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Photocarrier Escape Time in Quantum-Well
Light-Absorbing Devices: Effects of Electric

Field and Well Parameters
Valentin V. Nikolaev and Eugene A. Avrutin, Member, IEEE

Abstract—We analyze the dependence of the carrier escape
time from a single-quantum-well optoelectronic device on the
aplied electric field and well width and depth. For this purpose,
a new simple and computationally efficient theory is developed.
This theory is accurate in the case of electrons, and the assessment
of the applicability for holes is given. Semi-analytical expressions
for the escape times are derived. Calculations are compared to
experimental results and previous numerical simulations. Signif-
icant correlations between the position of quantum-well energy
levels and the value of the escape time are found. The main escape
mechanism at room temperature is established to be thermally
assisted tunneling/emission through near-barrier-edge states. The
formation of a new eigenstate in the near-barrier-edge energy
region is found to reduce the electron escape time significantly,
which can be used for practical device optimization.

Index Terms—Optoelectronic devices, quantum wells (QWs),
saturable absorbers.

I. INTRODUCTION

T
HERE is a significant number of semiconductor devices
which contain reverse-biased quantum wells (QWs), such

as optical modulators [1], photodetectors [2], photovoltaic de-
vices. Saturable absorbers (SAs), usually also based on reverse-
biased QWs, are used in such devices as mode-locked lasers [3]
and all-optical signal-processing devices [4]–[6].

One of the most important characteristics of such devices is
the time in which the reverse-biased section recovers from the
saturated state back into the absorbing state. In some cases, this
characteristic time constant determines the limiting operational
frequency of the device. It is desirable to lower the recovery
time down to single picoseconds while retaining other important
device characteristics. Therefore, a thorough understanding of
the carrier escape processes is crucial for a proper optimization
of device parameters.

Two processes contribute to carrier escape from a semicon-
ductor QW in an electric field: the tunneling of the carriers
through the barrier and the thermionic emission above the bar-
rier. A simple model of thermionic emission was developed by
Schneider and von Klitzing [7]. This model uses three-dimen-
sional (3-D) density of states to describe above-barrier states;
no above-barrier reflection is taken into account and the barrier
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height is a fitting parameter which is not fixed to the positions of
the size-quantized levels. Consequently, the model is essentially
three-dimensional, which limits its application for quantitative
analysis of real quasi-two-dimensional structures. Despite this,
the simplicity of this approach led to its being widely used for
evaluation of the thermionic escape time.

Several methods of calculation of the carrier tunneling time
from QWs has been developed using various degrees of approx-
imation [2], [8]–[10]. In all of these papers, tunneling is con-
sidered as taking place solely from quasi-bound states of the
QW, which are essentially two-dimensional (2-D) states with a
finite but extremely narrow broadening caused by barrier pene-
tration (tunneling escape). Such an approach is justifiable only
for well-bound states with long tunneling times; it cannot de-
scribe the escape from weakly bound states, which occurs in
QWs in a sufficiently strong electric field.

There were attempts to apply the combination of quasi-2-D
tunneling and 3-D thermionic emission approaches to describe
the total escape time from QW structures [11], [12]. However, it
is clear that a QW in an electric field is, strictly speaking, neither
a quasi-2-D nor a fully 3-D system. Variation of the electric field
and the parameters of the QW can cause transformations of QW
states from quasi-2-D to 3-D, which remained unaccounted for
by the simple 2-D/3-D-combination approach.

The most recent theoretical development in the field,
presented by Anwar and Lefebvre [13], [14], is an advance
compared to the previous theories in that it treats thermionic
emission and tunneling on the same footing. This theoretical
approach stems from quantum kinetic theory [15], which uses
Green’s function technique to calculate the local density of
states and the local group velocity , where
is the energy parameter [16]. However, finding the value of
electron escape time by the method of [13] and [14] constitutes
a formidable numerical task. Namely, to find and

, one has to integrate a first-order differential equation,
where varies in the appropriate energy interval. Then, one
should perform averaging over the QW width and integrate the
averaged quantities over energy . This precludes obtaining
analytical expressions even for a single-QW system. The
purely numerical nature of this approach and its computational
complexity hinder its use for analysis of different structures. In
addition, approximating the carrier probability flux inside the
QW using the effective carrier velocity—a local carrier group
velocity averaged over the QW width, although pretty accurate
in some cases [13]—may run into trouble for shallow QWs,
large applied fields, or in the case of more complex structures
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Fig. 1. Schematic conduction and valence band structure.

comprising multiple QWs or gradient layers, where the concept
of the QW width is not well established.

