
promoting access to White Rose research papers

White Rose Research Online

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of the published paper.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/5412/

Published paper
Shakhlevich, N.V. (2008) Preemptive scheduling on uniform parallel machines
with controllable job processing times. Algorithmica, 51 (4). pp. 451-473.
http://dx.doi.org/10.1007/s00453-007-9091-9

eprints@whiterose.ac.uk

http://dx.doi.org/10.1007/s00453-007-9091-9

Algorithmica
DOI 10.1007/s00453-007-9091-9

Preemptive Scheduling on Uniform Parallel Machines
with Controllable Job Processing Times

Natalia V. Shakhlevich · Vitaly A. Strusevich

Received: 28 February 2007 / Accepted: 8 March 2007
© Springer Science+Business Media, LLC 2007

Abstract In this paper, we provide a unified approach to solving preemptive schedul-
ing problems with uniform parallel machines and controllable processing times. We
demonstrate that a single criterion problem of minimizing total compression cost sub-
ject to the constraint that all due dates should be met can be formulated in terms of
maximizing a linear function over a generalized polymatroid. This justifies applica-
bility of the greedy approach and allows us to develop fast algorithms for solving the
problem with arbitrary release and due dates as well as its special case with zero re-
lease dates and a common due date. For the bicriteria counterpart of the latter problem
we develop an efficient algorithm that constructs the trade-off curve for minimizing
the compression cost and the makespan.

Keywords Uniform parallel machine scheduling · Controllable processing times ·
Generalized polymatroid · Maximum flow

1 Introduction

We study the scheduling model in which the jobs of set N = {1,2, . . . , n} have to be
processed on uniform parallel machines M1,M2, . . . ,Mm. For each job, its process-
ing time is not given in advance but has to be chosen by the decision-maker from a
given range.

N.V. Shakhlevich (�)
School of Computing, University of Leeds, Leeds LS2 9JT, UK
e-mail: ns@comp.leeds.ac.uk

V.A. Strusevich
Department of Mathematical Sciences, University of Greenwich, Old Royal Naval College, Park
Row, London SE10 9LS, UK
e-mail: V.Strusevich@greenwich.ac.uk

Algorithmica

For each job j ∈ N we are given the interval [p
j
,pj] from which the actual value

pj of the processing time is to be chosen. That selection process can be viewed either
as compressing or crashing pj down to pj , or decompressing p

j
up to pj . In the

former case, the value xj = pj − pj is called the compression amount of job j ,
while in the latter case zj = pj − p

j
is called the decompression amount of job j .

Compression may decrease job completion time(s) but incurs additional cost αjxj ,
where αj is a given unit compression cost. The total cost associated with a choice of
the actual processing times is represented by the linear function

∑
j∈N αjxj .

The processing machines are uniform, i.e., machine Mh has speed sh, 1 ≤ h ≤ m.
Without loss of generality, assume that the machines are numbered in non-increasing
order of their speeds, i.e.,

s1 ≥ s2 ≥ · · · ≥ sm. (1)

A usual scheduling requirement says that a machine cannot process more than
one job at a time, and a job is never processed on more than one machine at a time.
Given a set of actual processing times pj , the jobs can be processed with preemption.
For some schedule, denote the total time during which a job j ∈ N is processed on
machine Mh, 1 ≤ h ≤ m, by q

(h)
j . Taking into account the speed of the machine, we

call the quantity shq
(h)
j the processing amount of job j on machine Mh. It follows

that

pj =
m∑

h=1

shq
(h)
j .

Each job j ∈ N is given a release date rj , before which it is not available, and a
due date dj , by which it is desirable to complete its processing. Given a schedule, let
Cj denote the completion time of job j , i.e., the time at which the last portion of job
j is finished on the corresponding machine. A schedule is called feasible with respect
to the due dates if Cj ≤ dj for all jobs j = 1, . . . , n. The value Cmax = maxj∈N Cj

determines the maximum completion time of all jobs and is called the makespan.
We exclude from further consideration the case that n < m, since to minimize the
makespan we need to process n jobs on n fastest machines.

The problem of our primal concern is to determine the values of actual processing
times and find the corresponding schedule on m uniform machines so that all jobs
meet their due dates and total compression cost is minimized. Extending standard
notation for scheduling problems [11], we denote problems of this type by Q|rj ,pj =
pj − xj ,Cj ≤ dj ,pmtn|∑αjxj . Here, rj in the middle field implies that the jobs
have individual release dates; this parameter is omitted if the release dates are equal.
We write pj = pj −xj to indicate that the processing times are controllable and xj is
the compression amount to be found. The condition Cj ≤ dj reflects the fact that in a
feasible schedule the due dates should be respected; we write Cj ≤ d if the due dates
are equal. The abbreviation pmtn is used to point out that preemption is allowed.
Finally, in the third field we write the objective function to be minimized.

In this paper we also consider a bicriteria problem Q|pj = pj − xj ,

pmtn|(Cmax,K), where K denotes a compression cost function, namely
∑

αjxj .
To describe a solution of a bicriteria problem we find the set of Pareto optimal points

Algorithmica

Table 1 Time complexity of the algorithms with fixed processing times

Release Due Objective Running Reference

times dates time

Arbitrary Arbitrary Cj ≤ dj O(mn3) [7]

Arbitrary dj = d Cj ≤ d (or Cmax) O(n logn + nm) [10, 18]

rj = 0 dj = d Cj ≤ d (or Cmax) O(n + m logm) [8]

defined by the break-points of the so-called efficiency frontier; see [23] for definitions
and a state-of-the-art survey of multicriteria scheduling. Recall that a schedule S′ is
called Pareto optimal if there exists no schedule S′′ such that Cmax(S

′′) ≤ Cmax(S
′)

and K(S′′) ≤ K(S′), where at least one of these relations holds as a strict inequality.
Scheduling problems with controllable processing times have received consider-

able attention, see, e.g., surveys [12, 16]. The study of these problems is motivated
by their numerous applications to various areas. Below we discuss only computing-
related applications and refer to [20] for applications of scheduling with controllable
processing times to manufacturing and operations management.

In real-time systems, a common goal is to schedule processors so that all computa-
tion is completed by specified deadlines because missing a deadline causes a system
failure. However, meeting all timing requirements may not be possible for heavily
loaded systems. In this case, some computations are performed partially, produc-
ing less precise results. For example, in computing systems that support imprecise
computations, an iterative program or an image processing algorithm can often be
logically decomposed. In our notation, a task with processing requirement pj can be
split into a mandatory part which takes p

j
time, and an optional part that may take up

to pj − p
j

time. To produce a result of acceptable quality, the mandatory part must

be completed in full, while an optional part improves the accuracy of the solution. If
instead of an ideal computation time pj a task is executed for pj = pj − xj time,
then computation is imprecise and xj corresponds to the error of computation. In this
application, total compression cost

∑
αjxj is the total weighted error. See [12, 13,

21, 22].
A similar situation occurs in computer systems that collect data from sensing de-

vices where the jobs can be completed partially in order to meet their deadlines, while
incomplete jobs result in information loss (see [4], Sect. 5.4.2). Decision-making in
this setting is based on finding the trade-off curve between the time required to com-
plete all jobs and the value of lost information.

