White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Branching process models for surveillance of infectious diseases controlled by mass vaccination

Farrington, C.P., Kanaan, M.N. and Gay, N.J. (2003) Branching process models for surveillance of infectious diseases controlled by mass vaccination. Biostatistics, 4 (2). pp. 279-295. ISSN 1465-4644

Full text not available from this repository.

Abstract

Mass vaccination programmes aim to maintain the effective reproduction number R of an infection below unity. We describe methods for monitoring the value of R using surveillance data. The models are based on branching processes in which R is identified with the offspring mean. We derive unconditional likelihoods for the offspring mean using data on outbreak size and outbreak duration. We also discuss Bayesian methods, implemented by Metropolis–Hastings sampling. We investigate by simulation the validity of the models with respect to depletion of susceptibles and under-ascertainment of cases. The methods are illustrated using surveillance data on measles in the USA.

Item Type: Article
Academic Units: The University of York > Health Sciences (York)
Depositing User: York RAE Import
Date Deposited: 14 Aug 2009 13:19
Last Modified: 14 Aug 2009 13:19
Published Version: http://dx.doi.org/10.1093/biostatistics/4.2.279
Status: Published
Publisher: Oxford University Press
Identification Number: 10.1093/biostatistics/4.2.279
URI: http://eprints.whiterose.ac.uk/id/eprint/5728

Actions (login required)

View Item View Item