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Polycystin-1, the polycystic kidney disease 1 gene
product, has been implicated in several signaling com-
plexes that are known to regulate essential cellular
functions. We investigated the role of polycystin-1 in
Wnt signaling and activator protein-1 (AP-1) activa-
tion. To this aim, a membrane-targeted construct en-
coding the conserved C-terminal region of mouse poly-
cystin-1 reported to mediate signal transduction
activity was expressed in human embryonic and renal
epithelial cells. To ensure specificity and minimal co-
transfection effects, we focused our study on the en-
dogenous proteins that actually transduce the signals,
�-catenin and T-cell factor/lymphoid-enhancing factor
for Wnt signaling and (phosphorylated) c-Jun, ATF2,
and c-Fos for AP-1. Our data indicate that the C-termi-
nal region of polycystin-1 activates AP-1 by inducing
phosphorylation and expression of at least c-Jun and
ATF2, whereas c-Fos was not affected. Under our
experimental conditions, polycystin-1 did not modu-
late Wnt signaling. AP-1 activity was aberrant in
human autosomal dominant polycystic kidney disease
(ADPKD) renal cystic epithelial cells and in renal epi-
thelial cells expressing transgenic full-length polycys-
tin-1, resulting in decreased Jun-ATF and increased
Jun-Fos activity, whereas Wnt signaling remained un-
affected. Since our data indicate that aberrant poly-
cystin-1 expression results in altered AP-1 activity,
polycystin-1 may be required for adequate AP-1
activity.

Progressive development of fluid-filled cysts in autosomal

dominant polycystic kidney disease (ADPKD)1 results in

chronic renal failure. In the majority of patients, the disease

can be accounted for by a mutation in the PKD1 gene (1, 2),

whereas a minority suffers from a mutation in the PKD2 gene

(3, 4). The precise function of polycystin-1 and polycystin-2,

the proteins encoded by the PKD1 and PKD2 gene, respec-

tively, remains to be elucidated. Polycystin-1 is predicted to

be a transmembrane protein of �460 kDa. The large extra-

cellular N terminus contains multiple domains thought to be

involved in cell-cell and cell-matrix interactions. The intra-

cellular C terminus of polycystin-1 contains putative phos-

phorylation sites and a coiled-coil domain that can mediate

protein-protein interactions.

Several studies have implicated a role for polycystin-1 in

signal transduction. Overexpression of the C-terminal region of

polycystin-1 in human embryonic kidney 293T (HEK293T) cells

has been shown to activate the Wnt signaling pathway (5) and

the activator protein-1 (AP-1) transcription factor complex (6,

7). Furthermore, overexpression of a full-length polycystin-1

construct has been reported to activate the Janus kinase and

signal transducer and activator of transcription (JAK-STAT)

signaling pathway (8). These signaling pathways are all in-

volved in key cellular processes such as proliferation and dif-

ferentiation, cell cycle regulation, and cell survival. Since these

cellular processes are essential for normal function, the signal-

ing pathways governing them are tightly regulated. We set out

to investigate the activation of signaling pathways by polycys-

tin-1. To identify relevant signaling events, a membrane-tar-

geted construct containing the C-terminal domain of polycys-

tin-1, the highly conserved region that has been proven

previously to successfully activate luciferase reporters for AP-1

and Wnt signaling (5–7), was expressed in renal cells. To de-

termine the physiological relevance of this approach, renal

epithelial cells expressing transgenic full-length polycystin-1

and ADPKD renal cystic epithelial cells were subsequently

analyzed. Our study focuses on the Wnt signaling pathway and

the AP-1 transcription factor complex.

The canonical Wnt signaling pathway is involved in cell

proliferation, differentiation, polarity, migration, and survival

(reviewed in Ref. 9). Upon stimulation by Wnt, cytoplasmic free

�-catenin is stabilized and subsequently translocated to the

nucleus. Binding of �-catenin to T-cell factor/lymphoid-enhanc-

ing factor (TCF/LEF) transcription factors then results in

* This work has been funded by Dutch Kidney Foundation Project
00.1905 and by Netherlands Organization for Scientific Research Pro-
ject 015.000.54. Work performed at the laboratory of A. Ong was sup-
ported by the National Kidney Research Fund and Wellcome Trust. The
costs of publication of this article were defrayed in part by the payment
of page charges. This article must therefore be hereby marked “adver-
tisement” in accordance with 18 U.S.C. Section 1734 solely to indicate
this fact.

§§ To whom correspondence should be addressed: Leiden University
Medical Center, Department of Human Genetics, Sylvius Laboratories,
Wassenaarseweg 72, 2333 AL Leiden, The Netherlands. Tel.: 31-71-
527-6048; Fax: 31-71-527-6075; E-mail: D.J.M.Peters@lumc.nl.

1 The abbreviations used are: ADPKD, autosomal dominant polycys-
tic kidney disease; TCF, T-cell factor; LEF, lymphoid-enhancing factor;
AP-1, activator protein-1; MDCK, Madin-Darby canine kidney; NRK-

52E, normal rat kidney 52E; HEK, human embryonic kidney; �-cat S33,
�-catenin Ser33.

THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 279, No. 26, Issue of June 25, pp. 27472–27481, 2004
© 2004 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A.

This paper is available on line at http://www.jbc.org27472



transactivation. Thus, �-catenin plays a dual role in the cell, as

a transducer of canonical Wnt signaling and as a key compo-

nent of cell adhesion, since �-catenin is also an integral part of

adhesion junctions. Cellular adhesion and signaling are there-

fore coupled via �-catenin.

The AP-1 transcription factor complex regulates key cellular

responses such as cell proliferation, differentiation, and sur-

vival and can be activated by a variety of stimuli such as

growth factors and stresses (reviewed in Refs. 10 and 11). The

AP-1 complex can be composed of homo- or heterodimers of a

variety of transcription factors including Jun, ATF, and Fos

family members. The heterogeneity of the AP-1 complex is

thought to provide a mechanism to regulate the cellular re-

sponse. In most cell types, growth factors, serum, and phorbol

esters predominantly induce Jun-Fos transcriptional activity,

whereas stress-inducing stimuli such as UV-C irradiation and

alkylating agents predominantly result in activation of Jun-

ATF. Heterogeneity is further illustrated by the fact that Jun-

Fos heterodimers bind to the 7-bp consensus sequence

TGAGTCA, whereas Jun-ATF heterodimers recognize the 8-bp

consensus sequence TGACNTCA.