If the processing times are fixed, the known results on finding a due date fea-
sible preemptive schedule and/or minimizing the makespan on m uniform parallel
machines are given in Table 1.

If the processing times are controllable, problem Q|rj ,pj − xj ,Cj ≤ dj ,

pmtn|∑αjxj as a model of imprecise computation is studied by Błažewicz
and Finke [3] and Leung [12] and shown to be solvable in O(m2n4 logmn +
m2n3 log2 mn) and O(m2n4 logmn) time, respectively.

Nowicki and Zdrzalka [17] study problem Q|pj − xj ,Cj ≤ d,pmtn|∑αjxj

with equal release dates and a common due date. They claim that it is solvable in

Algorithmica

O(n logn + nm) time, but it is not clear whether their algorithm can be extended to
solve the bicriteria problem in polynomial time. They also give a pseudopolynomial-
time approximation scheme for finding the efficient frontier for the bicriteria problem
Q|pj − xj ,pmtn|(Cmax,K).

If the machines are identical, i.e., have equal speeds, then the following two single
criterion problems are studied for controllable processing times: P |pj − xj ,Cj ≤
d,pmtn|∑αjxj and P |rj , pj −xj ,pmtn, Cj ≤ rj +d|∑αjxj . The first problem
reduces to the continuous linear knapsack problem [9, 20] and thus can be solved in
O(n) time while the second one reduces to linear programming [15]. The fastest
algorithm for the bicriteria problem P |pj − xj ,pmtn|(Cmax,K) requires O(n logn)

time [20].
This paper is ideologically close to our previous work [20] in which several prob-

lems with controllable processing times have been reduced to optimizing a linear
objective function over a special polyhedron, known as a polymatroid. In this paper,
for more general scheduling problems we use a more general combinatorial struc-
ture of a generalized polymatroid, see Sect. 2 for relevant definitions. Here we only
mention that the main advantage in using polymatroids is that we may simplify jus-
tification of the greedy approach to solving the corresponding scheduling problems,
and eventually design simpler and faster algorithms than those known earlier.

The remainder of the paper is organized as follows. Section 2 reduces problem
Q|rj ,pj − xj ,Cj ≤ dj ,pmtn|∑αjxj to maximizing a linear function over a gen-
eralized polymatroid which allows us to solve the problem in O(mn4) time by net-
work flow techniques, faster than the earlier approaches [3, 12]. Section 3 addresses
problem Q|pj − xj ,Cj ≤ d,pmtn|∑αjxj with equal release dates and a common
due date. Using a polymatroidal representation we arrive at an O(n logn + nm)-time
algorithm. Compared with the algorithm by Nowicki and Zdrzalka, the justification,
description and analysis of our algorithm is much easier and more natural than that
in [17]. The bicriteria problem Q|pj − xj ,pmtn|(Cmax,K) is studied in Sect. 4.
Again, the polymatroidal approach leads to an efficient and natural way of generating
the break-points of the efficient frontier, thereby yielding the first polynomial-time
algorithm for the bicriteria problem.

2 Arbitrary Release Times and Due Dates: Generalized Polymatroid

Consider the single criterion problem Q|rj ,pj − xj ,Cj ≤ dj ,pmtn|∑αjxj in
which the jobs have arbitrary release times and due dates. Suppose that there are
q ≤ 2n distinct values

t1 < t2 < · · · < tq

among rj and dj , j = 1, . . . , n. These values divide the time line into q − 1 intervals
Ii = [ti , ti+1], i = 1, . . . , q − 1. Denote the length of interval Ii by �i := ti+1 − ti .
Job j is available in interval Ii if rj ≤ ti and dj ≥ ti+1. Within each interval Ii the
set of available jobs does not change.

Algorithmica

Define

Sh =
h∑

f =1

sf ,

the sum of the speeds of h fastest machines, 1 ≤ h ≤ m. Taking into consideration
the speed of each machine, notice that in an interval Ii total processing that could be
done on machine M1 is s1�i , on machine M2 is s2�i , and so on.

Given actual values pj of the processing times of the jobs, consider the problem
of finding a feasible schedule in which each job j completes by its due date dj . For
a subset A ⊆ N of jobs and an arbitrary interval Ii , let Ai ⊆ A be the set of all jobs
in A that are available in interval Ii . If |Ai | ≥ m then all m machines can be used for
processing of the jobs of Ai in interval Ii ; otherwise, the maximum total processing
of the jobs of Ai in interval Ii will be achieved if |Ai | fastest machines are used.
Thus, for set A the maximum processing that can be performed in an interval Ii can
be written as

ϕi(A) = �iShi
, (2)

where hi = min{m, |Ai |}.
Let 2N be a set of all subsets of the jobs from N . As proved by Martel (see The-

orem 2.4.2 in [14]), a feasible schedule with job processing times pj , j = 1, . . . , n,
exists if and only if the following conditions hold for each subset A ∈ 2N of jobs:

∑

j∈A

pj ≤ ϕ(A),

where

ϕ(A) =
{

0, if A = ∅,
∑q−1

i=1 ϕi (A) , otherwise.
(3)

If job processing times are controllable, then the values pj are not known
in advance, but are the decision variables. It is clear that the larger actual val-
ues pj are, the smaller the total compression cost

∑
αjxj is. Therefore, problem

Q|rj ,pj − xj ,Cj ≤ dj ,pmtn|∑αjxj reduces to the following linear program:

max
∑

αjpj (4)

subject to the constraints

∑

j∈A

pj ≤ ϕ(A), for all A ∈ 2N,

p
j

≤ pj ≤ pj , 1 ≤ j ≤ n.

(5)

We show that the problem of maximizing the function (4) over the set of con-
straints (5) can be solved by a greedy algorithm by establishing the fact that (5) is a
so-called generalized polymatroid. Recall several relevant definitions.

Algorithmica

Definition 1 A set-function ϕ : 2N → R is called submodular if the inequality

ϕ(A ∪ B) + ϕ(A ∩ B) ≤ ϕ(A) + ϕ(B)

holds for all A,B from 2N.