To the best of our knowledge, no thorough study of the de-
pendence of the carrier escape on the QW parameters and the
analysis of the escape mechanisms has yet been performed. In
this paper, we aim to do this using a new, computationally ef-
ficient way of evaluating carrier escape time from a single QW
under an arbitrarily strong reverse bias. The current density of
carriers escaping from the QW is expressed analytically and the
thermionic and tunneling components as well as the total value
of the current are found by integration over appropriate energy
intervals. The use of quantum mechanical reflection/transmis-
sion coefficients allows us to treat all the quasi-bound (below-
barrier) and unbound (above-barrier) states on the same footing.
Quasi-equilibrium between carrier states is assumed and the
simple effective-mass approximation is used. The latter approx-
imation is justified for electrons and so the theory is expected to
be accurate in their case; its applicability in the case of holes is
discussed in Section III-B. No additional approximations were
involved, which makes for a more accurate theory compared to
all the previous models.

II. THEORY

We study carrier escape from a single QW (here, we con-
sider GaAs) embedded in a large slab of bulk material—here,
Al Ga As. The electric field is applied along the structure
growth axis . As the thick arrows schematically depict in Fig. 1,
photogenerated electrons and holes leave the QW by escaping
in opposite directions. Each layer is assigned its in-plane and
transverse effective masses. The in-plane carrier motion is de-
scribed by a 2-D wavevector, and the envelope-wavefunction
approximation can be used. For definiteness, let us assign the
coordinate to the left boundary of the QW and the co-
ordinate to the right boundary. Below, we first consider
a purely one-dimensional (1-D) situation describing electrons
moving along the -axis in a 1-D potential. Later, we will return
to the 3-D system by evoking the in-plain degrees of freedom.

A. Escape Current

Let us analyze the set of wave functions that characterize the
electronic system. In any homogeneous semiconductor layer in
an electric field , the electronic wave function can be repre-
sented as a linear combination of two counterpropagating elec-
tronic waves and as

(1)

(2)

where and are the Airy functions, is the trans-
verse effective mass of electrons in the layer, is the Dirac con-
stant, is the modulus of the electronic charge, is the layer’s
conduction band offset, and is the electron energy.

By evaluating the probability flux associated with and
using the Wronskian of the Airy differential equation [17], one
can find

(3)

This shows that the wavefunction [see (2)] carries a con-
stant probability flux along the axis. Similarly, the probability
current of the complex conjugate flows in the opposite
direction.

Now we introduce the (energy) density of the probability flux
, being the probability flux of electron

states with energies in an infinitesimal interval . Spin de-
generacy is ignored for the time being. Generally, will
depend on the direction along the axis and on the properties of
a particular semiconductor layer. In a bulk semiconductor slab
of width (where is large), the energy density of the proba-
bility flux is

(4)

where is the electron velocity and is the number of
states within the energy interval propagating in a given
(here, positive) direction. As can be expected, does not de-
pend on the layer width nor on the energy .

In order to get a set of electronic wavefunctions describing
the system under consideration, we should use appropriate
boundary conditions. It is clear that, in the case of an infinite
structure, all the states can be considered as originating from
electronic waves which propagate toward the structure from
infinity (from the left in case of electrons) and experience
reflection from the structure. This has no relation to the fact
that in a real physical situation there is no electrons incident on
the structure. As a boundary condition we chose the value of
the density of the probability flux incident on the structure to
be equal to [see (4)]. The reasons for choosing
this boundary condition can be seen from the following con-
sideration. Since our single-QW structure has (infinitely) wide
barrier layers, one can find a position far enough from the QW
where the electronic states are undisturbed by the presence
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of QW and have the same density and probability flux as in
a homogeneous bulk material. By choosing such a boundary
condition, we can construct a set of continuous wavefunctions.