To ensure specificity, we focused our study on the proteins

that actually transduce the signal, �-catenin and TCF/LEF for

Wnt signaling and c-Jun, ATF2, and c-Fos for AP-1. We report

here the activation of Jun-ATF heterodimers by the membrane-

targeted mouse C-terminal polycystin-1 fusion protein con-

struct. Moreover, AP-1 activity was aberrant in human

ADPKD renal cystic epithelial cells and in renal epithelial cells

expressing transgenic human full-length polycystin-1, result-

ing in impaired Jun-ATF and increased Jun-Fos activity,

whereas Wnt signaling was not affected.

EXPERIMENTAL PROCEDURES

Plasmid Constructs—The membrane-targeted mouse C-terminal

polycystin-1 fusion protein construct, mPKD1HT, was reported earlier

(12) (Fig. 1A, lower panel). Deleting the insert subsequently generated

the empty vector control, pcDNA1.1�HindIII-NotI, in short pcDNA1.1.

The following constructs have been described previously: TOP-TK and

FOP-TK luciferase reporter constructs (13) (Fig. 1A, upper two panels)

in short TOP and FOP; the �-catenin Ser33 (�-cat S33) construct con-

taining full-length �-catenin with a mutation at Ser33 and its corre-

sponding empty vector control, pcDNA3Zeo�MCS, in short pcDNA3Zeo

(14); the 5�jun2 TATA pGL3, in short 5�jun, 5�collTRE TATA pGL3,

in short 5�coll, TATA pGL3 (15, 16) (Fig. 4A, upper panel), �1600/�740

wt c-jun TATA pGL3, and �1600/�740 m1 � 2 c-jun TATA pGL3,

luciferase reporter constructs (17); the Myc-tagged cdc42 V12 construct,

encoding constitutively active Cdc42, and its corresponding empty vec-

tor control, pMT2 (18); and the HA-tagged ATF2 construct, HA-ATF2

(19). The p-AP-1-Luc or 7�AP-1 reporter construct (Stratagene, Cedar

Creek, TX) was a kind gift from M. Karperien (Leiden University

Medical Center, Department of Endocrinology, Leiden, The Nether-

lands). The Renilla luciferase reporter construct, pRL-TK, was pur-

chased from Promega (Leiden, The Netherlands), and pEGFP-N1 was

from BD Transduction Laboratories (Erembodegem-Aalst, Belgium).

Plasmids were isolated using the Nucleobond® DNA isolation kit from

Machery-Nagel GmbH & Co. (Düren, Germany) according to the man-

ufacturer’s instructions.

Cell Culture—Cells were maintained in Dulbecco’s modified Eagle’s

medium/F-12 with 100 units/ml penicillin and streptomycin, 1 mM

sodium pyruvate, 0.1 mM HEPES, 2 mM glutaMAX™-I, and 10% heat-

inactivated fetal bovine serum at 37 °C in a humidified atmosphere of

95% air and 5% CO2. Cell culture reagents were purchased from In-

vitrogen B.V. (Breda, The Netherlands) and disposables from Greiner

Bio-One B.V. (Alphen a/d, Rijn, The Netherlands). Madin-Darby canine

kidney (MDCK) and normal rat kidney 52E (NRK-52E) cells were

obtained from ATCC (number CCL-34 and CRL-1571, respectively).

Human embryonic kidney cells, HEK293 and HEK293T, generously

provided by J. Dorsmann (Department of Molecular Cell Biology, Lei-

den, The Netherlands), HCT116 (ATCC number CCL-247), and SW480

(ATCC number CCL-228) were maintained in Dulbecco’s modified Ea-

gle’s medium with 4500 mg/ml glucose and supplements as stated

above. The following cell lines have been described previously: M7 and

M8 (20), RCTEC, PKD9–7WT, and PKD10–7WT (21). Osmotic shock

was induced by the addition of 250 �M NaCl to culture medium for 15

min at 37 °C in a humidified atmosphere of 95% air and 5% CO2, after

which cells were lysed as described below (see “Western Blot”). UV-C

irradiation was performed by removing culture medium, washing cells

twice with phosphate-buffered saline, exposing cells to 40 J/m2 UV-C,

and subsequently culturing for 6–8 h. Cells were incubated with 100

ng/ml 12-O-tetradecanoylphorbol-13-acetate (TPA; Sigma) for 2 or 24 h.

Luciferase Reporter Assays—Cells were cultured in 6-well plates and

co-transfected with 250 ng of TOP or FOP; 100 ng of 5�jun, TATA

pGL3, 5�coll, 7�AP-1, �1600/�740 wt c-jun TATA pGL3, or �1600/

�740 m1 � 2 c-jun TATA pGL3; 5 ng of pRL-TK; and 1000 ng of

mPKD1HT, 250 ng of �-cat S33, 500 ng of cdc42 V12, or the correspond-

ing empty vectors. Total DNA amount was standardized using pKNUN.

All samples were performed in triplicate unless stated otherwise.

HEK293 and HEK293T cells were transfected with 6 �l, M7 and M8

with 10 �l, RCTEC, PKD9–7WT, and PKD10–7WT with 3 �l, and

NRK-52E with 8 �l of FuGene™ 6 (Roche Applied Science), and MDCK

cells were transfected with 6 �l of Transfast™ (Promega) per 1 �g of

DNA as described by the manufacturers. Cells were maintained under

serum-free conditions from the moment of transfection, unless stated

otherwise. Firefly and Renilla luciferase activities were measured 1–2

days post-transfection using the Dual-Luciferase® reporter assay from

Promega according to the manufacturer’s instructions. Samples that

were subsequently used for Western blotting experiments were pre-

pared as described below. Statistical analysis was performed using the

paired t test.