It is also known (see, e.g., [19], p. 767) that ϕ(A) is submodular if and only if the
condition

ϕ (A ∪ {j, k}) − ϕ (A ∪ {k}) ≤ ϕ (A ∪ {j}) − ϕ (A) (6)

holds for each A ⊆ N and distinct j and k from N\A.

Lemma 1 Set-function ϕi(A) of the form (2) is submodular.

Proof We use the equivalent characterization of a submodular function (6). Recall
that Ai ⊆ A is the subset of jobs from A that are available in interval Ii, so that
ϕi(A) = ϕi(Ai).

If job j is not available in interval Ii , then

ϕi (A ∪ {j, k}) − ϕi (A ∪ {k}) = ϕi (Ai ∪ {j, k}) − ϕi (Ai ∪ {k})
= ϕi (Ai ∪ {k}) − ϕi (Ai ∪ {k}) = 0,

ϕi (A ∪ {j}) − ϕi (A) = ϕi (Ai ∪ {j}) − ϕi(Ai) = ϕi(Ai) − ϕi (Ai) = 0,

so that (6) holds.
Similarly, if job k is not available in interval Ii , then we derive

ϕi (A ∪ {j, k}) − ϕi (A ∪ {k}) = ϕi (Ai ∪ {j}) − ϕi(Ai) = ϕi (A ∪ {j}) − ϕi(A),

as required.
Thus, in the remainder of this proof both jobs j and k are available in Ii . Denote

a = |Ai |.
If a ≤ m − 2, then

ϕi (Ai ∪ {j, k}) − ϕi (Ai ∪ {k}) = �iSa+2 − �iSa+1 = �isa+2 ≤ �isa+1

= �iSa+1 − �iSa = ϕi (Ai ∪ {j}) − ϕi(Ai).

If a = m − 1, then

ϕi (Ai ∪ {j, k}) − ϕi (Ai ∪ {k}) = �iSm − �iSm = 0 ≤ �ism

= �iSm − �iSm−1 = ϕi (Ai ∪ {j}) − ϕi(Ai).

Finally, if a ≥ m then

ϕi (Ai ∪ {j, k}) − ϕi (Ai ∪ {k}) = �iSm − �iSm = 0

= �iSm − �iSm = ϕi (Ai ∪ {j}) − ϕi(Ai).

Thus, (6) always holds. �

Algorithmica

It is easy to check that each set-function ϕi of the form (2) is monotone increasing,
i.e., ϕi(A) ≥ ϕi(B) for all sets A ⊇ B . It follows that function ϕ(A) of the form (3)
is submodular increasing as the sum of submodular increasing functions.

Definition 2 (Frank and Tardos [6], p. 495) A polyhedron

Pϕ =
{

p = (p1,p2, . . . , pn), p ≥ 0,
∑

j∈A

pj ≤ ϕ(A) for each A ∈ 2N

}

is called a polymatroid associated with ϕ if function ϕ(A) is a submodular, non-
negative, monotone increasing and finite.

Thus, since function ϕ of the form (3) only takes non-negative finite values, it
follows that Pϕ is a polymatroid.

Here we refrain from giving the definition of the generalized polymatroid (or g-
polymatroid); the reader is referred to [6], p. 501, or to [19], p. 845. For our purposes
it suffices to mention that:

• a polymatroid is a g-polymatroid, see [19], p. 845;
• an intersection of a g-polymatroid with a box B = {p ∈ R

n,p≤ p ≤p} is a g-
polymatroid, see [6], p. 507, and [19], p. 845;

• maximizing a linear function over a g-polymatroid can be done by a greedy algo-
rithm, see [6], p. 524.

Thus, the constraints (5) define a g-polymatroid, and the problem of maximizing
function (4) over it can be solved by the following algorithm.

Algorithm GrA

Step 1. If necessary, renumber the jobs so that

α1 ≥ α2 ≥ · · · ≥ αn. (7)

Step 2. Define pk := p
k
, k = 1, . . . , n.

Step 3. FOR k = 1 to n do
Step 4. For job k, choose the decompression amount zk

as large as possible so that (p1, . . . , pn) ∈ Pϕ for
pk = p

k
+ zk.

END FOR

For problem Q|rj ,pj − xj ,Cj ≤ dj ,pmtn|∑αjxj Algorithm GrA can be im-
plemented in the following way. Starting with fully compressed processing times
pj = p

j
, j = 1, . . . , n, the first task is to find an amount of processing of each job

j in each interval Ii in a schedule with no late jobs (we assume that such a schedule
exists, otherwise the problem makes no sense). Then for each job we need to find the
largest decompression amount by considering the jobs one by one in accordance with
numbering (7) as described in Step 4.

Algorithmica

Fig. 1 Polymatroidal network by Martel

There are several ways of performing the first task. We can find the maximum
polymatroidal flow of the total value

∑
j∈N p

j
in the corresponding Martel’s network

(see Fig. 1); the running time of Martel’s algorithm is O(m2n4 + n5) [14]. There
is a more computationally efficient way of performing this task which relies on an
O(mn3)-time algorithm by Federgruen and Groenvelt [7] of solving the (ordinary)
maximum flow problem in a special network (see Fig. 2).

Martel’s network contains n job nodes connected with the source by the arcs of
capacities pj , j = 1, . . . , n, and q − 1 interval nodes connected with the sink by the
arcs of infinite capacities. The job nodes are connected directly to the interval nodes:
if job j is available in interval Ii , then the corresponding job node and the interval
node are connected by an arc with capacity S1�i . Unlike the traditional maximum
flow models, in the polymatroidal network additional constraints are introduced to
define upper bounds on the cumulative capacities of the sets of arcs: if Xi is a (sub)set
of arcs entering interval node Ii , then the total flow on the arcs of set Xi cannot be
larger than ϕi (Xi), where ϕi is defined by (2). If fji is a flow on the arc from job
node j to interval node Ii , then the value fji can be viewed as the total amount of
processing of job j in interval Ii in a feasible schedule.

Compared with Martel’s network, in the Federgruen-Groenvelt network additional
intermediate machine-interval nodes are introduced in-between the job nodes and the
interval nodes. If job j can be processed in interval Ii , then job node j is connected
with m machine-interval nodes (Ii,1), (Ii,2) , . . . , (Ii,m) by the arcs with capaci-
ties (s1 − s2)�i , (s2 − s3)�i, . . . , (sm − 0)�i , respectively. These machine-interval
nodes in their turn are connected to the interval node Ii by the arcs with capacities
1 · (s1 − s2)�i , 2 · (s2 − s3)�i , . . . , m · (sm − 0)�i . Similar to Martel’s network, the
total flow fji in the Federgruen-Groenvelt network from a job node j to an interval
Ii defines the amount of processing of job j in interval Ii .

