal with most of the features mentioned

earlier; see, for example, Bergstrom (1983, 1986, 1997) and Chambers (1999,

2009). Bergstrom (1985) also argues that, in addition to being of interest in its

own right, the exact discrete time model approach is computationally more effi-

cient than the Kalman filter approach, once the setup costs of deriving the discrete

time model have been borne. Features not currently handled by this approach in-

clude irregularly sampled data and MA disturbances, although Bergstrom (1984)

does show how a model with MA disturbances can be transformed into a higher

order model with a white noise disturbance, albeit at the cost of an identification

problem. Although the algorithms could no doubt be modified to deal with both

of these aspects, it is the latter one that is addressed here.

This paper aims to extend the range of continuous time models that can be

estimated using an exact discrete time representation by including MA distur-

bances in the system of stochastic differential equations. Until now the exact dis-

crete time representation approach has been restricted to models driven by some

form of continuous time white noise process. However, MA disturbances can arise

quite naturally in continuous time economic models, the consumption models of

Christiano, Eichenbaum, and Marshall (1991) and Thornton (2009) being prime

examples, and it is therefore pertinent to extend the range of models for which an

exact discrete time representation has been derived. The variables in the continu-

ous time model under consideration may be stationary, nonstationary, or cointe-

grated, and discrete time models are derived for the cases where the variables are

stocks, flows, or mixtures of the two. The key to deriving suitable discrete time

representations lies in writing the model in a particular state space form, based on

Zadrozny (1988), and then utilizing the results in Chambers (1999). The approach

therefore contrasts with the usual time domain approach to deriving discrete time

models that is based on the state space form used by Bergstrom (1983) and that

is standard in linear systems theory; see, for example, Kwakernaak and Sivan

(1972). We are able to show that the discrete time representation of a continuous

time ARMA(p, q) system (with q < p) is ARMA(p, p − 1) in the case of stock
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variables and ARMA(p, p) in the case of flows or mixtures of stocks and flows.

Phadke and Wu (1974) proposed a coefficient-matching method to estimate a uni-

variate continuous time ARMA(p, q) for a stock variable but did not derive the

exact discrete model per se.

The paper is organized as follows. Section 2 defines the continuous time ARMA

system and specifies the state space form that is used to derive the exact discrete

time representation, pointing out why the form used in Chambers (1999) is not the

most useful when MA disturbances are present. The discrete time representation

in the cases of mixed stock and flow data is presented in Theorem 1 in Section

3, with the (nonnested) cases of pure stocks and pure flows given in Corollaries

1 and 2, respectively. Section 4 concentrates on three examples and applications,

two of which concern the stationary ARMA(2, 1) model with stock variables (with

applications to sunspot data and a short-term interest rate) and one concerning the

nonstationary ARMA(2, 1) model with a flow variable (with an application to

U.S. nondurable consumers’ expenditure). In all three examples the presence of

an MA(1) component in the continuous time system has a dramatic impact on

eradicating unaccounted-for serial correlation that is present in the discrete time

version of the ARMA(2, 0) specification, even though the form of the discrete

time model is ARMA(2, 1) for both models. Section 5 concludes, and all proofs

are contained in an Appendix.

2. THE MODEL AND ITS SOLUTION

The continuous time ARMA( p, q) model for the n ×1 vector x(t) is given by

D px(t) = a0 + Ap−1 D p−1x(t)+·· ·+ A0x(t)+u(t)+�1 Du(t)

+·· ·+�q Dqu(t), t > 0, (1)

where D denotes the mean square differential operator, A0, . . . , Ap−1 and �1, . . . ,

�q are n ×n matrices of unknown coefficients, a0 is an n ×1 vector of unknown

constants, and u(t) is an n × 1 continuous time white noise vector with variance

matrix �. The matrices of unknown coefficients may, of course, depend on an

underlying parameter vector β of more deeply embedded structural parameters,

and the matrix �0 is (implicitly) set equal to an identity matrix for purposes of

identification. Although the process u(t) and its derivatives are not physically re-

alizable systems such as (1) are of widespread interest, and the condition q < p

is imposed so that x(t) itself has an integrable spectral density matrix and, hence,

finite variance. We therefore also assume that p ≥ 2. Further details on the spec-

ification of continuous time random processes for the purposes of constructing

econometric models can be found in Bergstrom (1984).

Define ỹ(t) = [x(t)′, Dx(t)′, . . . , D p−1x(t)′]′ and the following vectors and

matrix:
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a =

⎡
⎢⎢⎢⎢⎢⎣

0

0
...

0

a0

⎤
⎥⎥⎥⎥⎥⎦

, Ã =

⎡
⎢⎢⎢⎢⎢⎣

0 I 0 . . . 0

0 0 I . . . 0
...

...

0 0 0 . . . I

A0 A1 A2 . . . Ap−1

⎤
⎥⎥⎥⎥⎥⎦

, ũ(t) =

⎡
⎢⎢⎢⎢⎢⎣

0

0
...