Western Blot—Cells were lysed in passive lysis buffer (Promega) with

1 mM phenylmethylsulfonyl fluoride (Roche Applied Science), 100 �g/ml

trypsin inhibitor, 0.5 �M sodium fluoride, and 0.5 �M sodium vanadate

(Sigma). Western blotting was performed as described (15). Primary

antibodies used include mouse-anti-�-catenin (BD Transduction Labo-

ratories), diluted 1:1000; mouse anti-human IgG (Fc� fragment-spe-

cific), diluted 1:1000 (Jackson ImmunoResearch Laboratories Inc., West

Grove, PA); rabbit anti-P73-c-Jun, diluted 1:1000 (Cell Signaling Tech-

nology, Beverly, MA); rabbit anti-c-Jun, diluted 1:1000 (H79; Santa

Cruz Biotechnology, Inc., Santa Cruz, CA); rabbit anti-phospho-ATF2,

diluted 1:1000 (Thr71; Cell Signaling Technology); rabbit anti-ATF2,

diluted 1:1000 (C19; Santa Cruz Biotechnology); rabbit anti-c-Fos, di-

luted 1:1000 (06-431, Upstate, Charlottesville, VA); and rabbit anti-

MSH2, diluted 1:15,000 (22). Primary antibodies were detected using

sheep anti-mouse horseradish peroxidase conjugate, diluted 1:10,000

(Amersham Biosciences) or goat anti-rabbit-horseradish peroxidase,

diluted 1:10,000 (Jackson ImmunoResearch Laboratories). Proteins

were detected using enhanced chemiluminescence (Sigma) or the Su-

persignal® WestPico chemiluminescent substrate (Perbio Science, Et-

ten-Leur, The Netherlands).

Immunofluorescence Microscopy—Immunofluorescence microscopy

was performed as described (23). Briefly, cells were fixed with metha-

nol/acetone (1:2) or 2% paraformaldehyde and 0.2% Triton X-100,

blocked in 5% nonfat dry milk/phosphate-buffered saline, and incubated

with primary and secondary antibodies. Mouse monoclonal anti-�-cate-

nin, diluted 1:500, and mouse anti-human IgG (Fc� fragment-specific),

diluted 1:100, were detected with sheep anti-rabbit Alexa594 conjugate,

diluted 1:2000 (Molecular Probes, Leiden, The Netherlands), goat anti-

mouse Alexa594 1:1000 (Molecular Probes), or sheep-anti-mouse fluo-

rescein isothiocyanate, diluted 1:200 (Sigma). Coverslips were embed-

ded in gelvatol (5 g of polyvinylalcohol in 30% glycerol and 100 mg/ml

DABCO) with 1 �g/ml 4�,6-diamidino-2-phenylindole�2HCl as a nuclear

marker. Fluorescence was obtained using a Leica DMRBE microscope

type 301–371.011 (Leica, Rijswijk, The Netherlands). Images were dig-

itally stored using IP Lab Spectrum version 3.1 software.

Immunohistochemistry—Human renal tissue sections from healthy

individuals and from patients diagnosed with ADPKD were immuno-

stained for �-catenin as described (24). The Envision� kit (DakoCyto-

mation B.V., Heverlee, Belgium) was used as a secondary reagent.

Staining was developed using DAB (brown precipitate). Slides were

counterstained with hematoxylin.

RESULTS

Membrane-targeted Mouse C-terminal Polycystin-1 Does Not

Activate Wnt Signaling in HEK293 and MDCK Cells—Wnt

activation is reflected by transactivation of luciferase in the

TOP versus the control FOP reporter construct (Fig. 1A). Since

the luciferase reporter construct contains three binding sites

for Wnt-specific TCF/LEF transcription factors only, activation

requires intact components of the signaling cascade in the cells

The Role of Polycystin-1 in Wnt Signaling and AP-1 Activation 27473



tested. HEK293 and canine renal tubular epithelial (MDCK)

cells transfected with the constitutive active �-catenin Ser33

mutant, �-cat S33, showed significant Wnt activation, as re-

flected by the markedly increased TOP/FOP ratio compared

with unstimulated and empty vector control (Fig. 1B). There-

fore, the cells tested were indeed capable of generating an

adequate cellular response upon induction of Wnt signaling.

However, no significant Wnt activation was detected after

transfection with the membrane-targeted mouse C-terminal

polycystin-1 construct, mPKD1HT, in both HEK293 (Fig. 1A)

and MDCK cells (Fig. 1B). To exclude the possibility that in-

duction of Wnt signaling by mPKD1HT was below the meas-

uring threshold of the luciferase reporter assay, we tested for

the hallmarks of Wnt activation, cytoplasmic accumulation,

and nuclear translocation of �-catenin, using Western blotting

and immunofluorescent staining for �-catenin (Fig. 1, C and D).

Significant accumulation and nuclear translocation of �-cate-

nin were detected only in cells transfected with the �-catenin

Ser33 mutant construct. The mPKD1HT construct was cor-

rectly expressed in transfected cells (Fig. 1C, middle panel) and

was correctly targeted to the plasma membrane, although a

significant amount was also present in the cytoplasm as de-

tected using immunofluorescence microscopy (data not shown).

We and other groups have previously reported the expression of

FIG. 1. Membrane-targeted mouse C-terminal polycystin-1 does not activate Wnt signaling. A, schematic representation of the TOP and
FOP luciferase reporters for Wnt signaling (upper two panels). The TOP construct contains three Wnt-specific binding sites for TCF/LEF
transcription factors (3�TCF) and the firefly luciferase reporter (Fluc) under control of a minimal promoter from herpes simplex virus thymidine
kinase (PTK). The FOP construct is identical to the TOP construct, with the exception that the three TCF binding sites are mutated and therefore
inactive. The mPKD1HT construct (lower panel) contains the C-terminal 193 amino acids (amino acids 4101–4293) of mouse polycystin-1 fused to
the CD5 signal sequence, CH2-CH3 sequences of human IgG, and the CD7 transmembrane domain, in the pcDNA1.1 vector backbone. B, TOP/FOP
luciferase reporter assay in HEK293 (upper panel) and MDCK cells (lower panel). Cells were transfected with plasmid constructs (TOP or FOP and
pRL-TK reporters and either mPKD1HT or �-cat S33), cultured under serum-free conditions, and assayed for luciferase activity 1–2 days
post-transfection. As a positive control for induction of Wnt signaling, the constitutive active �-catenin Ser33 construct, �-cat S33, was included.
The pcDNA3Zeo and pcDNA1.1 vectors were included as empty vector controls for the �-cat S33 and the mPKD1HT construct, respectively. Data
are shown of 2–4 independent triplicate experiments as the mean � S.D. of the ratio between the TOP and FOP reporters. Statistical significant
measurements are indicated. *, p � 0.05; **, p � 0.005. C, Western blot analysis of �-catenin in HEK293 total cell lysates. Cells were transfected
with �-cat S33, mPKD1HT, or the empty vector controls, pcDNA3Zeo and pcDNA1.1; assayed for luciferase activity; and assayed subsequently for
�-catenin protein level using Western blot. �-Catenin was detected with mouse-anti-�-catenin (upper panel). To detect the mPKD1HT construct,
the same blot was incubated with mouse anti-human-IgG (middle panel). As a loading control, rabbit anti-MSH2 was included (lower panel).
Representative data are shown. D, immunofluorescence microscopy for �-catenin in MDCK cells. Cells were transfected with �-cat S33 (left panel)
or with the mPKD1HT construct (right panel). �-Catenin was detected using mouse-anti-�-catenin and goat anti-mouse Alexa594 (red). Trans-
fected cells were identified by co-transfection with an enhanced green fluorescent protein construct (pEGFP-N1; not shown). Cell nuclei were
visualized using 4�,6-diamidino-2-phenylindole�2HCl (DAPI) (blue). Representative images are shown. E, TOP/FOP luciferase reporter assay in
mouse renal tubular epithelial cells expressing full-length human polycystin-1 (M7, left panel) and the control cell line (M8, right panel). Cells were
transfected with plasmid constructs (TOP or FOP and pRL-TK reporters and �-cat S33 or pcDNA3Zeo) and assayed for luciferase activity 2 days
post-transfection. Data are shown of two independent triplicate experiments as the mean � S.D. of the ratio between the TOP and FOP reporter.
The �-cat S33 construct was included as a positive control for induction of Wnt signaling.