To find the density of the probability flux inside the
structure, we employ the formalism of propagating waves
[see (1)] and reflection/transmission coefficients. The latter
are determined as the ratios of the reflected/transmitted
component of the wavefunction to the incident component;
for example, the reflection for a left-propagating incident
wave is characterized by
and the transmission from a point to , by

.
Here, 0 ( ) stands for the initial (final) point of propagation,
and the additional factor in the expression for the transmission
coefficient is in order to ensure that the squared modulus of
the coefficient gives the ratio of the transmitted and incident
probability fluxes. When calculating the value of the reflection
coefficient of the right-propagating wave from an infinite
impenetrable structure on the right-hand side of Fig. 1, the
condition of vanishing of the wavefunction at infinity is used:

in (1), i.e.,
when

In this approach, the density of the probability flux inside the
QW is the result of interference of all different processes which
account for penetration of external probability current into the
QW:

(5)

where is the transmission coefficient that describes the pene-
tration of an electron from infinity to a point inside the QW,
and and are the reflection coefficients for an electron
propagating from to the right (in the positive direction) and
to the left (in the negative direction), respectively.

The procedure of finding the density of the probability flux
inside the QW described above is rigorous and is equivalent to
solving the Schrödinger equation with the appropriate boundary
conditions.

The quantity gives the tunneling coefficient trough the
potential barrier

(6)

where ; is the ratio of the QW
transverse effective mass to the barrier effective mass

, and is given by (2).
For a wide and high enough barrier, one can use the asymp-

totic behavior of the Airy functions to obtain an approximate
expression for the transmission coefficient

(7)

where and are, respectively, the minimum and maximum
underbarrier tunneling energies, as shown in Fig. 1. The expo-
nential function from (7) alone gives the quasi-classical (WKB)
result. One can see that, even for a wide potential barrier, the
actual tunneling coefficient differs from the WKB result by a
pre-exponential factor that is, in general, not unity. The same
relation between quasi-classical and exact results is found for
tunneling through a rectangular potential barrier (see [18]).

For any point , , inside the QW, the product
of the reflection coefficients for waves incident from both sides
can be decomposed into the following form:

(8)

where ( ) is the reflection coefficient from the left (right)
QW interface. Here ( ) means taking in (2) ( )
and the band offset and the effective mass equal to that in
the layer on the left (right) of the interface ( ), that
is, of the QW. Note that the value given by (8) does not depend
on the choice of the point inside the well.

The complex reflection coefficients from both QW bound-
aries are found in the following form:

(9)

(10)

As can be expected, , that is, the electron escape along
the positive direction is prohibited.

Having established the density of the probability flux due to
electron wavefunctions, we can now find the value of the energy
density of the particle flux along the axis, provided that the
carrier distribution over different states inside the QW is known.
The density of the particle flux inside the QW is

(11)
where is the device area, is the in-plane wavevector, and
is the distribution function. The physical meaning of the factor

introduced in (11) is such that, for any quasi-bound level
, is the density of electrons on this level.

In this paper, we assume that electrons inside the QW are in
the state of quasi-equilibrium described by the quasi-Fermi level

. In this case, we have

(12)

where is the electron in-plane effective mass and
is the Fermi distribution function, is

the inverse temperature measured in energy units, and the spin
degeneracy is taken into account by the factor of two.

The energy density of the flux of particles escaping out
of the structure is given by multiplying the internal current
[(11)] by the transmission coefficient . Finally, the total
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escape current density is given by the integral over energy
, where

(13)

Thus, we have obtained an analytical expression for the escape
current density from a single-QW structure, with no additional
approximations. To calculate the rigorously determined escape
current density [(13)], one has to combine (1), (6), and (8)–(10).
From the computational point of view, this involves nothing
more complicated than evaluating Airy functions of purely real
arguments.