0

v(t)

⎤
⎥⎥⎥⎥⎥⎦

,

where v(t) = u(t)+�1 Du(t)+·· ·+�q Dqu(t). Then the state vector ỹ(t) satis-

fies

Dỹ(t) = a + Ã ỹ(t)+ ũ(t), t > 0. (2)

The formulas in Chambers (1999) remain exactly valid for the model (1), but the

derivation of the autocovariance properties of the resulting discrete time distur-

bance vector becomes more complicated because of the presence of the derivatives

of u(t) in ũ(t). We therefore work with an alternative state space representa-

tion, based on Zadrozny (1988), in which the np × 1 state vector is defined as

y(t) = [ y1(t)
′, . . . , yp(t)

′]′ and with which we associate y1(t) = x(t). The state

space form is based on the following set of p equations in the derivatives of the

components of y(t), given by

Dy1(t) = Ap−1 y1(t)+ y2(t)+�p−1u(t), (3)

Dy2(t) = Ap−2 y1(t)+ y3(t)+�p−2u(t), (4)

...

Dyp−1(t) = A1 y1(t)+ yp(t)+�1u(t), (5)

Dyp(t) = a0 + A0 y1(t)+u(t), (6)

in which we define �j = 0 for j > q. To demonstrate that y1(t) satisfies (1), note

that differentiation of (3) yields D2 y1(t) = Ap−1 Dy1(t)+ Dy2(t)+�p−1 Du(t)

and substituting (4) for Dy2(t) gives

D2 y1(t) = Ap−1 Dy1(t)+ Ap−2 y1(t)+ y3(t)+�p−2u(t)+�p−1 Du(t).

Repeated further differentiation and substitution of the expressions for the Dyj (t)

result in the equation for y1(t) = x(t) determined by the system (1). Combin-

ing the preceding expressions for Dy1(t), . . . , Dyp(t), the state space form can

therefore be written

Dy(t) = a + Ay(t)+�u(t), (7)

where

A =

⎛
⎜⎜⎜⎜⎜⎝

Ap−1 I 0 . . . 0

Ap−2 0 I . . . 0
...

...

A1 0 0 . . . I

A0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

, � =

⎛
⎜⎜⎜⎜⎜⎝

�p−1

�p−2

...

�1

I

⎞
⎟⎟⎟⎟⎟⎠

.



CONTINUOUS TIME ARMA PROCESSES 5

Although it is the representation in (2) that is conventionally used in systems

theory (e.g., Kwakernaak and Sivan, 1972) and also in time series analysis more

generally (e.g., Lütkepohl, 2005), it is the form in (7) that is more amenable to

dealing with the estimation of continuous time systems from discrete time data.

In particular the representation (7) extracts the parameter matrices of interest in a

way that facilitates the derivation of the covariance structure of the exact discrete

time representation. Note, in particular, that the matrix A is different than the

matrix Ã used in the purely autoregressive case by Chambers (1999). In view

of the matrix exponential function playing an important role in deriving discrete

time representations it is noteworthy that, in general, eA �= e Ã, where eAt = I +

∑
∞
j=1(At) j/j! and t is a scalar. This issue is discussed further in Thornton and

Chambers (2010), in which a detailed analysis of these matrix exponentials is used

to characterize the discrete time representations obtained from the two different

state space forms.

The solution to (7), conditional on y(0), can be written

y(t) = eAt y(0)+

∫ t

0
eA(t−s) [a +�u(s)]ds, t > 0. (8)

Furthermore, the solution can be shown to be unique in a mean square sense, the

proof of Theorem 1(b) of Bergstrom (1983) remaining valid for the system (1).

The solution (8) provides the basis for the derivation of the exact discrete time

representations in Section 3.

3. DISCRETE TIME REPRESENTATION: STOCKS, FLOWS,
AND MIXED SAMPLES

As in Chambers (1999) we assume that the system contains both stock and flow

variables, and so the continuous time vector x(t) satisfying (1) will be partitioned,

without loss of generality, as

x(t) =

[
x s(t)

x f (t)

]
,

where x s(t) (ns × 1) contains stock variables, x f (t) (n f × 1) contains flow vari-

ables, and ns + n f = n. Although we assume that the observation interval is of

unit length we acknowledge that the results can be extended straightforwardly

to an arbitrary interval length at the cost of increased notational complexity. By

noting that the integrated state vector Yt =
∫ t

t−1 y(r)dr contains the subvector∫ t
t−1 x f (r)dr and that

∫ t

t−1
Dx s(r)dr = x s(t)− x s(t −1),
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the observed variables will be arranged in the form

xt =

[
x s(t)− x s(t −1)
∫ t

t−1 x f (r)dr

]
, t = 1, . . . ,T,

T denoting the sample size. The discrete time state vector Yt , however, comprises

not only the observable n × 1 vector xt but also the n(p − 1)× 1 vector of unob-

servable components, denoted wt , that need to be eliminated from the system. It

is convenient to use the expressions xt = S1Yt and wt = S2Yt , respectively, where

S1 =

[
0 0 Ins 0

0 In f 0 0

]
, S2 =

[
Ins 0 0 0

0 0 0 Inr

]
, (9)

and nr = n(p −1)−ns .

The solution (8) can be used to derive the law of motion for Yt . It is straightfor-

ward to show that y(t) satisfies the stochastic difference equation

y(t) = c+Cy(t −1)+ǫ(t), ǫ(t) =

∫ t

t−1
C(t −s)�u(s)ds, t = 1, . . . ,T,

(10)

where C(r) = er A, c =
[∫ 1

0 C(r)dr
]

a, and

C =

[
C11 C12

C21 C22

]
= C(1) = eA.