The Role of Polycystin-1 in Wnt Signaling and AP-1 Activation27474



endogenous polycystin-1 in the plasma membrane (23, 25, 26).

The housekeeping protein MSH2 was incorporated as a loading

control (Fig. 1C, lower panel). In mPKD1HT-transfected cells,

�-catenin was exclusively detected associated to the plasma

membrane as a component of adherens junctions (Fig. 1D, right

panel). Cells expressing �-cat S33 exhibited both the plasma

membrane-associated and nuclear localization (Fig. 1D, left

panel).

We conclude that under the defined experimental conditions,

the membrane-targeted mouse C-terminal polycystin-1 con-

struct does not induce Wnt signaling in HEK293 and MDCK

cells. Furthermore, in M7 cells, mouse SV40 large T-immortal-

ized renal tubular epithelial cells expressing transgenic human

full-length polycystin-1, Wnt activation was detected but did

not differ from M8 control cells (Fig. 1E). Both cell lines were

capable of responding adequately to Wnt induction by �-cat

S33. Thus, expression of polycystin-1 did not directly activate

Wnt signaling.

Membrane-targeted Mouse C-terminal Polycystin-1 Does Not

Augment �-Catenin Ser33-induced Wnt Activation—HEK293

and MDCK cells co-transfected with mPKD1HT and �-cat S33

did not show a significant difference in Wnt activation as com-

pared with co-transfection of �-cat S33 with pDNA1.1, the

vector backbone of mPKD1HT (Fig. 2A). Moreover, in the colon

epithelial carcinoma cell lines, HCT116 (Fig. 2B) and SW480

(data not shown), which exhibit constitutively active Wnt sig-

naling due to mutations in the �-catenin and APC gene, respec-

tively, mPKD1HT did not have an effect on canonical Wnt

signaling as detected using the TOP/FOP assay. Transfection

of �-catenin Ser33 in HCT116 and SW480 did induce Wnt

signaling above the activation level in the unstimulated status.

In conclusion, the membrane-targeted mouse C-terminal

polycystin-1 construct did not augment �-catenin Ser33-in-

duced Wnt activation.

Wnt Signaling Is Not Affected in ADPKD Renal Cystic Epi-

thelium—Since overexpression of polycystin-1 did not result in

activation or augmentation of Wnt signaling, we investigated

Wnt signaling in the human renal ADPKD cystic epithelial cell

lines, PKD9–7WT and PKD10–7WT. PKD9–7WT and

PKD10–7WT as well as the control cell line, RCTEC, did not

differ in Wnt activation in the unstimulated state as detected

by the TOP/FOP reporter assay, whereas cells did exhibit an

adequate cellular response upon activation of Wnt signaling by

�-cat S33 (Fig. 3A, 2-fold induction by �-cat S33 compared with

the empty vector in all cells). Immunofluorescent staining for

�-catenin revealed only the expected plasma membrane-asso-

ciated localization of �-catenin (Fig. 3B). Furthermore, immu-

nohistochemical staining of renal cystic tissues of four ADPKD

patients with mutations in PKD1 did not show distinct cyto-

plasmic accumulation or nuclear translocation of �-catenin

(Fig. 3C, ADPKD patient H84–3821 shown in the right panel).

Thus, in established ADPKD cystic epithelium, Wnt signal-

ing was not significantly affected.

Membrane-targeted Mouse C-terminal Polycystin-1 Activates

AP-1 via Jun-ATF2 in HEK293 and NRK-52E Cells—The AP-1

transcription factor complex can be activated by a variety of

stimuli such as growth factors and stresses that can induce

both Jun-Fos and Jun-ATF activity. We tested activation of

AP-1 using distinct luciferase reporter constructs (Fig. 4A,

upper panel). The 5�coll and 7�AP-1 reporters are activated

by Jun-Fos heterodimers and can be strongly induced by TPA

(19, 27). The 5�jun reporter construct mainly monitors Jun-

ATF activity and is hardly enhanced by TPA. In HEK293 cells,

TPA specifically activated the 5�coll and 7�AP-1 luciferase

reporters but not the 5�jun reporter in cells cultured under

serum-free conditions (Fig. 4A). In contrast, the constitutively

active Rho GTPase, cdc42 V12, strongly induced the 5�jun

reporter. Therefore, activation of Jun-ATF and Jun-Fos het-

erodimers can indeed be distinguished in this cell type using

these reporters. The membrane-targeted mouse C-terminal

polycystin-1 construct specifically induced the 5�jun reporter,

whereas activation of the 5�coll and 7�AP-1 reporters was not

detectable. Similar results were obtained in HEK293 (Fig. 4A),

HEK293T cells (data not shown), and the renal epithelial cell

line, NRK-52E (Fig. 4B). The effect of the mPKD1HT construct

on activation of the 5�jun reporter in NRK-52E cells was

similar to the activation observed with the known inducers of

Jun-ATF2 activity, cdc42 V12 and UV-C. Moreover, the effect

of the mPKD1HT construct on the 5�jun reporter was dosage-

dependent (Fig. 4C).