B. Quasi-Bound States

If the electric field is not too large, the tunneling coeffi-
cient, (6) or (7), is very small in a certain energy region, and,
since the transmission and reflection coefficients are related by
the probability flux conservation law , the mod-
ulus of the reflection coefficient product is close to unity.
It is clear from (13) that in this situation sharp peaks in the cur-
rent density will occur at energies where the product be-
comes real and positive. These sharp current density peaks cor-
respond to quasi-bound states of electrons in the QW. From (8),
the eigenvalue equation for the energies of these size-quantized
states is

(14)

where
By linearizing the dependences of phases of the coefficients

in (13) in the vicinity of a quasi-bound level and using
the probability conservation law, one can obtain an approximate
expression for the current density in the vicinity of the quasi-
bound state

(15)

where is the Lorentz function and
is the modulus of the energy deriva-

tive of the sum of phases in the left-hand side of (14). The deriva-
tive and the values and are taken at . This
expression is valid if is small, i.e., the flux peak is narrow.

Under this condition of the tunneling coefficient being small,
the quasi-bound states are well described by a step-like 2-D
density of states, and the density of the carriers residing on the
quasi-bound level is simply , where is given
by (12). By definition, the time of tunneling from a quasi-bound
level is given by

(16)

Here, integration over energy is performed in the vicinity of
the quasi-bound level. It is evident that evaluating and at

the quasi-bound level provides an efficient method for calcula-
tion of the tunneling time.

By analogy with the previously used approaches for evalua-
tion of the time of tunneling escape from a quasi-bound level
[2], [10], we can introduce the frequency of carrier collisions
with the barrier , where is “the period of oscilla-
tion”

(17)

Those parts of which are due to the reflection coefficients
and can be interpreted as the times spent by a carrier

under the corresponding barrier, and the third term in (17) is
due to carrier travel from one interface to the other and back.
Using the asymptotics of the Airy functions, one can show that,
in the case of a low electric field and a high enough barrier,
the reflection coefficients are approximately ,

, and so the simple expression for the oscillation period of
the electron on the th level in infinitely-deep QWs [2], [10],

, is recovered. Thus, our theory reproduces
the results of the previous approaches in the limiting case of a
low electric field and strong carrier localization (small barrier
tunneling coefficient).

C. Escape Time

The total carrier escape time is given as the ratio of the total
escape flux to the carrier density as

(18)

where the integral is taken over the whole range of energies
. This method gives the total tunneling escape time if the

integration is restricted to the states below the barrier ,
while the thermionic escape time is given by integration over
energies above the barrier .

Strictly speaking, to find the carrier density , one can use
the exact set of wavefunctions which can be obtained using
the boundary conditions discussed previously. This procedure
would yield the local density of states, and the total carrier den-
sity could then be calculated by integration over energy and an
appropriate range of the coordinate. This local density of states
will be discussed elsewhere in connection with more complex
systems where this method can give nontrivial results. How-
ever, in the case of a single QW with infinitely wide barriers as
considered here, our simulations showed that the procedure of
finding the local density of states could be circumvented without
a significant loss of accuracy. Indeed, in the case of low bar-
rier penetration, the 1-D density of quasi-bound states is a set
of normalized Lorenz functions, with the energy width of each
of them proportional to the tunneling coefficient and thus very
small. Furthermore, it was found that, at room temperature, most
carriers reside on the lowest well-bound states inside the QW.
The local density of unbound states in the fast-tunneling region
of energies or above the barrier is small and does not give a sig-
nificant contribution to the total carrier density. Therefore, the
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Fig. 2. Calculated and experimentally measured electron escape time from
9.6-nm GaAs QW as a function of the applied electric field. The solid, dashed,
and dot–dashed curves show calculated total, thermionic, and tunneling escape
times correspondingly. The experimental points (filled circles) are taken from
Cavailles et al. [20] and the open squares are calculation results by Lefebvre and
Anwar [13]. The detailed description of the model and experimental structures
are given in the text.

latter can be accurately approximated by a sum of densities of
carriers on well-localized quasi-bound levels

(19)

As the results of the next section show, the fact that unbound
states give little contribution to the carrier density does not mean
that the escape current due to these states is negligible. In fact,
direct tunneling from the deeply localized states usually gives
a very small contribution to the current, the major escape roots
being through the upper states.