To implement Step 4 of Algorithm GrA any of the two network flow models can
be used, Martel’s or the one by Federgruen and Groenvelt. We describe a generic
approach that does not depend on the model used.

Algorithmica

Fig. 2 Network flow model by Federgruen & Groenvelt

First, update the network by introducing for each arc from the source to each job
node j a lower and upper bounds on the arc capacity, both equal to p

j
, j ∈ N . In

a typical iteration (see Step 4) take the next job k and make an upper bound on the
capacity of the arc entering job node k equal to pk . Find the maximum flow in the
obtained network. Let pk be the flow value on that arc. For further iterations, set both
lower and upper bounds on the arc capacity to pk . Accept pk as the actual processing
time of job k. Take the next unconsidered job with the largest compression cost, and
so on.

In our implementation of Step 4 we select the Federgruen-Groenvelt model since
for the networks we consider here, finding an ordinary maximum flow can be done in
O(mn3) time [2, 7], faster than finding a polymatroidal maximum flow.

Recall that the process of finding the (ordinary) maximum flow with lower bounds
consists of two stages: (i) finding a feasible flow and (ii) optimizing the flow; see
[1]. In our case, the flow found in one iteration is feasible for the problem to be
solved in the next iteration. The optimization stage deals with the so-called residual
arc capacities and in our case still requires O(mn3) time.

Since Step 4 is repeated n times, we deduce that the overall running time of
our implementation of Algorithm GrA applied to problem Q|rj ,pj − xj ,Cj ≤
dj ,pmtn|∑αjxj does not exceed O

(
mn4

)
.

Recall that problem Q|rj ,pj − xj ,Cj ≤ dj ,pmtn|∑αjxj (or rather a relevant
problem of minimizing the total late work) was studied by Błažewicz and Finke
[3] and Leung [12] who suggested a reduction to the problem of finding the mini-
mum cost flow in a modified Federgruen-Groenvelt network. Their approaches lead
to the algorithms with the running times of O(m2n4 logmn + m2n3 log2 mn) and

Algorithmica

O(m2n4 logmn), respectively, and are explicitly presented only for the case that
p

j
= 0, j ∈ N.

3 Equal Release Times and Due Dates: Single Criterion

In this section we address the simplest version of problem Q|rj ,pj − xj ,Cj ≤
dj ,pmtn|∑αjxj in which all jobs are simultaneously available at time zero, i.e.,
rj = 0, and they have to be completed by a common due date d . We give an effi-
cient implementation of Algorithm GrA that solves this single criterion problem in
O (n logn + nm) time.

We adapt conditions (5) from Sect. 2. Comparing problems Q|rj ,pj − xj ,Cj ≤
dj ,pmtn|∑αjxj and Q|pj − xj ,Cj ≤ d,pmtn|∑αjxj , notice that in the latter
problem all scheduling is done in a single interval I1 = [0, d] . Thus, we deduce
that problem Q|pj − xj ,Cj ≤ d,pmtn|∑αjxj reduces to maximizing the linear
function (4) over a g-polymatroid determined by the constraints (5) with set-function
ϕ(A) defined for any A ∈ 2N as

ϕ(A) =
{

0, if A = ∅,

dSh, otherwise,

where

h = min{m, |A|}.
Consider Step 4 of Algorithm GrA that finds the maximum decompression amount

for job k. A straightforward implementation of this step may require checking expo-
nentially many inequalities from (5) that define the polymatroid. For a more efficient
implementation of Step 4, determine a permutation λ = (λ(1), λ(2), . . . , λ(n)) of jobs
such that

pλ(1) ≥ pλ(2) ≥ · · · ≥ pλ(n), (8)

breaking ties so that the jobs with equal current processing times are sequenced in
non-increasing order of their compression costs. Define

Ph(λ) =
h∑

i=1

pλ(i), h = 1, . . . ,m − 1;

Pn =
n∑

j=1

pj .

(9)

It is known (see, e.g., [5]) that a schedule with the makespan d exists if and only
if

(i) for each h,1 ≤ h ≤ m−1, h longest jobs can be processed on h fastest machines,
and

(ii) all jobs can be completed on all machines by time d ,

Algorithmica

so that

Ph(λ) ≤ dSh, h = 1, . . . ,m − 1,

Pn ≤ dSm.
(10)

Clearly, it is sufficient to consider the latter m inequalities together with n box-
inequalities of the form

p
j

≤ pj ≤ pj , j = 1, . . . , n (11)

when finding the maximum decompression of job k. In what follows, we describe
an efficient implementation of Algorithm GrA based on m + n constraints (10–11)
instead of an exponential number of constraints (5).

We start with fully crashed jobs with pj = p
j
, j ∈ N . Let π be the current per-

mutation of jobs, and in the beginning of the algorithm π = λ, where λ is defined
by (8). During the process of decompression, the jobs will change their relative order
with respect to the current processing times. Due to (9) it suffices to keep track of the
first m − 1 positions of the current permutation π of jobs. Throughout the process,
we maintain the following structure of that permutation.

Definition 3 Given the current values pj of the processing times, permutation π of
jobs is called the main permutation if

(i) the first m − 1 positions of π are occupied by the longest jobs sorted in non-
increasing order of pj ; the jobs with equal processing times are additionally
sorted in non-increasing order of their compression costs αj ;

(ii) the remaining jobs are placed starting from position m, the decompressible jobs
(with pj < pj) being positioned in non-increasing order of their compression
costs αj and followed by the fully uncrashed jobs (with pj = pj) taken in any
order.

Determine the slacks of the constraints (10) by

τh =
{

dSh − Ph(π), if 1 ≤ h ≤ m − 1,

dSm − Pn, if h = m.

Consider Step 4 of Algorithm GrA in which job k = π(u) is subject to decompres-
sion. Observe that the position of job k in that permutation cannot be larger than m:

u ≤ m, (12)

since any decompressible job in position m + 1 or larger has a smaller compression
cost than that of job π(m).

The current processing time pk can be enlarged by zk until one of the following
events occurs:

Event A: job k becomes fully uncrashed, i.e., pk + zk = pk;
Event B: for some h, 1 ≤ h ≤ m, slack τh becomes equal to zero;
Event C: the current value pk + zk = pπ(u) + zπ(u) becomes equal to pπ(u−1) for

u ≤ m.

Algorithmica

If Event A takes place and u = m, then in order to maintain the properties of π

as the main permutation job k is moved to the last position; otherwise, if u < m,
job k remains the u-th largest job and retains its position in the main permuta-
tion.

If Event B happens for h = m, then in the corresponding schedule all machines
are permanently busy in the time interval [0, d] , so that no further decompression is
possible without violating the deadline d .