Thus, under the defined experimental conditions membrane-

targeted mouse C-terminal polycystin-1 enhanced Jun-ATF

rather than Jun-Fos activity.

Membrane-targeted Mouse C-terminal Polycystin-1 Induces

Phosphorylation and Expression of c-Jun and Increases

FIG. 2. Membrane-targeted mouse C-terminal polycystin-1 does
not augment �-cat S33-induced Wnt activation. A, TOP/FOP lucif-
erase reporter assay to detect synergism between mPKD1HT and �-cat
S33 in HEK293 (upper panel) and MDCK cells (lower panel). Cells were
transfected with plasmid constructs (TOP or FOP and pRL-TK reporters,
constitutive active �-cat S33 and/or the mouse C-terminal polycystin-1
construct, mPKD1HT, or the corresponding empty vector controls,
pcDNA3Zeo and pcDNA1.1), cultured under serum-free conditions, and
assayed for luciferase activity 1–2 days post-transfection. Data are shown
of 1–2 triplicate experiments as the (mean � S.D. of the) ratio between the
TOP and FOP reporter. B, TOP/FOP luciferase reporter activity assay in
a human colon carcinoma epithelial cell line with constitutive active Wnt
signaling, HCT116. Cells were transfected with plasmid constructs (TOP
or FOP and pRL-TK reporters, mPKD1HT, �-cat S33 or the empty vector
control, pcDNA1.1 or pcDNA3Zeo) and assayed for luciferase activity 1
day post-transfection. Data are shown of 1–2 independent triplicate ex-
periments as the (mean � S.D. of the) ratio between the TOP and FOP
reporter. The �-cat S33 construct was included as a positive control.
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Phosphorylation of ATF2—In conjunction with the activation of

the Jun-ATF dependent 5�jun luciferase reporter, expression

of mPKD1HT increased both total and Ser73 phosphorylation of

endogenous c-Jun in HEK293 (Fig. 5A, left panel) and

HEK293T cells (data not shown). Densitometry analysis of

Western blots indicated that the effect of the mPKD1HT con-

struct occurred predominantly by induction of Ser73 phospho-

rylation (12-fold increase compared with the empty vector con-

trol) and to a lesser extent by increasing total protein level of

c-Jun (1.6-fold; data not shown). Cells treated with the known

inducers of c-Jun activity, osmotic shock, and cdc42 V12,

showed similar enhancement.

In contrast, the total protein level of endogenous c-Fos in

mPKD1HT-transfected cells did not differ from control,

whereas cells treated with TPA did show a distinct increase in

c-Fos level (Fig. 5B). Thus, expression of mPKD1HT induced

phosphorylation and increased total protein level of c-Jun,

whereas c-Fos protein level was unaffected.

Co-expression of HA-tagged ATF2 with the mPKD1HT con-

struct in HEK293 cells increased Thr71 phosphorylation of ATF2

compared with the empty vector control, pcDNA1.1, although the

increase was less intense than the effect of osmotic shock and

cdc42 V12 expression (Fig. 5C, left panel). Data were confirmed

by assaying for endogenous ATF2 in cells transfected with

mPKD1HT using Western blotting (Fig. 5C, right panel).

In conclusion, membrane-targeted mouse C-terminal poly-

FIG. 3. Wnt signaling is not activated in ADPKD renal cystic cells. A, TOP/FOP luciferase reporter activity assay in control (RCTEC,
left panel) and human ADPKD renal cystic epithelium (PKD9–7WT and PKD10–7 WT; middle and right panels). Cells were transfected with
plasmid constructs (1000 ng of TOP or FOP and 25 ng of pRL-TK reporters, 500 ng of constitutive active �-cat S33, or the empty vector control,
pcDNA3Zeo) and assayed for luciferase activity 1 day post-transfection. Data are shown of a triplicate experiment as the ratio between the TOP
and FOP reporter. B, immunofluorescence microscopy for �-catenin in RCTEC (left) and PKD9–7WT cells (right). Cells were fixed and
immunostained for �-catenin (green). Cell nuclei were visualized using 4�,6-diamidino-2-phenylindole�2HCl (data not shown). Representative
images are shown. C, immunostaining for �-catenin in human renal sections derived from control (left panel) and ADPKD cystic tissue (right
panel). The ADPKD cystic tissue shown is derived from a patient who has a mutation in exon 45 of the PKD1 gene (122511̂2252insTGTCACC).
Tissue sections were stained for �-catenin (brown) and counterstained with hematoxylin (blue). T, tubule lumen; C, cystic tubule lumen.
Images were taken at �400 magnification.
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cystin-1 induced phosphorylation and activation of c-Jun and

ATF2, whereas the c-Fos protein level remained unaffected.

AP-1 Activity Is Aberrant in Human ADPKD Renal Cystic

Epithelial Cells and in Renal Epithelial Cells Expressing

Transgenic Full-length Polycystin-1—To determine the physi-

ological relevance of the data obtained using our membrane-

targeted mouse C-terminal polycystin-1 construct, we investi-

gated AP-1 activity of the human renal cystic epithelial cell

line, PKD9–7WT, which is derived from an ADPKD patient.

PKD9–7WT cells exhibited significantly less 5�jun reporter

activity than the control cell line, RCTEC (Fig. 6A, left panel).