III. RESULTS AND DISCUSSION

In this section, we present the results of calculations of elec-
tron escape time from a single GaAs QW at room tempera-
ture (300 K) for different applied electric fields, QW widths,
and aluminum percentage in Al Ga As barriers. The fol-
lowing material parameters for Al Ga As were used [19]:
bandgap energy and electron effective
mass . The band offset ratio between GaAs
and AlGaAs was taken as 67/33.

A. Comparison With Experimental Results for Electrons

In Fig. 2, the theoretical simulations are compared to
measured electron escape times taken from Cavailles et al.

[20]. Their paper reports, to our knowledge, the only avail-
able experimental work in which the electron and hole
escape times were measured separately. This was achieved
by means of a special asymmetric design: the structure
Al Ga As–GaAs–Al Ga As with the widths 20 nm/
9.6 nm/20 nm was placed between the buffers with 30% of
aluminum. As a result, one type of carriers faced a much higher
potential barrier than the other, which allowed the escape
processes of electrons and holes to be distinguished.

One can see that our simple semi-analytical theory gives
values of the escape times that are reasonably close to the
experimental points. The results of Lefebvre and Anwar [13]
(open squares in Fig. 2) were obtained for an asymmetric
structure with barriers of finite widths, which is exactly the
same as in [20]. In our work, we have assumed symmetric
barriers of infinite widths (the generalization of this theory for
arbitrary design is fairly trivial and will be reported elsewhere),
and it is reasonable to compare experimental results with the
simulation of a symmetric QW with Al Ga As barriers,
since in an asymmetric structure the carriers escape chiefly
toward the lower barrier with the higher barrier acting mainly
as a carrier reflector, similarly to the infinite Al Ga As
barrier in our model. Still, we find that, at low electron fields,
the calculations of Lefebvre and Anwar describe the structure
of [20] more accurately than ours. This is not surprising as in
this case the finite widths of the barriers may play an important
role. At large fields, our theory (which is computationally much
simpler than that of Lefebvre and Anwar) shows an agreement
with experiment which is about as good as that of [13], despite
analyzing a slightly simplified structure.

Decomposition of the escape time into the thermionic and
tunneling components shows that, for a low electric field, the
thermionic component is the main one, since the tunneling is
slow, and, for a higher field, in this structure, the tunneling is
predominant.

B. Comparison With Experimental Results for Holes

Our theory employs the simple single-band effective mass
approximation, which is fairly accurate for electrons. In the case
of holes, the band mixing leads to strong nonporabalicity for
subbands inside the QW [21], as well as light-to-heavy hole (or
vice versa) transformation in process of tunneling [22], which
can significantly influence the carrier escape. To our knowledge,
there has been no systematic study of the impact of band mixing
on the hole escape; this will be the subject of our future work.
Nevertheless, it is useful to test the applicability of the current
simple theory to hole escape, since it is obvious that a rigorous
theory taking into account the band mixing effects will be much
more complicated than this one.

The transverse effective masses in Al Ga As for light
(heavy) holes, ( )
[19], are used to calculate reflection and transmission coeffi-
cients. The calculations show [21] that the band mixing
effects lead to almost flat or even electron-like (negative
mass) light-hole dispersion on the ground quantized level. As
proposed in [20], in order to account for this, the following
in-plane masses are taken: for light holes and

for heavy holes. It is important to note that, if the
in-plane mass is taken to be energy-independent (i.e., the same
for all bound and unbound states), then the escape time for the
particular type of particles will not depend on the value of the
in-plane effective mass. Indeed, the escape current density (13),
as well as carrier density (12), are proportional to the in-plane
mass, thus it will cancel when the ratio (18) is taken.