Note that Ci j = Si C S′
j (i, j = 1,2). Integration of (10) over (t −1, t] yields

Yt = c +CYt−1 + vt ,

vt =

∫ t

t−1
ǫ(r)dr =

∫ t

t−1

∫ r

r−1
C(r − s)�u(s)dsdr, t = 2, . . . ,T, (11)

from which the discrete time model can be derived. The objective is to eliminate

the elements of wt from (11) to derive a stochastic difference equation for xt . To

do this the following assumptions will be made.

Assumption 1. The n(p −1)×n(p −1) matrix C22 is nonsingular.

Assumption 2. The n ×n(p −1) matrix C12 has rank n.

Assumption 3. The n(p −1)×n(p −1)2 matrix
[
C−1

22 , . . . ,C
−(p−1)
22

]
has rank

n(p −1).
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These assumptions correspond to Assumptions 2–4 in Chambers (1999) and are

closely related to the concepts of reconstructibility and detectability employed in

optimal control theory of linear systems; a discussion of their role in deriving

the discrete time representation from the state space form (10) can be found in

Chambers (1999, p. 626). Such assumptions on submatrices of the matrix expo-

nential typically arise in the derivation of exact discrete time representations of

continuous time systems; see, for example, Assumption 4 of Bergstrom (1983).

They are not, however, required in Kalman filtering approaches for the purpose

of estimation that use the transition equation directly; see, for example, Zadrozny

(1988).

THEOREM 1. Under Assumptions 1–3, the observed vector xt of mixed stock

and flow variables generated by the continuous time ARMA(p, q) system (1) sat-

isfies the discrete time ARMA(p, p) system

xt = f + F1xt−1 +·· ·+ Fpxt−p + ζt , t = p +1, . . . ,T,

where f = c1 + C12 M c, F1 = C11 + C12 M N1, Fj = C12 M Nj ( j = 2, . . . , p),

and the vectors c1 and c and matrices M and Nj are defined in the Appendix.

Furthermore, the autocovariance matrices of ζt are given by

E(ζtζ
′
t− j ) =

⎧
⎪⎨
⎪⎩

p

∑
i= j

Ki�ξ K ′
i− j , j = 0, . . . , p,

0, j > p,

where K0 = [S1,0], K1 = [C12(M11S1 + M2S2), S1], Kp = [0,C12(M1,p−1S1 +

Mp S2)], K j = [C12(M1 j S1 + Mj+1S2),C12(M1, j−1S1 + Mj S2)] ( j = 2, . . . ,

p −1), and

�ξ =

[
�ξ,11 �ξ,12

�ξ,21 �ξ,22

]

=

⎛
⎜⎜⎝

∫ 1

0
Ŵ1(r)���′Ŵ1(r)′dr

∫ 1

0
Ŵ1(r)���′Ŵ2(r)′dr

∫ 1

0
Ŵ2(r)���′Ŵ1(r)′dr

∫ 1

0
Ŵ2(r)���′Ŵ2(r)′dr

⎞
⎟⎟⎠,

where Ŵ1(r) = 
(r), Ŵ2(r) = 
(1)−
(r), and 
(r) =
∫ r

0 C(s)ds = ∑
∞
j=0 r j+1

A j/( j +1)!.

Theorem 1 shows that the exact discrete time representation of a continuous

time ARMA(p, q) process with mixed stock and flow data is of ARMA(p, p)

form. Theorem 2.1 of Bergstrom (1986) established that a continuous time

ARMA(2, 0) process with mixed sample has a discrete time ARMA(2, 2) repre-

sentation, a result that was extended by Chambers (1999) to the continuous time

ARMA(p, 0) case. Compared to the continuous time ARMA(p, 0) case, however,
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the presence of the continuous time MA component manifests itself in the co-

variance matrix �ξ , via which the MA matrices contained in � have an impact.

The discrete time ARMA representation in Theorem 1 can provide the basis for

obtaining maximum likelihood estimates of the unknown parameters, conditional

on x1, . . . , xp. Unconditional estimates could be obtained by relating x1, . . . , xp

to x0 as in Theorem 2 of Chambers (1999), although for compactness we do not

pursue this line of investigation here except to note that the methods used in that

paper are equally valid for the continuous time ARMA system (1).

The cases where the variables are either all stocks or all flows can also be dealt

with by similar methods although the exact discrete models are not special cases

of Theorem 1 exactly. When x(t) comprises stock variables the observations are

now of the form xt = x(t) (t = 1, . . . ,T ), and the discrete time representation can

be derived from (10) directly without recourse to (11). The relevant state vector is

y(t) = [x ′
t ,w

′
t ]

′, and the appropriate selection matrices are now

S1 = [In,0, . . . ,0] (n ×np) and S2 =
[
0, In(p−1)

]
(n(p −1)×np).

(12)

The exact discrete model is defined in Corollary 1.