Similarly, data obtained using the �1600/�740 c-jun TATA

pGL3 luciferase reporter revealed that transcription of c-jun

itself was also decreased in PKD9–7WT cells (Fig. 6C). Upon

treatment with UV-C irradiation, RCTEC and PKD9–7WT did

exhibit increased 5�jun reporter activity, indicating that both

cell lines were capable of generating an adequate cellular re-

sponse to induce Jun-ATF activity (data not shown). In accord-

ance with the impaired 5�jun reporter activity, expression of

total and active Ser73-phosphorylated c-Jun was decreased in

FIG. 4. Membrane-targeted mouse C-terminal polycystin-1 activates the 5�jun luciferase reporter. A, AP-1 luciferase reporter activity
assays in HEK293 cells. The upper panel shows the schematic representation of the 5�jun reporter construct containing five Jun-ATF binding sites
(5�Jun:ATF), the 5�coll reporter containing five Jun-Fos binding sites (5�Jun:Fos), and the 7�AP-1 reporter containing seven Jun-Fos binding
sites (7�Jun:Fos), a TATA box (TATA), and the firefly luciferase reporter (Fluc). Cells were transfected with plasmid constructs (5�jun, 5�coll,
7�AP-1, or TATA pGL3 and pRL-TK reporters, and the mouse C-terminal polycystin-1 construct, mPKD1HT, or the empty vector control,
pcDNA1.1), cultured under serum-free conditions, and assayed for luciferase activity 2 days post-transfection. TPA was included as a negative
control for the 5�jun reporter and as a positive control for the 5�coll and 7�AP-1 to indicate that Jun-ATF and Jun-Fos activation can be
distinguished using these reporters. As a positive control for induction of the 5�jun reporter, constitutive active cdc42 V12, with the corresponding
empty vector control, pMT2, was included. Data are shown of a minimum of two independent triplicate experiments as the mean � S.D. of the fold
induction between the 5�jun (n 	 6–10 independent experiments; left panel), the 5�coll (n 	 5, except for TPA (n 	 1); middle panel), or the
7�AP-1 (n 	 9; right panel) reporter and the TATA pGL3 (control) reporter. Statistical significant measurements are indicated. **, p � 0.005. B,
5�jun luciferase reporter assay in NRK-52E cells. Cells were transfected with plasmid constructs (250 ng of 5�jun or TATA pGL3 and 5 ng of
pRL-TK reporters, 2000 ng of mPKD1HT or pcDNA1.1, and 1000 ng of cdc42 V12 or pMT2), cultured under serum-free conditions, and assayed
for luciferase activity 1 day post-transfection. As positive controls for activation of the 5�jun reporter, cells irradiated with 40 J/m2 UV-C (UV-C)
and cells transfected with cdc42 V12 (cdc42 V12) were included. Data are shown of a triplicate experiment as the fold induction between the 5�jun
and the TATA pGL3 reporter. C, 5�jun luciferase reporter assay in HEK293 cells transfected with a dosage range of mPKD1HT (5–2500 ng). Cells
were transfected with plasmid constructs (5�jun or TATA pGL3 and pRL-TK reporters and mPKD1HT or pcDNA1.1), cultured under serum-free
conditions, and assayed for luciferase activity 2 days post-transfection. Data are shown of a triplicate experiment as the fold induction between the
5�jun and the TATA pGL3 reporter.
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PKD9–7WT compared with RCTEC cells (Fig. 6A, middle

panel). In contrast, expression level of total and Thr71-phospho-

rylated ATF2 was increased in PKD9–7WT cells (Fig. 6B, right

panel). This increased expression of ATF2 may reflect en-

hanced activity of more upstream extracellular signal-regu-

lated kinases (ERK) (19). Furthermore, increased activity of

the Jun-Fos-dependent AP-1 reporters, 5�coll (Fig. 6B, left

panel) and 7�AP-1 (data not shown) in PKD9–7WT cells coin-

cided with an increased total expression level of c-Fos (Fig. 6B,

right panel).

Upon transfection of PKD9–7WT cells with the membrane-

targeted mouse C-terminal polycystin-1 construct, mPKD1HT,

5�jun reporter activity was restored to levels above the reporter

activity of RCTEC control cells (Fig. 6D). These data indicate that

the Jun-ATF-activating properties of polycystin-1 can be mim-

icked by expression of this C-terminal region of polycystin-1.

In conclusion, AP-1 activity is aberrant in PKD9–7WT cells,

resulting in impaired Jun-ATF activity and increased Jun-Fos

activity. Moreover, data indicate that expression of c-Jun is

regulated at the level of both gene transcription and post-

transcriptional modifications, suggesting that c-Jun is the lim-

iting factor for impaired Jun-ATF activity in PKD9–7WT cells.

Analysis of M7 cells, mouse SV40 large T-immortalized renal

epithelial cells expressing transgenic human full-length poly-

cystin-1, revealed that Jun-ATF-dependent 5�jun reporter ac-

tivity was also significantly impaired in these cells compared

with the control cell line, M8 (Fig. 7A, left panel). Moreover,

Ser73 phosphorylation of c-Jun was decreased in M7 cells (data

not shown). Expression of the membrane-targeted mouse C-

terminal polycystin-1 construct mPKD1HT, in M7 cells re-

stored the impaired 5�jun reporter activity (Fig. 7A, right

panel). Reporter activity of the 5�coll construct was increased

in M7 compared with M8 control cells (Fig. 7B). Since M7 cells

showed similar impaired Jun-ATF and increased Jun-Fos-me-

diated AP-1 activation as PKD9–7WT cells, overexpression of

full-length polycystin-1 may result in a defect in AP-1 activity

as well. M7 cells were isolated from a transgenic mouse model

that expresses functional full-length polycystin-1 (20, 28, 29).

Intriguingly, transgenic mice developed mild polycystic kidney

disease, indicating that expression levels of polycystin-1 are

important for normal renal function, since both too low and too

high expression of polycystin-1 results in polycystic kidney

disease (28). In accordance, our data indicate that in both

polycystic kidney cells (PKD9–7WT) and in cells expressing

transgenic full-length polycystin-1 (M7) AP-1 activation is ab-

errant, thereby implicating a role for polycystin-1 in regulating

AP-1 activity.

DISCUSSION

The goal of our study was to gain a better understanding of

the complex role of polycystin-1 in Wnt signaling and AP-1

activation. For this, we expressed a membrane-targeted

mouse C-terminal polycystin-1 construct, mPKD1HT, in cell

lines that have no known defect in polycystin-1 or polycys-

tin-2, in order to identify relevant signaling events. To deter-

mine the physiological relevance of overexpressing this mem-

brane-targeted mouse C-terminal polycystin-1 construct,

human ADPKD renal cystic epithelial cells and renal epithe-

lial cells expressing transgenic human full-length polycys-

tin-1 were subsequently analyzed.

Intriguingly, under defined experimental conditions, we ob-

served preferential Jun-ATF-dependent AP-1 activation by the

membrane-targeted mouse C-terminal polycystin-1 construct.

The membrane-targeted mouse C-terminal polycystin-1 fusion

protein construct did not activate or augment canonical Wnt

signaling as detected using the TOP/FOP luciferase reporter

assay, Western blotting, and immunostaining for �-catenin

(Figs. 1 and 2). Since this was observed in human embryonic

kidney, HEK293 and HEK293T, and the more relevant renal

epithelial MDCK cells, cell type-specific effects are less likely.