In Fig. 3, the escape time calculated for constant in-plane
hole masses is shown as a solid curve. The results are about an
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Fig. 3. Calculated and experimentally measured hole escape time from a
9.6-nm GaAs QW as a function of the applied electric field. The solid (m = 4,
m = 0:099), dashed (m = 0:087, m = 0:099), dotted (m = 0:087,
m = 0:646) and dash–dotted (m = 0:087, m = 0:2) curves show
escape time for different effective-mass parameters (see details in the text). The
experimental points (filled circles) are taken from Cavailles et al. [20].

order of magnitude lower than the experimental values. They
are also lower than the electron escape time (Fig. 2), which is
not surprising, since the barrier hight for holes is much lower
than for electrons whilst the difference between the electron and
light-hole barrier masses is only modest.

The above suggests that the assumption of a constant in-plane
mass should be discarded. Indeed, it is clear that the effective
mass above the barrier should coincide with that of the bulk case
and taking the large light-hole effective mass is not justified.

To account for this, we keep the large in-plane mass (4.0) for
quasi-bound light-hole levels, whereas the in-plane mass for
upper levels is taken to be equal to the bulk value of 0.087. (The
heavy holes mass is kept unchanged here and below, for the
sake of simplicity.) The results, shown as the dashed curve in
Fig. 3, prove a significantly better ability of such an approach
to describe the experimental results.

We roughly assess the influence of the light-to-heavy hole
conversion in the process of tunneling by taking the value of
light-hole barrier mass to be in between the bulk light
(0.099) and heavy (0.646) masses. When the mass is
taken to be 0.646 (the dotted curve in Fig. 3, 100% conversion
from light to heavy holes), the increase of the escape time is
noticeable but not crucial. The best overall fit to experimental
results is achieved for the mean value of .

To conclude this section, it appears that the strong valence
subband mixing in a QW plays the prime role for the escape
processes and can be described in the first approximation by
taking enhanced in-plane effective mass for quasi-bound levels
while retaining the bulk effective mass for the unbound levels.
A more accurate multiband theory for carrier escape would
be preferable for detailed quantitative analysis; this is reserved
for future work.

Fig. 4. Calculated (a) electron escape time and (b) quantized electron levels as
a function of the QW depth E �E . The solid thick (dashed) lines correspond
to the applied electric field of 100 kV/cm (50 kV/cm). The thin lines in
(a) describe simple thermal activation law � / exp((E � E )=(kT )).

C. Dependence of the Escape Time on QW Parameters

In what follows, we examine the dependence of electron es-
cape time on the barrier composition (QW depth) and the QW
width. Fig. 4(a) shows the dependence of the escape time on the
conduction band offset between the QW and the barrier
for two different applied fields. A simple thermal activation de-
pendence is depicted by thin lines.
One can see that the overall character of escape time increase
with the QW depth is exponential with the average growth con-
stant of about , which suggests that thermal activation is the
main escape mechanism in this case. The same conclusion was
drawn previously from a study of a single-QW waveguide mod-
ulator [12]. However, the exact dependence of the escape time
on the QW depth exhibits significant variations from the simple
exponential law. One can see that there are significant corre-
lations between the dependence character and the energy posi-
tion of the electron quantized levels [see Fig. 4(b)]. The electron
levels in Fig. 4(b) are calculated using (14) and are measured
from the QW edge . Just before and straight after the appear-
ance of a new electron level in the QW, the escape time increase
becomes slower, whereas when the QW level deepens the es-
cape time increases even faster than .

In Fig. 5(a), the escape time as a function of the QW width is
shown.

Our results differ qualitatively from those given by the simple
formula by Schneider and von Klitzing [7]. Indeed, the well
width behavior of the escape times is almost periodic, with sev-
eral maxima and minima. An appropriate use of this dependence
can be potentially crucial for device applications. Indeed, as can
be seen from Fig. 5(a), an increase of the QW width from 8.2
to 11.3 nm decreases the value of the electron escape time by a
factor of four.