If Event B takes place for h ≤ m − 1, then in the corresponding schedule h

longest jobs and only those are processed by h fastest machines, so that no fur-
ther decompression of jobs π(1), . . . , π(h) is possible without violating the dead-
line d .

Notice that decompression of job k = π(u), u ≤ m, does not affect the values
Ph(π) and the corresponding slacks τh for h ≤ u − 1. Therefore, the largest possible
decompression zk such that either Event A or Event B occurs is given by

zk = min
{
pk − pk, τmin

}
,

where τmin = minu≤h≤m {τh} .

In the case of Event C, the processing time of job k takes the value pπ(u−1) and
that job still requires further decompressing in later iterations. In order to maintain
the main permutation π while job k is being decompressed, this job is swapped with
job π(u − 1). If there are more than one job with the processing time pπ(u−1), job k

is successively swapped with the jobs in earlier positions until it appears in front of
all the jobs of this length.

We now give implementation details of Step 4 of Algorithm GrA for finding the
optimal decompression amount zk of job k in position π(u) in the current main per-
mutation π . It is assumed that we enter this step having found the values Pn, τm, and
Ph(π), τh for h = 1, . . . ,m − 1.

Implementation of Step 4 of Algorithm GrA
(decompression of job k = π(u), u ≤ m)

Find τmin = minu≤h≤m{τh}.
WHILE pk < pk and τmin > 0 DO

Compute zk = min
{
pk − pk, τmin, pπ(u−1) − pk

}
.

Increase pk by zk .
Case A: pk = pk. If u = m, move job k to position π(n);

otherwise no further actions
required.

Case B: zk = τmin. Set τmin := 0; no further actions
required.

Algorithmica

Case C: pk = pπ(u−1). j = 1, τmin := τmin − zk

WHILE pk = pπ(u−j) DO
swap job k = π(u) with
job π(u − j)

τmin := min
{
τu−j , τmin

}

j := j + 1
END WHILE
u := u − j + 1

END WHILE
Update the values Pn, τm,Ph(π) and τh for h = 1, . . . ,m − 1
taking into account total decompression of job k.

Initial sorting of the machines in accordance with (1) and the jobs in accordance
with (7) and (8) requires O(n logn) time. For the sorted jobs and machines, all sums
Pn, τm,Ph(π) and τh, 1 ≤ h ≤ m − 1, can be calculated in O(n) time.

In Step 4, for each job each of Events A or B may happen at most once. Due to
(12), Event C occurs no more than m times. Thus, the total running time of Algo-
rithm GrA is O(n logn + nm). Finding the corresponding optimal schedule requires
O(n + m logm) time, see [8].

Example Consider the following instance of problem Q|pj − xj ,Cj ≤ d,

pmtn|∑αjxj . There are m = 3 machines with the speeds s1 = 5, s2 = 3, s3 = 1.
The due date is d = 10. The processing times of n = 4 jobs and their compression
costs are given in the table:

j p
j

pj αj

1 2 30 8
2 10 10 1
3 50 50 1
4 1 1 1

Observe that the jobs are numbered so that (7) holds.
In accordance with Algorithm GrA, we start with fully compressed jobs with

pj = p
j
, 1 ≤ j ≤ 4, and the main permutation π = (3,2,1,4). We enter Step 4

of Algorithm GrA having found

P1(π) = 50; P2(π) = 50 + 10 = 60; P4 = 50 + 10 + 2 + 1 = 63;
τ1 = 5 × 10 − 50 = 0;
τ2 = (5 + 3) × 10 − (50 + 10) = 20;
τ3 = (5 + 3 + 1) × 10 − (50 + 10 + 2 + 1) = 27.

The first job that is subject to decompression is job k = 1 = π(3) and τmin =
min3≤h≤3 {τh} = τ3. It follows that this job can be decompressed by z1 =
min{30 − 2, 27, 10 − 2} = 8, i.e., Event C occurs. After that decompression p1

Algorithmica

becomes equal to 10 and we swap jobs 2 and 1 in permutation π so that π becomes
(3,1,2,4) and τmin becomes min {20, 19} = 19.

Job 1 is further decompressed by z1 = min {30 − 10, 19, 50 − 10} = 19, i.e.,
Event B occurs. As a result p1 becomes equal 29 and τmin = 0. No further decom-
pression of any job is possible.

To finish Step 4, we update the values of Ph(π) and τh:

P1(π) = 50; P2(π) = 50 + 29 = 79; P4 = 50 + 29 + 10 + 1 = 90;
τ1 = 0;
τ2 = 1;
τ3 = 0.

4 Equal Release Times and Due Dates: Two Criteria

In this section, we develop a polynomial-time algorithm for the bicriteria prob-
lem Q|pj − xj ,pmtn|(Cmax,

∑
αjxj). As a solution of problem Q|pj − xj ,

pmtn|(Cmax,
∑

αjxj), we find a sequence of all break-points of the efficient frontier
(C0,K0), (C1,K1), . . . , (Cγ ,Kγ), . . . , (C	,K), where Cγ is the makespan of the
corresponding schedule and Kγ is the total compression cost, 0 ≤ γ ≤ 	. For each
break-point (Cγ ,Kγ) an actual schedule σγ can be found in O(n + m logm) time,
see [8].

In order to construct the first break-point (C0,K0) we crash all jobs to their min-
imum processing times, i.e., set pj = p

j
for all j, 1 ≤ j ≤ n. Determine the main

permutation π . Recall that in π the first m − 1 positions are occupied by the longest
jobs taken in non-increasing order of their processing times. It is known (see, e.g., [5])
that for the fixed processing times pj , j ∈ N , the optimum value of the makespan C

is given by

C = max

{

Pn/Sm, max
1≤h<m

{Ph(π)/Sh}
}

,

where Ph(π) and Pn are defined by (9). Define C0 = C. In general, in the correspond-
ing schedule some jobs can be uncrashed without increasing C0. The optimal process-
ing times pj ,pj

≤ pj ≤ pj , that minimize the total compression cost
∑n

j=1 αjxj ,

can be found in O(n logn + nm) time by solving problem Q|pj − xj ,pmtn,Cj ≤
C0|∑αjxj with a common due date d = C0 by Algorithm GrA. Denote the found
schedule by σ 0. The corresponding value of K0 is given by

∑n
j=1 αj (pj −pj), where

pj , 1 ≤ j ≤ n, are actual processing times of the jobs found by Algorithm GrA.
Notice that a possible structure of schedule σ associated with a break-point (C,K)

is such that

(I) either all machines are busy in the time interval [0,C]

or

Algorithmica

(II) h fastest machines, where h < m, process h longest jobs in the time interval
[0,C], while the remaining slower machines process only fully uncrashed jobs;
otherwise, the total cost can be decreased by increasing the processing time of a
certain decompressible job without exceeding C.