COROLLARY 1. Under Assumptions 1–3, the observed vector xt of stock vari-

ables generated by the continuous time ARMA(p, q) system (1) satisfies the

discrete time ARMA(p, p − 1) system

xt = f + F1xt−1 +·· ·+ Fpxt−p +ηt , t = p +1, . . . ,T,

where f and the Fj ( j = 1, . . . , p) are defined in Theorem 1. Furthermore, the

autocovariance matrices of ηt are given by

E(ηtη
′
t− j ) =

⎧
⎪⎨
⎪⎩

p−1

∑
i= j

Ci�ǫC ′
i− j , j = 0, . . . , p −1,

0, j ≥ p,

where C0 = S1, C j = C12(M1 j S1 + Mj+1S2) ( j = 1, . . . , p −1), M1 j and Mj are

defined in the Appendix, and �ǫ = E(ǫ(t)ǫ(t)′) =
∫ 1

0 C(r)���′C(r)′dr.

The result that the discrete time representation of a continuous time

ARMA(p, q) process in a stock variable is ARMA(p, p − 1) was established

by Phadke and Wu (1974), although they did not derive the discrete time rep-

resentation in the generality provided by Corollary 1. The exact discrete time

ARMA(p, p − 1) representation of a continuous time ARMA(p, 0) system was

established in a form similar to that given in Corollary 1 by Bergstrom (1984).

In the case where x(t) contains flow variables the observations are of the form

X t =

∫ t

t−1
x(r)dr, t = 1, . . . ,T,
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and (11) provides the basis for deriving the exact discrete time representation.

Partitioning Yt as Yt = [X ′
t ,W ′

t ]′ the observable and unobservable components

of Yt are given by X t = S1Yt and Wt = S2Yt , respectively, where S1 and S2 are

defined in (12). As before the objective is to eliminate the n(p −1)×1 vector Wt

of unobservable variables from the system.

COROLLARY 2. Under Assumptions 1–3, the observed vector X t of flow

variables generated by the continuous time ARMA(p, q) system (1) satisfies the

discrete time ARMA(p, p) system

X t = f + F1 X t−1 +·· ·+ Fp X t−p +ρt , t = p +1, . . . ,T,

where f and the Fj ( j = 1, . . . , p) are defined in Theorem 1. Furthermore, the

autocovariance matrices of ρt are given by

E(ρtρ
′
t− j ) =

⎧
⎪⎨
⎪⎩

p

∑
i= j

Bi�ξ B ′
i− j , j = 0, . . . , p,

0, j ≥ p,

where B0 = [S1,0], B1 = [C12(M11S1 + M2S2), S1], Bp = [0,C12(M1,p−1S1 +

Mp S2)], Bj = [C12(M1 j S1 + Mj+1S2),C12(M1, j−1S1 + Mj S2)] ( j = 2, . . . ,

p −1), and �ξ is defined in Theorem 1.

When the variable of interest is a flow variable and is observed as an integral

of the underlying flow the impact on the discrete time representation over the

stock variable case is that the MA order increases from p − 1 to p. This is well

known in the discrete time representation of continuous time ARMA(p, 0) pro-

cesses (see Bergstrom, 1985) but appears not to have been established until now

for continuous time ARMA(p, q) processes. Note that the form of the autocovari-

ance structure is the same as for the mixed sample case in Theorem 1. We have

chosen to use matrices Bj in Corollary 2 rather than K j as in Theorem 1 in view

of the selection matrices being different in the two cases.

4. SOME EXAMPLES AND APPLICATIONS

4.1. The Stationary Continuous Time ARMA(2, 1) Process
with Stocks

In this section we provide two applications of our methodology with the station-

ary continuous time ARMA(2, 1) model, the first using sunspot data and the sec-

ond using short-term interest rate data. The sunspot data were used by Phadke

and Wu (1974), who obtained an estimated cycle length of 10.83 years using a

continuous time ARMA(2, 1) model. Their method of estimating the continuous

time parameters is essentially based on matching the autocovariance properties

of the continuous time ARMA process with the autocovariances based on maxi-

mum likelihood estimates of the parameters of the discrete time ARMA process
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of appropriate order. It is of interest to compare their estimates with those that are

obtained by computing maximum likelihood estimates based on the appropriate

exact discrete time representation derived previously.

The univariate continuous time ARMA(2, 1) model under consideration is

D2x(t) = a1 Dx(t)+a0x(t)+u(t)+ θ1 Du(t), −∞ < t < ∞, (13)

where x(t) = y(t)−μ, y(t) denotes the sunspot number, μ = E(y(t)), a0, a1, and

θ1 are the unknown scalar parameters, and the variance of u(t) will be denoted σ 2
u .

The observations are assumed to take the form yt = y(t) (t = 1, . . . ,T ), and the

variable xt = yt − μ̂ is used for estimation, where μ̂ = T −1
∑

T
t=1 yt . The model is

stationary provided the roots of the characteristic equation z2 −a1z −a0 = 0 have

negative real parts. The exact discrete time representation takes the ARMA(2, 1)

form

xt = f1xt−1 + f2xt−2 +ηt , t = 3, . . . ,T, (14)

where ηt is MA(1). Let T0 = T −2 and let η = (η3,η4, . . . ,ηT )′ denote the T0 ×1

vector of discrete time disturbances with covariance matrix �η = E(ηη′), the latter

being a sparse Toeplitz matrix in view of η being a vector of MA(1) components.