Analyzing Fig. 5(a) in connection with Fig. 5(b), one can de-
duce that the occurrence of maxima and minima in different



NIKOLAEV AND AVRUTIN: PHOTOCARRIER ESCAPE TIME IN QW LIGHT-ABSORBING DEVICES 1659

Fig. 5. (a) Electron escape time and (b) electron levels for a QW with
Al Ga As barriers and applied electric filed F = 50 kV=cm as a function
of QW width.

components of escape time are strongly correlated with the en-
ergy position of electron eigen-levels in the QW. The crossovers
between thermionic and tunneling times at , 10.8, and
16.6 nm approximately coincide with the appearance of new
eigen-levels in the QW.

When a new eigenstate appears, the escape is dominated by
tunneling, which suggests that the main route of escape goes
through a “newborn” state. An even more surprising feature is
that the thermionic escape time “feels” the advent of the new
state. Before the new state appears, the thermionic time de-
creases, indicating the increase of the escape current through
the states above the barrier. As the state becomes more local-
ized, the tunneling rate decreases, and, eventually, thermionic
emission overcomes tunneling.

In order to investigate the apparent connection between the
QW quantized states and the escape time behavior, we show
(Fig. 6) the energy density of the flux of escaping electrons (13),
as a function of for different QW widths in the vicinity
of the width at which a new QW electron eigenstate appears,

nm [see Fig. 5(b)]. One can see that, just before the
eigenstate appears, there is a significant flux-density enhance-
ment in the region above the barrier , with a broad
peak centered in this energy area (see the curve for nm).
This escape enhancement for upper states is responsible for the
decrease in the value of the thermionic escape time before the
new eigen state appears. This shows that the nonzero reflection
coefficient for electron waves above the barrier ensures a conti-
nuity between the states above the barrier (extended states) and
states deep in the QW (quasi-bound states). In this respect, the
decomposition of the escape time into the thermionic and tun-
neling components becomes somewhat artificial.

As the QW broadens ( , 12 nm), the flux-density peak
moves under the barrier and becomes narrower. One should no-
tice, however, that the significant tunneling current is accompa-
nied by a significant broadening of the eigenstate. In this case
( , 12 nm), the newly appeared state still cannot be treated
as a quasi-bound one due to its large broadening. On the other

Fig. 6. Energy density of escape electron flux for different QW widths w =

10, 11, 12, and 14 nm. The aluminum composition in the barriers and the applied
electric field are the same as for Fig. 5.

hand, deep states like that for nm and deeper give a
small contribution to the escape current. Indeed, a careful ex-
amination of the narrow flux-density peaks around these states
shows that the calculated tunneling time from a quasi-bound
state coincides with those given by (16) and (17) to a high preci-
sion and is generally large due to the small transition coefficient.

Thus, we found that the main contribution to carrier escape
arises from the states in the energy interval near the barrier
edge (see Fig. 6). Therefore, the escape process can be charac-
terized as thermally assisted tunneling/emission through near-
barrier-edge states. The states in this energy interval possess a
mixed character, intermediate between purely 3-D states high in
the conduction band and the quasi-2-D character of QW quan-
tized states. This suggests that those theoretical methods that use
an artificial separation of escape processes into quasi-2-D tun-
neling and quasi-3-D thermionic emission, which fails in this
very energy region, are not very reliable when used for a quan-
titative study of semiconductor saturable absorbers.

A practical recommendation for the saturable absorber design
can be drawn from the above computational modeling: in order
to minimize the carrier escape time, one should adjust the QW
width so that for the intended operational bias, a shallow eigen-
state exists or is about to appear. A more significant improve-
ment may be achieved by using more complex structures than a
single abrupt QW; the application of our theory to the design of
such structures will be reported elsewhere [23].

IV. CONCLUSION

The dependence of the escape time from a single QW on the
applied electric field and QW depth and width is analyzed by
means of a new simple, yet relatively accurate, theory. A good
agreement with experimental results is established. The main
escape process is found to be thermally assisted tunneling/emis-
sion through near-barrier-edge states.
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