Consider an arbitrary Pareto optimal schedule σ with the makespan C, cost K and
the main permutation π . For this schedule the inequalities

Ph(π) ≤ CSh, h = 1, . . . ,m − 1,

Pn ≤ CSm,
(13)

hold, at least one of them being the equality.
In schedule σ , take a decompressible job k located in the u-th position of π and

define a block B(u;1, g) as a partial schedule for fully occupied machines M1, . . . ,

Mg , where g ≥ u, such that in (13) the inequality for h = g holds as equality and
all inequalities for h ∈ {u, . . . , g − 1} , if any, are strict. In other words, the g-th in-
equality of (13) is the first inequality no higher than the u-th inequality that holds as
equality.

Let B(u;1, g) be a block in schedule σ . If g < m, then in block B(u;1, g) the
jobs of the set N(u;1, g) = {π(1), . . . , π(u), . . . , π(g)} are processed on the ma-
chines M1, . . . ,Mg and all these machines complete simultaneously at time C. On
the other hand, if g = m then in block B(u;1, g) the jobs of set N(u;1, g) =
{π(1), . . . , π(u), . . . , π(n)} = N are processed on M1, . . . ,Mm.

In line with the greedy argument, a transition from one Pareto optimal schedule to
another is done by decompressing a (partially) crashed job k = π(u) with the largest
compression cost. Suppose that k belongs to some block B(u;1, g). As the processing
time of job k ∈ N(u;1, g) grows, the structure of the corresponding schedule may
change, and the situation that such a change takes place determines the next break-
point of the efficient frontier. A possible structural change is associated with one of
the following three events:

Event U: job k becomes fully uncrashed;
Event V: the processing time of job k = π(u) becomes equal to that of the nearest

longest job π(u − 1), so that the main permutation needs to be updated;
Event W: for block B(u;1, g) a new block B(u;1, g′) emerges, where u ≤ g′ < g.

For block B(u;1, g) denote

P =
{

Pn, if g = m,

Pg(π), if g < m.

Let z be a decompression amount of job k that is being decompressed. As the
processing time pk grows by z, the makespan of the resulting schedule increases
by some value δ(z). The purpose of the next lemma is to establish the relationship
between these two values.

Lemma 2 Suppose that for schedule σ job k = π(u) is subject to decompression and
k belongs to block B(u;1, g). If job k is decompressed by amount zk > 0 so that the
earliest of three events U, V or W occurs, then in the resulting schedule machines

Algorithmica

M1, . . . ,Mg are permanently busy processing the jobs of set N(u;1, g) in the time
interval [0,C + δ(zk)] , where

δ(zk) = zk

Sg

. (14)

Proof Since B(u;1, g) is a block, then in the original schedule only the jobs of set
N(u;1, g) are processed on machines M1, . . . ,Mg so that

P = CSg.

As the processing time of job k grows by z = zk until the earliest of three events
U, V or W occurs, still in the resulting schedule only the jobs of set N(u;1, g) are
processed on machines M1, . . . ,Mg :

P + zk = (C + δ(zk)) Sg,

i.e., the extra processing time zk should be redistributed over the same set of ma-
chines. It follows from the above two equalities, that the makespan increases by
δ(zk) = zk/Sg . �

It is straightforward to verify that the decompression amount

zU
k = pk − pk

leads to Event U, while the decompression amount

zV
k = pπ(u−1) − pk

leads to Event V. Below we present the lemma that gives a formula for zW
k leading to

Event W as the earliest event.

Lemma 3 Suppose that for schedule σ job k = π(u) is subject to decompression and
k belongs to block B(u;1, g). If Event W is the earliest event that occurs as a result
of decompressing k by zW

k , then

zW
k = min

u≤h≤g−1

{
PSh − Ph(π)Sg

Sg − Sh

}

. (15)

Proof Consider decompression of job k by an amount z. In accordance with (13) we
have that

Ph(π) ≤ (C + δ(z))Sh, h = 1, . . . , u − 1,

Ph(π) + z ≤ (C + δ(z)) Sh, h = u, . . . , g − 1,
(16)

and additionally,

P + z = (C + δ(z)) Sg.

Comparing these relations with (13), notice that for each of the first u− 1 inequal-
ities only the right-hand side grows, so that all of them are strict inequalities. In order

Algorithmica

to find out when the earliest Event W occurs we need to find the smallest increment
z = zW

k such that one of the inequalities with h = g′, u ≤ g′ ≤ g − 1 in (16) becomes
equality, i.e., block B(u;1, g′) emerges.

For this value of z we have that

Pg′(π) + zW
k = (

C + δ(zW
k)

)
Sg′ .

Since δ(zW
k) = zW

k /Sg due to Lemma 2, it follows that

zW
k = Sg(CSg′ − Pg′(π))

Sg − Sg′
= PSg′ − Pg′(π)Sg

Sg − Sg′
> 0.

Thus, the value of zW
k can be found by taking the minimum of the values

PSh−Ph(π)Sg

Sg−Sh
over all h, u ≤ h ≤ g − 1, which corresponds to formula (15). �

Suppose that for the original problem Q|pj − xj ,pmtn|(Cmax,
∑

αjxj) we
have found a sequence of break-points (C0,K0), . . . , (Cγ−1,Kγ−1). At point
(Cγ−1,Kγ−1) we know the actual processing times equal to pj = p

j
+ zj , the

main permutation π and the corresponding schedule σγ−1 that satisfies the condi-
tions where at least one inequality (13) with C = Cγ−1 holds as the equality. We
describe a transition to the next break-point (Cγ ,Kγ).

For schedule σγ−1 determine a decompressible job k with the largest cost αk .
Assume that job k is located in the u-th position of π . We start with considering
the case that schedule σγ−1 consists of a single block B(u;1,m) that includes all
machines.

The decompression amount for job k = π(u) that leads to the earliest of the
Events U, V or W is equal to

zk = min
{
zU
k , zV

k , zW
k

}

= min

{

pk − pk, pπ(u−1) − pk, min
u≤h≤m−1

{
PnSh − Ph(π)Sm

Sm − Sh

}}

,

where the last right-hand side term follows from (15).
If job k is decompressed by zk , we obtain the next schedule σγ that corresponds

to the break-point (Cγ ,Kγ) of the efficient frontier, where

Cγ = Cγ−1 + zk

Sm

;

Kγ = Kγ−1 − αkzk.