Then, assuming that η is normally distributed, the logarithm of the likelihood

function is

log L(β) = −
T0

2
log2π −

1

2
log |�η|−

1

2
η′�−1

η η, (15)

where β = (a0,a1,θ1,σ
2
u )′ denotes the unknown parameter vector and |�η| de-

notes the determinant of �η. Following Bergstrom (1985) it is possible to express

log L(β) in terms of a vector of uncorrelated standard normal variates ǫ = P−1η,

where P is a sparse lower triangular matrix satisfying P P ′ = �η, as follows:

log L(β) = −
T0

2
log2π −

T

∑
t=3

log pt t −
1

2

T

∑
t=3

ǫ2
t , (16)

where pt t denotes the t th diagonal element of P . Bergstrom (1990) proposed

that the vector of uncorrelated standard normal variates ǫ be used to compute a

portmanteau-type test statistic given by

Sl =
1

T0 − l

l

∑
r=1

(
T

∑
t=l+1

ǫtǫt−r

)2

. (17)

Under the null hypothesis that the model is correctly specified the statistic Sl

will have an approximate chi-square distribution with l degrees of freedom for

sufficiently large l and T − l. Alternative tests of serial correlation in ǫ can also be
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carried out, and the results that follow report the Box–Pierce Q statistic defined

by

Ql = T0

l

∑
τ=1

r2
τ , (18)

where rτ denotes the lag-τ sample autocorrelation of the ǫt . Under the null

hypothesis that the ǫt are white noise the statistic Ql will be approximately chi-

square with l degrees of freedom in large samples.

Table 1 contains estimates of the model using sunspot data covering the period

1749–1924. The second column reports Phadke and Wu’s results by way of com-

parison, and columns three and four contain the estimated parameters in the con-

tinuous time ARMA(2, 0) and ARMA(2, 1) models, respectively. The inadequacy

of the continuous time ARMA(2, 0) model is clear from the low marginal proba-

bility values for the statistics S20 and Q20, both of which are indicative of dynamic

misspecification. Adding the continuous time MA(1) term to the model yields a

statistically significant coefficient estimate, and neither portmanteau statistic is

significant. The parameter estimates are very close to those obtained by Phadke

and Wu although the resulting cycle length estimate is slightly higher and, further-

more, the standard errors of the estimated parameters (with the exception of θ1)

are smaller than those reported by Phadke and Wu. The fact that the continu-

ous time MA(1) is able to remove the serial correlation from the discrete time

MA component ǫt is of particular interest especially in view of the fact that the

TABLE 1. Estimates of continuous time ARMA models using sunspot data,
1749–1924

Parameter PW (1974) ARMA(2, 0) ARMA(2, 1)

a0 −0.3593 −0.4963 −0.3579

(0.0751) (0.0676) (0.0444)

a1 −0.3271 −0.7752 −0.3223

(0.1251) (0.1411) (0.0925)

θ1 0.6333 0.0000 0.6416

(0.1249) (0.1682)

σu 15.6990 30.4053 15.5068

N.A. (2.4382) (2.6133)

log L −737.1520 −729.5901

S20 0.0318 0.1835

Q20 0.0045 0.3507

Roots −0.1636 −0.3876 −0.1612

±0.6767i ±0.5883i ±0.5761i

Period 10.8329 10.6807 10.9058

Note: Figures in parentheses denote standard errors; N.A. denotes that the standard error is not available; the absence

of a standard error indicates that the parameter was constrained to its reported value; and the entries for S20 and

Q20 denote marginal probability values.
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discrete time disturbance ηt is MA(1) for both exact discrete models. This empiri-

cal example highlights the importance of being able to allow for MA components

in continuous time autoregressive models.

The second application employs our techniques in the modeling of short-term

interest rates. Phillips and Yu (2009) provide an overview of maximum likelihood

and Gaussian methods of estimating continuous time models used in finance, not

all of which are amenable to analysis via exact discrete time representations be-

cause of their inherent nonlinearity. In the context of (essentially) linear models

Nowman (1997, 1998) used the exact discrete representation of a continuous time

AR(1) process to estimate a range of models of the term structure for interest

rates, including the popular model of Vasicek (1977). Some of the models esti-

mated by Nowman differ in their parameterizations of the volatility component,

which here is taken to be constant. Nowman (1998) finds evidence of dynamic

misspecification (as judged by the reported S statistics), which is of principal

interest in this application. A further motivation for this application is the recent

work by Benth, Koekebakker, and Zakamouline (2010), who propose generalizing

the Vasicek model to include continuous time ARMA dynamics. By calibrating

their model to minimize the mean square error between the actual yield curve and

that consistent with their theoretical model, they conclude that a continuous time

ARMA(2, 1) is better able to capture the key features of the data than the standard

continuous time ARMA(1, 0). They do not, however, estimate the parameters di-

rectly. Our method enables the parameters of the model to be estimated directly

from data on short-term interest rates, taking account of temporal aggregation as

in Nowman (1997, 1998), while incorporating more sophisticated dynamics.

The model estimated for the short-term interest rate is given by

D2x(t) = κ +a1 Dx(t)+a0x(t)+u(t)+ θ1 Du(t), −∞ < t < ∞, (19)

where κ denotes the intercept. The only difference when comparing this model

with (13) (the sunspot model) is that the interest rate data are not mean adjusted

and the intercept is treated as a separate parameter. The discrete time model is

ARMA(2, 1), and the same likelihood procedure as outlined before is used again.

