White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Fault tolerance using dynamic reconfiguration on the POEtic tissue

Barker, W., Halliday, D.M., Thoma, Y., Sanchez, E., Tempesti, G. and Tyrrell, A.M. (2007) Fault tolerance using dynamic reconfiguration on the POEtic tissue. IEEE Transactions on Evolutionary Computation, 11 (5). pp. 666-684. ISSN 1089-778X

Full text not available from this repository.


Fault tolerance is a crucial operational aspect of biological systems and the self-repair capabilities of complex organisms far exceeds that of even the most advanced electronic devices. While many of the processes used by nature to achieve fault tolerance cannot easily be applied to silicon-based systems, in this paper we show that mechanisms loosely inspired by the operation of multicellular organisms can be transported to electronic systems to provide self-repair capabilities. Features such as dynamic routing, reconfiguration, and on-chip reprogramming can be invaluable for the realization of adaptive hardware systems and for the design of highly complex systems based on the kind of unreliable components that are likely to be introduced in the not-too-distant future. In this paper, we describe the implementation of fault tolerant features that address error detection and recovery through dynamic routing, reconfiguration, and on-chip reprogramming in a novel application specific integrated circuit. We take inspiration from three biological models: phylogenesis, ontogenesis, and epigenesis (hence the POE in POEtic). As in nature, our approach is based on a set of separate and complementary techniques that exploit the novel mechanisms provided by our device in the particular context of fault tolerance.

Item Type: Article
Institution: The University of York
Academic Units: The University of York > Electronics (York)
Depositing User: York RAE Import
Date Deposited: 15 May 2009 13:14
Last Modified: 15 May 2009 13:14
Published Version: http://dx.doi.org/10.1109/TEVC.2007.896690
Status: Published
Publisher: IEEE
Identification Number: 10.1109/TEVC.2007.896690
URI: http://eprints.whiterose.ac.uk/id/eprint/6380

Actions (repository staff only: login required)