Consider now the situation that in schedule σγ−1 job k1 = π(u1) to be decom-
pressed belongs to block B(u1;1, g1), g1 < m. For further purposes we refer to this
block as B(u1;g0 + 1, g1), where for completeness g0 is set equal to 0. Similar to
the previous case we can find the decompression amount zk1 = min{zU

k1
, zV

k1
, zW

k1
} of

job k1 that leads to the earliest of Events U, V or W, and determine the corresponding

Algorithmica

increase δ1 = zk1/(Sg1 − Sg0) in the makespan for the jobs of set N(u1;g0 + 1, g1)

processed in block B(u1;g0 + 1, g1); here for completeness Sg0 = 0.
If this decompression were performed as described, we would not obtain a Pareto

optimal schedule, since further decompression is possible for one or several jobs of
the set {π(g1 + 1), . . . , π(n)}. Thus, we look for a decompressible job k2 = π(u2)

such that u2 > g1 and the compression cost αk2 is the largest among all decom-
pressible jobs of set N\N(u1;g0 + 1, g1). Temporarily disregard block N(u1;g0 +
1, g1), and consider the subproblem of a smaller size for processing the jobs of set
N\N(u1;g0 + 1, g1) on machines Mg1+1, . . . ,Mm. Similar to the above, for job u2

find block B(u2;g1 +1, g2), where g2 is the smallest index, g2 ≥ u2, for which in (13)
with C = Cγ−1 the corresponding inequality holds as equality. If g2 < m, then in this
block the jobs of the set N(u2;g1 + 1, g2) = {π(g1 + 1), . . . , π(u2), . . . , π(g2)} are
processed on the machines Mg1+1, . . . ,Mg2 and all these machines complete simul-
taneously at time Cγ−1. On the other hand, if g2 = m then in block B(u2;g1 + 1, g2)

the jobs of set N(u2;g1 + 1, g2) = {π(g1 + 1), . . . , π(u2), . . . , π(n)} are processed
on Mg1+1, . . . ,Mm. Considering block B(u2;g1 + 1, g2) in a similar way as block
B(u1;g0 + 1, g1) we can derive the formulas for the largest possible decompres-
sion amount zk2 of job k2 = π(u2) that leads to the earliest Event U, V or W in
block B(u2;g1 + 1, g2), and the corresponding increment δ2 = zk2/(Sg2 − Sg1) of
the makespan of the jobs of set N(u2;g1 + 1, g2). Again, if g2 = m, there are no
further actions to be taken; otherwise, we search for the next decompressible job, the
corresponding block, etc.

This process of identifying the decompressible jobs continues until we find a job
ky = π(uy) to be decompressed simultaneously with all previously found jobs k� =
π(u�), � = 1, . . . , y − 1. The corresponding value gy for block B(uy;gy−1 + 1, gy)

is either equal to m or less than m. In the former case, the structure of schedule σγ−1

is described by property (I) so that all jobs of set N(uy;gy−1 + 1, gy) = {π(gy−1 +
1), . . . , π(uy), . . . , π(n)} are processed on machines Mgy−1+1, . . . ,Mm, while in the
latter case, the structure of schedule σγ−1 is described by property (II) so that the jobs
of set N(uy;gy−1 +1, gy) = {π(gy−1 +1), . . . , π(uy), . . . , π(gy)} and only those are
processed on machines Mgy−1+1, . . . ,Mgy , and all jobs that follow job π(gy) in the
main permutation π are fully uncrashed.

Thus, we have decomposed the problem of finding the next breakpoint into y

subproblems Q�, � = 1, . . . , y. In each subproblem Q� we consider jobs of set
N(u�;g�−1 + 1, g�) on machines Mg�−1+1, . . . ,Mg�

. For each block B(u�;g�−1 +
1, g�), 1 ≤ � ≤ y, the largest decompression amount zk�

of job k� = π(u�) that leads
to the earliest Event U, V or W in block Bg�

is equal to

zk�
= min

{
zU
k�

, zV
k�

, zW
k�

}
(17)

= min

{

pk�
− pk�

, pπ(u�−1) − pk�
, min
u�≤h≤g�−1

{
PSh − Ph(π)Sg�

Sg�
− Sh

}}

,

where

P =
{

Pn for g� = m,

Pg�
(π) for g� ≤ m − 1.

Algorithmica

Fig. 3 Decompressing jobs Ng1 ,Ng2 , . . . ,Ngy

Additionally, define

δ
�
= zk�

Sg�
− Sg�−1

, (18)

see Fig. 3.
To guarantee that the structure of schedule σγ that defines the next break-point

(Cγ ,Kγ) satisfies one of the properties (I) or (II), we need to find the largest possible
value of δ, so that Cγ = Cγ−1 + δ and the earliest event U, V or W occurs in one of
the blocks:

δ = min {δ�|1 ≤ � ≤ y} . (19)

Algorithmica

Having found increment δ in the makespan value, the processing time of each job
k� = π(u�) increases by z

γ−1
k�

(see Lemma 2):

z
γ−1
k�

= δ
(
Sg�

− Sg�−1

)
, 1 ≤ � ≤ y. (20)

Observe that the values z
γ−1
k�

are defined in such a way that no Event U, V or

W occurs if the processing times of jobs k� are decompressed by less than z
γ−1
k�

,
� = 1, . . . , y.

Summarizing, we can formalize the transition from break-point (Cγ−1,Kγ−1) to
(Cγ ,Kγ) as follows.

Algorithm T ransition (Cγ−1,Kγ−1) → (Cγ ,Kγ)

Given: schedule σγ−1 with makespan Cγ−1 and compression
cost Kγ−1, actual job processing times pj, j ∈ N,
and the main permutation π.

Initialization: set δ := ∞, g0 := 0, � := 0, N ′ := N.

1. WHILE g� < m and set N ′ contains jobs that are not
fully uncrashed

1.1 � := � + 1;
1.2 Find a decompressible job k� such that

αk�
= maxj∈N ′

{
αj |pj < pj

}
.

Let k� = π(u�). Find block B(u�;g�−1 + 1, g�).
1.3 Compute zk�

and δ� by formulas (17) and (18),
respectively.

1.4 Update N ′ := N ′\ {π (g�−1 + 1) , . . . , π (g�)} and set y := �.
END WHILE

2. Compute δ by formula (19) and determine the

decompression amounts z
γ−1
k�

in accordance with (20).
Decompress jobs k1, k2, . . . , ky by the amounts

z
γ−1
k1

, z
γ−1
k2

, . . . , z
γ−1
ky

, respectively.

3. Set Cγ := Cγ−1 + δ, Kγ := Kγ−1 − ∑y

�=1 αk�
z
γ−1
k�

and update
the main permutation π.

Let us estimate the running time of a single transition (Cγ−1,Kγ−1) → (Cγ ,Kγ).
Since each job k� is sought for among the first m elements of the main permutation
π and their total number y does not exceed m, all these jobs together with the jobs
g� will be found in O(m2) time. Computing zk�

requires at most O(g� − g�−1) time
due to (17). Since

∑y

�=1(g� − g�−1) ≤ m, it follows that Steps 1 and 2 together can
be implemented in O(m2) time.

