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Signal Detection for Non-Orthogonal Space-Time
Block Coding Over Time-Selective Fading Channels

F.-C. Zheng and A. G. Burr

Abstract—In the case of non-quasi-static (i.e., time-selective fast
fading) channels, which do exist in practice, the performance of the
existing NO-STBC detectors can suffer from an irreducible error
floor. To this end, this letter proposes a zero-forcing-based signal
detector, which is not only computationally simple but also highly
effective in mitigating the impact of channel variation on system
performance.

Index Terms—Nonorthogonal space-time block coding
(NO-STBC), signal detection, time-selective fading channels,
transmit diversity.

I. INTRODUCTION

T
O IMPROVE the coding rate of orthogonal space-time

block coding (O-STBC) in the four transmit antenna

(4-Tx) case, several nonorthogonal STBC (NO-STBC) schemes

have recently been proposed (see [1]–[4] and the references

therein). Although NO-STBC schemes theoretically offer a

lower diversity order, they do lead to a full rate transmission. In

addition, the decoding complexity of all the NO-STBC schemes

is still relatively low, although they have different robustness

against channel correlation conditions [3], [4].

Most existing results on NO-STBC (or O-STBC), however,

were obtained under the assumption of quasi-static channels.

While such an assumption can be met approximately in most

cases, time-selective fast fading (i.e., non-quasi-static) chan-

nels do exist [5]–[9]. For example, high speed trains in Europe

can easily reach 250 kilometers per hour (km/h) even today. In

the latter situation, it is imperative to understand how the per-

formance of the standard NO-STBC systems would suffer and

more importantly how to mitigate the impact of channel time-se-

lectiveness in a preferably smooth and implicit manner (i.e.,

without needing to switch coding schemes).

In this letter, we first relax the quasi-static assumption by

introducing a time selective channel model. As the existing

NO-STBC detectors are in theory no longer applicable to such

channels, we derive a computationally simple zero-forcing

detector which has the following two features: 1) it is highly

effective in mitigating the impact of channel variation on

system performance and 2) it offers a similar performance to
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the quasi-static channel based decoders if the channel is indeed

quasi-static (or slow fading). As such, the proposed detector

can handle both slow and fast fading channels in a smooth

and implicit manner, eliminating the need to switch from one

coding scheme (e.g., STBC) to another (e.g., non-STBC).

II. THE TIME SELECTIVE FADING CHANNEL

Consider a system with 4 transmit (4-Tx) and 1 receive

(1-Rx) antennas. 4 complex symbols, , and , are first

grouped together and then passed through a NO-STBC encoder

before being transmitted over ( symbol period). The

output of the encoder is a 4 4 matrix , where

is either or ( means the conjugate of ), and is

transmitted by Tx at time . By letting the channel gain from

Tx to the Rx at time be , the received signal at time is

(1)

where is a complex additive white Gaussian noise (AWGN)

with zero mean and a variance of (therefore per di-

mension). Also, is subject to Rayleigh fading but is nor-

malized, i.e., , or .

In most existing NO-STBC (or O-STBC) systems, a quasi-

static channel is assumed, i.e., over . While such

an assumption is normally reasonable for the 2-Tx STBC case,

it is more likely to be untrue in the 4-Tx STBC case [9]. As a

result, the following channel model is adopted in this letter: from

one symbol period to the next, the channel is time variant

via the well-known AR(1) model [5]–[8]:

(2)

where is subject to Jakes fading with autocorrelation

the Doppler

frequency, and the zeroth-order Bessel function of

the first kind. Also, is another independent complex

Gaussian random variable having zero mean and variance

(i.e., ).

III. ZERO-FORCING DETECTOR FOR NO-STBC

As was mentioned earlier, several NO-STBC schemes now

exist. For comparison, only the NO-STBC code in [2] is em-

ployed here, which in fact is a special case of the codes in [3]

and [4]. However, the same methodology can be applied to any

other NO-STBC schemes with a 4 4 code matrix (e.g., those

in [2]–[4]).
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For symbol group , the NO-STBC code

matrix [2]–[4] is

(3)

where

From (1), the received signal can then be written as

(4)

where , and the

channel matrix

with

Owing to the channel’s time-selectiveness (i.e., the structure

of the above ), the pair-wise maximum likelihood (ML) de-

tection strategy in [2] can in theory no longer be applied here,

even under perfect channel state information (CSI, i.e., ). The

main reason is that the likelihood function can no longer be de-

composed into the sum of two pair-wise functions. In view of

this, the following two-step zero-forcing scheme has been de-

veloped by taking full advantage of the perfect CSI.