The data are the 1 month sterling interbank rate (the middle rate) from January

1978 to August 2008. Our estimates for a continuous time ARMA(1, 0), which

is consistent with Vasicek’s original model, a continuous time ARMA(2, 0), and

a continuous time ARMA(2, 1) are in Table 2. Our results for the continuous

time ARMA(1, 0) are broadly comparable with Nowman (1997). The continu-

ous time ARMA(2, 1) model shows notable improvements in both Bergstrom’s S

and the Box–Pierce Q statistics relative to both the ARMA(1, 0) and ARMA(2, 0)

specifications. The likelihood ratio statistic comparing the continuous time ARMA

(2, 1) to the ARMA(1, 0) of 11.84 is highly significant, as is the value of 10.83

comparing it to the ARMA(2, 0). There is, therefore, some statistical evidence fa-

voring the continuous time ARMA(2, 1) specification over purely autoregressive

specifications in this example also.
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TABLE 2. Estimates of continuous time ARMA models using UK interest rate
data, January 1978–August 2008

Parameter ARMA(1, 0) ARMA(2, 0) ARMA(2, 1)

κ 0.0009 0.0116 0.0001

(0.0008) (0.0142) (0.0001)

a0 −0.0113 −0.1384 −0.0011

(0.0081) (0.1643) (0.0008)

a1 0.0000 −11.1581 −0.0658

(0.0216) (0.0247)

θ1 0.0000 0.0000 19.0282

(14.3238)

σu 0.0059 0.0687 0.0003

(0.0002) (0.0026) (0.0002)

log L 1,362.6305 1,363.1380 1,368.5527

S12 0.0936 0.0896 0.2093

Q12 0.0804 0.1045 0.2389

Roots −0.0113 −11.1457 −0.0329

−0.0124 ±0.0080i

Note: Figures in parentheses denote standard errors; the absence of a standard error indicates that the parameter was

constrained to its reported value; and the entries for S12 and Q12 denote marginal probability values.

4.2. The Nonstationary Continuous Time ARMA(2, 1) Process
with Flows

The focus now turns to the nonstationary univariate continuous time ARMA(2, 1)

process with a flow variable. By nonstationary we are referring to the situation

where one of the roots of the characteristic equation is identically equal to zero.

The reason for considering this particular process is that models of consumption

as continuous time processes with MA errors have received attention as general-

izations of the martingale hypothesis. For example, Christiano et al. (1991) con-

sider a structural model of the permanent income hypothesis in continuous time.

They note that when technology shocks are included in their model, or when

technology is deterministic but the representative household’s discount rate does

not equal the productivity of capital, then consumption follows an ARMA pro-

cess. More recently Thornton (2009), building a continuous time analogue to the

Pischke (1995) model of consumption under incomplete information, shows that

household consumption would follow an integrated continuous time ARMA(1, 1)

process and derives the exact discrete time representation. Continuous time ARMA

models also provide scope to widen the range of models of consumer behavior be-

yond the convolution-based models of habit formation and exponential discount-

ing considered by Heaton (1993).

Further support that a continuous time model of consumption might contain an

MA disturbance is provided by a range of studies looking at income dynamics.
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MaCurdy (1982), Abowd and Card (1989), and Pischke (1995) model changes

in earnings using flow data gathered at various frequencies They each conclude

that earnings are well described by an integrated MA(2) process, although Deaton

(1992) notes that an integrated MA(1) process is also a relatively good approxima-

tion, and they each report a negative first-order autocorrelation in income changes.

It is well known, following Working (1960), that such a process could not arise

from the temporal aggregation of a continuous time martingale, which would ap-

pear as an integrated MA(1) process with first-order autocovariance of 0.25, sug-

gesting that an equivalent underlying continuous time process should have an MA

component. This being so, it would add an MA term into the consumption patterns

of households who were liquidity constrained or otherwise displayed “Keynesian”

behavior that linked current consumption to current income changes.

The model of interest is obtained from (1) by setting p = 2, q = 1, n = 1, and

a0 = A0 = 0:

D2x(t) = a1 Dx(t)+u(t)+ θ1 Du(t), t > 0, (20)

where a1 and θ1 are the scalar unknown parameters and σ 2
u will denote the vari-

ance of u(t). The variable x(t) = y(t) − μ − γ t where y(t) denotes the rate

of flow of consumption expenditures on nondurables. Note that
∫ t

t−1 x(r)dr =∫ t
t−1 y(r)dr −μ− γ (t − 0.5). Based on the observed sequence yt =

∫ t
t−1 y(r)dr

(t = 1, . . . ,T ) we therefore use the variable xt = yt − μ̂y − γ̂y t , where μ̂y and γ̂y

are obtained from an ordinary least squares regression of xt on a constant and a

time trend. The underlying state space matrix and its exponential for this model

are given by

A =

[
a1 1

0 0

]
, eA = C = I +

∞

∑
k=1

1

k!

[
ak

1 ak−1
1

0 0

]
=

[
ea1 (ea1 −1)/a1

0 1

]
.