Kim et al. (5) have previously reported that a membrane-

targeted human C-terminal polycystin-1 construct activated a

Siamois promoter-based luciferase reporter assay for Wnt sig-

naling and stabilized �-catenin. The discrepancy in data may

be attributed to differences in luciferase reporter constructs or

in mouse and human polycystin-1. However, mouse and human

sequences of polycystin-1 are highly conserved (79% identity

between human and mouse) (30). Moreover, we show that Wnt

signaling did not significantly differ in a mouse renal epithelial

cell line expressing transgenic human full-length polycystin-1

(M7; Fig. 1E). Although highly specific, bare TCF binding sites

used in our TOP/FOP assays may only be functional within the

appropriate environment requiring additional regulatory ele-

ments for induction by the mouse C-terminal polycystin-1 con-

struct. Conversely, the Siamois promoter fragment may con-

tain additional regulatory elements that render it activated via

a variety of routes and not exclusively by Wnt signaling. In

FIG. 5. Membrane-targeted mouse C-terminal polycystin-1 in-
creases phosphorylation and expression of c-Jun and phospho-
rylation of ATF2. A, HEK293 cells were transfected with the mouse
C-terminal polycystin-1 construct, mPKD1HT, or the corresponding
empty vector control, pcDNA1.1, cultured under serum-free conditions,
and assayed for endogenous c-Jun on a Western blot. Expression levels
of Ser73-phosphorylated c-Jun (P73-c-Jun), total c-Jun (total c-Jun), the
mPKD1HT construct (mPKD1HT), and the loading control MSH2
(MSH2) were analyzed. As a positive control for induction of (phospho-
rylation of) c-Jun, cells treated with osmotic shock (osm. shock) were
included. Representative data are shown. B, HEK293 cells were trans-
fected with mPKD1HT or pcDNA1.1, cultured under serum-free condi-
tions, assayed for luciferase activity, and subsequently assayed for
endogenous c-Fos using Western blotting. Total endogenous c-Fos (total
c-Fos), the mPKD1HT construct (mPKD1HT), and the loading control
MSH2 (MSH2) were analyzed. As a positive control for induction of
c-Fos, cells treated with TPA (TPA) were included. Representative data
are shown. C, HEK293 cells were co-transfected with HA-ATF2 and
cdc42 V12, mPKD1HT, or pcDNA1.1 (left panel) or transfected with
cdc42 V12, mPKD1HT, or pcDNA1.1 alone (right panel); cultured under
serum-free conditions; lysed 1 day post-transfection; and assayed for
ATF2 on Western blot. Thr71-phosphorylated ATF2 (P71-ATF2), the
mPKD1HT construct (mPKD1HT), and the loading control MSH2
(MSH2) were analyzed. As positive controls for induction of phospho-
rylation of ATF2, cells treated with osmotic shock (osm. shock) and cells
transfected with cdc42 V12 were included.
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addition, we cannot exclude the possibility that the effect of

polycystin-1 on Wnt signaling is too subtle to be detected using

existing techniques. This sensitivity threshold is an inherent

effect of any experimental design. To date, the TOP/FOP re-

porter assay and immunodetection of nuclear �-catenin remain

the most specific methods to detect Wnt activation.

If the C-terminal polycystin-1 construct can indeed activate

Wnt signaling, ADPKD cystic cells should show aberrant Wnt

signaling. Our data indicate that canonical Wnt signaling is not

significantly aberrant in cells and tissue sections derived from

human ADPKD renal cystic epithelium (Fig. 3). In accordance,

Kugoh et al. (31) have reported that in TCS2-deficient cells lack-

ing plasma membrane-localized polycystin-1, �-catenin localiza-

tion and function is not affected. Recently, a polycystin-1 knock-

out mouse model has been described in which total �-catenin

protein level was decreased in heart and kidney tissue (32).

Administration of pioglitazone rescued cardiac and renal abnor-

malities and subsequently elevated �-catenin levels to control

values, indicating that polycystin-1 function and �-catenin are

linked. Functional assays using (cells derived from) this mouse

model to determine whether �-catenin function is indeed af-

fected, would provide more insight. In addition, transgenic mice

expressing mutant �-catenin develop cysts in the kidneys (33).

These mice are deficient in binding to �-catenin, a crucial com-

ponent linking adhesion junctions to the cytoskeleton, and ex-

FIG. 6. AP-1 activity is aberrant in human ADPKD renal cystic
epithelial cells. A, 5�jun luciferase reporter assay in the human
ADPKD renal cystic epithelial cell line, PKD9–7WT, compared with the
control cell line, RCTEC (left panel). Cells were transfected with plas-
mid constructs (1000 ng of 5�jun or TATA pGL3 reporter), cultured
under serum-free conditions, and assayed for luciferase activity 2–3
days post-transfection. Data are shown of 2–4 independent triplicate
experiments as the mean � S.D. of the fold induction between the
5�jun and the TATA pGL3 (control) reporter. Statistically significant
measurements are indicated. *, p � 0.05. RCTEC and PKD9–7WT cells
were subsequently analyzed for Ser73-phosphorylated endogenous c-
Jun (P73-c-Jun), total c-Jun (total c-Jun), Thr71-phosphorylated ATF2
(P71-ATF2), total ATF2 (total ATF2), and the loading control MSH2
(MSH2) using Western blotting (middle and right panel). Representa-
tive data are shown. B, 5�coll luciferase reporter assay in PKD9–7WT
and RCTEC cells (left panel). Cells were transfected with plasmid
constructs (1000 ng of 5�coll or TATA pGL3 reporter), cultured under
serum-free conditions, and assayed for luciferase activity 2–3 days
post-transfection. Data are shown of two independent duplicate exper-
iments as the mean � S.D. of the fold induction between the 5�coll and
the TATA pGL3 (control) reporter. RCTEC and PKD9–7WT cells were
subsequently analyzed for total protein level of endogenous c-Fos (total
c-Fos) and the loading control MSH2 (MSH2) using Western blotting
(right panel). Representative data are shown. C, �1600/�740 c-jun
TATA pGL3 luciferase reporter assay in PKD9–7WT and RCTEC cells.
Cells were transfected with plasmid constructs (1000 ng of �1600/�740
wt c-jun TATA pGL3 or �1600/�740 m1 � 2 c-jun TATA pGL3 re-
porter), cultured under serum-free conditions, and assayed for lucifer-
ase activity 1–2 days post-transfection. Data are shown of three inde-
pendent duplicate experiments as the mean � S.D. of the fold induction
between the �1600/�740 wt c-jun TATA pGL3 and the mutant �1600/
�740 m1 � 2 c-jun TATA pGL3 reporter. Statistically significant meas-
urements are indicated. *, p � 0.05. D, 5�jun luciferase reporter assay
in PKD9–7WT cells. Cells were transfected with plasmid constructs
(1000 ng of 5�jun or TATA pGL3 reporter and 1000 ng of mPKD1HT or
pcDNA1.1), cultured under serum-free conditions, and assayed for lu-
ciferase activity 1–2 days post-transfection. Data are shown of two
independent duplicate experiments as the mean � S.D. of the fold
induction between the 5�jun and the TATA pGL3 (control) reporter.