Step 1: Pass through a transform so that

(5)

where and ’s are the diagonal ele-

ments of (also see below). This leads to the following block

(or partitioning) structure for

(6)

where

(7)

(8)

(9)

(10)

(11)

and

for any 2 2 matrix

Also, it can be shown that , and

, where is the determinant of

. It is easy to verify that indeed. This

guarantees the complete removal of the inter element interfer-

ence (IEI).

Step 2: A simple least square (LS) detection can then follow:

(12)

where , and is the symbol alphabet and is the

th row of .

1) Algorithm Complexity: The operations in (6)–(11) in-

volve 2 2 matrices only. Two matrix inversions are required,

but these are inversions of 2 2 matrices only, and for any

2 2 matrix . This makes the algo-

rithm’s implementation computationally very affordable. In

fact, as a linear processing detector, the complexity of this

algorithm for an -ary constellation is /symbol, while

it is /symbol for the pairwise ML detector in [2]. Also,

note that in the case of quasi-static channels, the above detector

will reduce to the detector in [3].

2) Algorithm Optimality: In terms of noise properties, we

have . It is easy to show that in

general is not diagonal. As a result, (12) is no longer an ML

detector and hence represents a suboptimum approach.

3) Comparison With Existing ZF Procedures: The above

two-step ZF (TS-ZF) detector may look “similar” to some

existing ZF procedures such as Verdu’s decorrelator [10]. As

is detailed below, however, they differ from each other in some

fundamental aspects. 1) The matrix in [10] is a “cross-correla-

tion matrix”, which is normally large (e.g., the number of active

users) and has many specific properties (e.g., block tridiagonal,

symmetric blocks, and often real). This leads to many different

decorrelating structures/implementations [10], [11]. 2) The

matrix in our TS-ZF is “channel matrix”, which is only

4 4 in size but has very different properties (e.g., full, non-

symmetric, and nearly always complex). However, the specific

block structure of (thanks to the STBC!) allows us to use the

STBC specific block (or partitioning) structure for in (6) to

derive a smooth, effective and robust detection algorithm (e.g.,

will simply reduce to in case of

quasi-static channels). This leads to a very low computational

complexity: /symbol, where is the constellation level.

A brute-force matrix inversion or zero forcing would not have

these important benefits either. 3) Most parameters for the

decorrelator in [10] (e.g., near-far resistance) have no counter-

parts in our TS-ZF detector, similarly to many other cases (e.g.,

single user equalizer).

IV. SIMULATIONS AND CONCLUSIONS

The signal-to-noise ratio (SNR) at the receiver is defined as

, where is the

Tx power at each antenna. Also, Gray encoded 4-QAM is used,

carrier frequency GHz, and .

Plotted in Fig. 1(a) are the bit error rates (BER) of the new zero

forcing (ZF) detector with three vehicle speeds: ,

and km/h (corresponding to , and

). For comparison, as shown in Fig. 1(b), the pairwise

maximum-likelihood (ML) detector [2] is also simulated under
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Fig. 1. The BER results of (a) the new TS-ZF detector, and (b) the pairwise
ML detector.

the same channel conditions, by assuming that at

the receiver although the true is generated via (2). For low

speed or slow fading scenarios, our simulations indicated that

the new ZF detector offers a similar performance to the pairwise

ML detector (but with a lower computational complexity).

Clearly, the new ZF NO-STBC detector is highly effective in
suppressing the impact of channel time-selectiveness and there
is no error floor. In contrast, the pairwise ML method suffers
from an irreducible error floor in the high SNR cases. In addi-
tion, the new ZF detector has a very low (linear) computational
complexity.

When the channel changes from slow to fast fading, an ob-
vious alternative is to switch the transmitter to a non-STBC
mode. This however involves two drawbacks: 1) the loss of
space diversity and 2) the need to set up a “switching threshold,”
with which comparison must be made at all times (not a trivial
task either!). In contrast, the new ZF detector can handle both
slow and fast fading channels in a smooth and implicit manner,
eliminating any need for switching the coding schemes. Finally,
although the channel estimation issue is beyond the scope of this
letter, schemes such as the pilot overlay in 3GPP do allow for
symbol-by-symbol channel estimation.
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