Corollary 2 yields the exact discrete time representation

xt = f1xt−1 + f2xt−2 +ρt , t = 3, . . . ,T, (21)

where it can be shown that f1 = ea1 +1 and f2 = −ea1 , and so the first-differenced

variable �xt = xt − xt−1 satisfies

�xt = ea1�xt−1 +ρt , t = 3, . . . ,T . (22)

Furthermore, from the proof of Corollary 2, it follows that ρt = B0ξt + B1ξt−1 +

B2ξt−2, where ξt is the 4×1 vector

ξt =

⎡
⎢⎣

∫ t

t−1
Ŵ1(t − r)�u(s)ds

∫ t

t−1
Ŵ2(t − r)�u(s)ds

⎤
⎥⎦ ,
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where � = (θ1,1)′ and Ŵ1(r) and Ŵ2(r) are defined in Theorem 1, and it can also

be shown that

B0 = [S1,0] = [1,0,0,0], B1 = [−1, (ea1 −1)/a1,1,0],

B2 = [0,0,−1, (ea1 −1)/a1].

Hence xt is an integrated ARMA(2, 2) process, and �xt is a stationary

ARMA(1, 2) process, assuming that a1 < 0.

As an application of this model its parameters are estimated using quarterly

U.S. nondurable consumption over the period 1986(1)–2005(4), a total of 80 sea-

sonally adjusted observations. Estimates of two models are reported in Table 3,

the difference between them being that one constrains the MA parameter θ1 = 0.

In the constrained model there is evidence of residual serial correlation in the

discrete time representation, but allowing for θ1 to be estimated freely appears

to alleviate the serial correlation with a statistically significant estimate of θ1

(the likelihood ratio statistic for testing θ1 = 0 is 13.84), which also results in

a small reduction of the estimated variance parameter σ 2
u . By way of comparison

the discrete time random walk, �xt = ǫt , which would correspond to the under-

lying continuous time model Dx(t) = u(t) with x(t) (incorrectly) treated as a

stock variable, yielded a log-likelihood value of 269.5929, whereas introducing a

(statistically significant) MA component (corresponding to the same underlying

continuous time model but treating x(t) as a flow) resulted in a log-likelihood

value of 278.0518. A comparison of these log-likelihood values suggests that

TABLE 3. Estimates of continuous time ARMA models
using U.S. consumption data, 1986(1)–2005(4)

Parameter ARMA(2, 0) ARMA(2, 1)

a0 0.0000 0.0000

a1 −11.6969 −16.8639

(0.3492) (0.3492)

θ1 0.0000 0.0596

(0.0014)

σu 0.0872 0.0854

(0.0076) (0.0102)

log L 298.5008 305.4183

S20 0.0712 0.3949

Q20 0.0196 0.5003

Roots 0.0000 0.0000

−11.6969 −16.8639

Note: Figures in parentheses denote standard errors; the absence of a standard error

indicates that the parameter was constrained to its reported value; and the entries

for S20 and Q20 denote marginal probability values.
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the continuous time specification has empirical content over the discrete time

specification. Furthermore, as with the sunspot and interest rate data, the addition

of an MA component in the continuous time model appears to have a substan-

tial and important impact on the properties of the estimated model. Moreover, in

the case of consumption, there are underlying theoretical reasons to support the

presence of the MA component.

5. CONCLUDING COMMENTS

This paper has provided exact discrete time representations for data generated

by a continuous time ARMA(p, q) system when the variables may be stocks,

flows, or a combination of the two. In the case of stocks the exact discrete time

model is ARMA(p, p − 1), whereas for flows or a mixture of stocks and flows it

is shown to be ARMA(p, p). Three univariate applications of the methodology

have also been reported, two using the stationary ARMA(2, 1) model with stock

variables (sunspot data and a short-term interest rate) and one using the nonsta-

tionary ARMA(2, 1) model with a flow variable (U.S. nondurable consumers’

expenditure). In all cases the presence of the continuous time MA component has

empirical impact, eliminating the presence of serial correlation in the residuals

of the nested (and more common) ARMA(2, 0) model. In view of the potential

importance of MA disturbances in continuous time systems, our results provide

exact discrete time representations that can be utilized in the estimation of such

models and that provide alternatives to existing frequency domain and Kalman

filter/state space approaches that could equally well be used. Further work, com-

paring the relative properties of these different approaches to the estimation of

continuous time ARMA systems, would appear to be apposite.

Two further points are worthy of mention. The first is that it is possible, in prin-

ciple, to derive the discrete time representations using an alternative approach,

based on Bergstrom (1983), allied to an integration-by-parts formula to deal with

the presence of the continuous time MA component. For reasons mentioned in

Section 2 this approach is less appealing than the one adopted here and becomes

increasingly complicated to implement beyond the ARMA(2, 1) case with stock

variables. Nevertheless its validity is demonstrated in Thornton and Chambers

(2010). The second point concerns inference in the presence of continuous time

zero roots. Phillips (1991) demonstrated how zero roots and cointegration in con-

tinuous time systems feed through into unit roots and cointegration in the observed

discrete time data, and standard methods of testing for unit roots and cointegration

rank can be applied. However, if the continuous time model is taken seriously, it

will impose complicated restrictions on the discrete time data as a result of the

process of temporal aggregation, and the testing of zero roots and cointegration

restrictions imposed directly on the continuous time system may yield efficiency

gains as opposed to tests that ignore such restrictions. Park and Jeong (2010) have

developed an asymptotic theory for maximum likelihood estimators of the param-

eters of diffusion models that contain a zero root, and these results will, of course,
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be relevant to this type of analysis. The investigation of such issues is currently

being undertaken by the authors.
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APPENDIX