FIG. 7. AP-1 activity is aberrant in renal epithelial cells ex-
pressing transgenic human full-length polycystin-1. A, 5�jun
luciferase reporter assay in renal epithelial cells expressing transgenic
human full-length polycystin-1 (M7) compared with control cells (M8).
Cells were transfected with plasmid constructs (500 ng of 5�jun, TATA
pGL3 and 50 ng of pRL-TK reporters, 1000 ng of mPKD1HT or
pcDNA1.1), cultured under serum-free conditions, and assayed for lu-
ciferase activity 1–2 days post-transfection. Data are shown of 2–5
independent triplicate experiments as the mean � S.D. of the fold
induction between the 5�jun and the TATA pGL3 (control) reporter.
Statistically significant measurements are indicated. *, p � 0.05. B,
5�coll luciferase reporter assay in M7 and M8 cells. Cells were trans-
fected with plasmid constructs (500 ng of 5�coll or TATA pGL3 and 50
ng of pRL-TK reporters), cultured under serum-free conditions, and
assayed for luciferase activity 1 day post-transfection. Data are shown
of a triplicate experiment as the fold induction between the 5�coll and
the TATA pGL3 (control) reporter.
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hibit constitutively active Wnt signaling. Therefore, aberrant

�-catenin function results in cystogenesis. However, whether the

primary defect in polycystin-1 in ADPKD affects �-catenin-me-

diated Wnt activation and thus cystogenesis remains to be elu-

cidated. Cyst development in the kidney has been reported pre-

viously in a variety of mouse models, suggesting that several

routes can lead to cyst formation (34–37). We postulate that Wnt

signaling may not be a major factor in established ADPKD renal

cystic epithelium, although it may yet be a factor in earlier stages

of ADPKD cystogenesis as the actual trigger that sets off or

augments cystogenesis.

The membrane-targeted mouse C-terminal polycystin-1 con-

struct did activate AP-1 and more specifically Jun-ATF het-

erodimer activity in HEK293 and renal epithelial NRK-52E

cells (Fig. 4). To our knowledge, we report here for the first time

that expression of the C-terminal region of polycystin-1 induces

phosphorylation and activation of endogenous c-Jun (Fig. 5).

Our data suggest that the C-terminal polycystin-1 construct

also increases phosphorylation of ATF2. The protein level of

c-Fos was not affected by the mouse C-terminal polycystin-1

construct, and activation of Jun-Fos dependent luciferase re-

porters was not detected under our experimental conditions.

Parnell et al. (7) have recently reported activation of a Jun-Fos-

specific luciferase reporter using a construct containing the

C-terminal 222 amino acids of mouse polycystin-1. We propose

that polycystin-1 is capable of inducing at least c-Jun and ATF2

activity and that the gene transcriptional effect of this activa-

tion is tightly regulated and depends on variables such as

cellular context and experimental conditions. The C-terminal

29-amino acid difference between our sequence and the con-

struct used by Parnell et al. (7) may contain a regulatory

domain determining Jun-ATF or Jun-Fos activation. Divergent

mechanisms of AP-1 activation have been reported to be a

major regulatory mechanism to determine the cellular re-

sponse upon a certain stimulus (reviewed in Refs. 10 and 11).

Analysis of human ADPKD renal cystic epithelial cells

(PKD9–7WT) and a renal tubular epithelial cell line expressing

transgenic human full-length polycystin-1 (M7) subsequently

revealed that AP-1 activity was aberrant in both cell lines

(Figs. 6 and 7). Total and Ser73-phosphorylated levels of c-Jun

were decreased in PKD9–7WT cells and coincided with a de-

crease in Jun-ATF-dependent reporter activity. Total protein

level of ATF2 was strikingly increased, possibly due to up-

stream activation of ERK (19). Total protein level of c-Fos was

increased also and was reflected by an increase in Jun-Fos-de-

pendent reporter activity.

In conclusion, we hypothesize that polycystin-1 may affect

the upstream activation of c-Jun and therefore modulate AP-1

activity, since ADPKD renal cystic epithelial cells as well as

renal epithelial cells expressing transgenic human full-length

polycystin-1 show aberrant AP-1 activity. Our data indicate

that polycystin-1 primary exerts its effect on transcription and

post-transcriptional modifications of c-Jun and that regulation

of AP-1 activity may be a physiological function of polycystin-1.

Expression of the membrane-targeted C-terminal polycystin-1

construct restored the impaired Jun-ATF activation level of

PKD9–7WT cells. Thus, the Jun-ATF activating property of

polycystin-1 lies in this C-terminal region, and expression of

our polycystin-1 construct provides an adequate tool to study

this signaling event. To determine whether aberrant AP-1 ac-

tivity plays a significant role in ADPKD cystogenesis in gen-

eral, additional cells from ADPKD patients should be analyzed.

Recent studies have shed some light on the complex interac-

tion between signaling pathways. c-Jun was reported to be

essential for regulation of Dickkopf-1 expression, a known in-

hibitor of canonical Wnt signaling, thereby establishing a di-

rect link between AP-1 and Wnt signaling (38). Moreover, c-Jun

and LEF-1 transcription factors have been reported to act

cooperatively in regulating the matrix metalloprotease matri-

lysin promoter (39). The interplay between seemingly different

signaling pathways may contribute to fine tune the cellular

response upon a certain stimulus. Our data suggest that poly-

cystin-1 primarily exerts its effect on c-Jun and to modulate

AP-1 activity. The possible effect on Wnt signaling may occur

via AP-1. This then results in a feedback loop regulating poly-

cystin-1 expression, since the promoter region of polycystin-1

has been reported to contain putative AP-1 and TCF/LEF sites

(40).

Our data indicate that polycystin-1 regulates AP-1 activity

and that AP-1 plays a relevant role in ADPKD cystogenesis.
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