The following matrices are used to define the autoregressive and MA matrices and vector

of intercepts in Theorem 1 and the two corollaries:

M =
[
M1, M2, . . . , Mp

]
= M̂−1

[
−In(p−1), M̃

]
, M1 =

[
M11, M12, . . . , M1,p−1

]
,

M̂ =

⎡
⎢⎢⎢⎢⎣

C12C−1
22

C12C−2
22

...

C12C
−(p−1)
22

⎤
⎥⎥⎥⎥⎦

, M̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C12C−1
22 0 . . . 0 0

C12C−2
22 C12C−1

22 . . . 0 0

...
...

...

C12C
−(p−2)
22 C12C

−(p−1)
22 . . . C12C−1

22 0

C12C
−(p−1)
22 C12C

−(p−2)
22 . . . C12C−2

22 C12C−1
22

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

N =
[
N1, N2, . . . , Np

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−In C11 0 . . . 0 0

0 −In C11 . . . 0 0

...
...

...
...

...

0 0 0 . . . −In C11

0 C21 0 . . . 0 0

0 0 C21 . . . 0 0

...
...

...
...

...

0 0 0 . . . 0 C21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, c =

[
ip−1 ⊗ c1

ip−1 ⊗ c2

]
,
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where C21 = S2 F S′
1, c1 = S1c, c2 = S2c, and in−1 denotes a unit vector of dimension

n −1×1. The dimensions of these matrices and vectors are as follows:

M : n(p −1)×np(p −1); Mj : n(p −1)×n(p −1) ( j = 1, . . . , p);

M̂ : n(p −1)×n(p −1); M1 j : n(p −1)×n ( j = 1, . . . , p −1);

M̃ : n(p −1)×n(p −1)2;

N : np(p −1)×np; Nj : np(p −1)×n ( j = 1, . . . , p);

c : np(p −1)×1; cj : n ×1 ( j = 1), n(p −1)×1 ( j = 2).

The matrix M̂ is nonsingular under Assumptions 1–3; see Lemma A.1 of Chambers (1999).

Proof of Theorem 1. Premultiplying (11) by S1 and noting that S′
1S1 + S′

2S2 = Inp

yields xt = S1c + S1C(S′
1S1 + S′

2S2)Yt−1 + S1vt , which can be written

xt = c1 +C11xt−1 +C12wt−1 + S1vt , (A.1)

whereas premultiplication of (10) by S2 yields, in a similar fashion,

wt = c2 +C21xt−1 +C22wt−1 + S2vt . (A.2)

Elimination of wt−1 from (A.1) follows the same steps as in the proof of Theorem 1 of

Chambers (1999) and hence results in the stated expressions for the autoregressive matrices

in the discrete time representation. In dealing with the disturbance term note that we can

write

vt =

∫ t

t−1

∫ r

r−1
C(r − s)�u(s)dsdr

=

∫ t

t−1

[∫ t

s
C(r − s)dr

]
�u(s)ds +

∫ t−1

t−2

[∫ s+1

t−1
C(r − s)dr

]
�u(s)ds

=

∫ t

t−1
Ŵ1(t − s)�u(s)ds +

∫ t−1

t−2
Ŵ2(t −1− s)�u(s)ds

= ξ1t + ξ2,t−1,

where we have used (14), (16), and Lemma 1 of Chambers (1999). Theorem 3 of Chambers

(1999) then provides the MA(p) representation

ζt = K0ξt +·· ·+ Kpξt−p, t = p +1, . . . ,T,

where ξt = [ξ ′
1t ,ξ

′
2t ]′. n

Proof of Corollary 1. Applying the same procedure as in Theorem 1 to (10) we obtain

xt = c1 +C11xt−1 +C12wt−1 + S1ǫ(t), (A.3)

wt = c2 +C21xt−1 +C22wt−1 + S2ǫ(t). (A.4)
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The elimination of wt proceeds in the same way, and hence the autoregressive matrices

in the discrete time representation are identical to those in Theorem 1. Theorem 3 of

Chambers (1999) enables the disturbance vector to be written

ηt = C0ǫ(t)+·· ·+Cp−1ǫ(t − p +1), t = p +1, . . . ,T, (A.5)

which follows by replacing his ξt with the vector [ǫ(t)′,0′]′. n

Proof of Corollary 2. Proceeding as in Theorem 1 we obtain, from (11) and with S1

and S2 defined in (12) rather than in (9),

X t = c1 +C11 X t−1 +C12Wt−1 + S1vt , (A.6)

Wt = c2 +C21 X t−1 +C22Wt−1 + S2vt . (A.7)

The elimination of Wt follows the same steps as in Theorem 1, and the MA represen-

tation for the disturbance is obtained as in Theorem 1 but with the different definition

of S1 and S2 being reflected in the use of Bj instead of K j ( j = 1, . . . , p) in the MA

representation. n