In Step 3, permutation π should be updated if either Event U or Event V occurs for
job k�. In case of Event U, the job either remains in its current position or is moved to
the last position, which can be implemented in constant time. In case of Event V, job

Algorithmica

Table 2 Time complexity of the algorithms

Release Due Objective Earlier known This paper

times dates results

Arbitrary Arbitrary Cj ≤ dj O(m2n4 logmn [3] O(mn4)

+m2n3 log2 mn)

O(m2n4 logmn) [12]

(min-cost-max-flow)

rj = 0 dj = d Cj ≤ d; Cmax O(n logn + mn) [17] O(n logn + mn)

k� is swapped with all the preceding jobs that have the same processing time. Even
if each job k� is moved to the first position of its block, this can be achieved for job
k� in no more than m swaps. Thus, the overall time complexity of a single transition
(Cγ−1,Kγ−1) → (Cγ ,Kγ) is O(m2), provided that the starting permutation π and
the partial sums Pg and Sg are known.

It follows that the running time needed for solving the original bicriteria problem
Q|pj −xj ,pmtn|(Cmax,

∑
αjxj) is at most O(n logn+	m2), where 	 is the num-

ber of break-points. To determine 	 we count the overall number of times that each
Event U, V and W may take place.

Event U occurs no more than n times. Event V occurs no more than nm times,
since each time a job to be swapped is located no further than in position m of the
current permutation π . Finally, Event W may occur no more than m times in-between
two consecutive Events U or V since each block B(u�;g�−1 + 1, g�) can be split in
at most g� − g�−1 ≤ m sub-blocks. Therefore, the number of break-points 	 does not
exceed O(nm2).

This makes the overall time complexity of finding the efficient frontier equal to
O(n logn+nm4). Recall that for each Pareto-optimal point finding the corresponding
optimal schedule requires O(n + m logm) time, see [8].

Observe that the approach developed by Nowicki and Zdrzalka in [17] allows
finding an ε-approximation of the efficient frontier in pseudopolynomial O(nm(C −
C0)/ε) time, where C and C0 are the optimal makespan values if all jobs are fully
uncrashed and fully crashed, respectively.

5 Conclusions

In this paper, we have extended the polymatroidal approach suggested in [20] for pre-
emptive single and identical parallel machine problems with controllable parameters
to a more general scheduling model with uniform parallel machines. The main out-
come is establishing the link between the most general type of preemptive scheduling
problems with polymatroids. This allows us to provide a unified framework for solv-
ing the corresponding problems with controllable processing times.

The paper affirms that the polymatroidal approach simplifies justification of the
greedy approach to solving the corresponding scheduling problems and eventually

Algorithmica

leads to the design of simpler and faster algorithms than those known earlier. The
results for single criterion problems are summarized in Table 2.

For the bicriteria problem Q|pj − xj ,pmtn|(Cmax,
∑

αjxj) of minimizing
makespan and compression cost we have developed an algorithm that required
O(n logn + nm4) time and constructs the breakpoints of the efficient frontier. It
is the first algorithm that solves this bicriteria problem with uniform machines in
polynomial time.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications.
Prentice-Hall, New Jersey (1993)

2. Ahuja, R.K., Orlin, J.B., Stein, C., Tarjan, R.E.: Improved algorithms for bipartite network flow. SIAM
J. Comput. 23, 906–933 (1994)

3. Błažewicz, J., Finke, G.: Minimizing mean weighted execution time loss on identical and uniform
processors. Inf. Process. Lett. 24, 259–263 (1987)

4. Błažewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Weglarz, J.: Scheduling Computer and Manufac-
turing Processes. Springer, Berlin (2001)

5. Brucker, P.: Scheduling Algorithms, 4th edn. Springer, Berlin (2004)
6. Frank, A., Tardos, E.: Generalized polymatroids and submodular flows. Math. Program. 42, 489–563

(1988)
7. Federgruen, A., Groenvelt, H.: Preemptive scheduling of uniform machines by ordinary network flow

techniques. Manag. Sci. 32, 341–349 (1986)
8. Gonzalez, T.F., Sahni, S.: Preemptive scheduling of uniform processor systems. J. ACM 25, 92–101

(1978)
9. Jansen, K., Mastrolilli, M.: Approximation schemes for parallel machine scheduling problems with

controllable processing times. Comput. Oper. Res. 31, 1565–1581 (2004)
10. Labetoulle, J., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Preemptive scheduling of uniform

machines subject to release dates. In: Pulleyblank, H.R. (ed.) Progress in Combinatorial Optimization,
pp. 245–261. Academic, New York

11. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: Sequencing and scheduling: algo-
rithms and complexity. In: Graves, S.C., Rinnooy Kan, A.H.G., Zipkin, P.H. (eds.) Handbooks in Op-
erations Research and Management Science, vol. 4, Logistics of Production and Inventory, pp. 445–
522. North-Holland, Amsterdam (1993)

12. Leung, J.Y.-T.: Minimizing total weighted error for imprecise computation tasks. In: Leung, J.Y.-
T. (ed.) Handbook of Scheduling: Algorithms, Models and Performance Analysis. Computer and
Information Science Series, pp. 34-1–34-16. Chapman & Hall/CRC, London (2004)

13. Leung, J.Y.-T., Yu, V.K.M., Wei, W.-D.: Minimizing the weighted number of tardy task units. Discrete
Appl. Math. 51, 307–316 (1994)

14. Martel, C.: Preemptive scheduling with release times, deadlines, and due dates. J. ACM 29, 812–829
(1982)

15. Mastrolilli, M.: Notes on max flow time minimization with controllable processing times. Computing
71, 375–386 (2003)

16. Nowicki, E., Zdrzalka, S.: A survey of results for sequencing problems with controllable processing
times. Discrete Appl. Math. 26, 271–287 (1990)

17. Nowicki, E., Zdrzalka, S.: A bicriterion approach to preemptive scheduling of parallel machines with
controllable job processing times. Discrete Appl. Math. 63, 271–287 (1995)

18. Sahni, S., Cho, Y.: Scheduling independent tasks with due times on a uniform processor system. J.
ACM 27, 550–563 (1980)

19. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, New York (2003)
20. Shakhlevich, N.V., Strusevich, V.A.: Preemptive scheduling problems with controllable processing

times. J. Sched. 8, 233–253 (2005)

Algorithmica

21. Shih, W.-K., Liu, J.W.S., Chung, J.-Y.: Fast algorithms for scheduling imprecise computations. In:
Proceedings of the 10th Real-time Systems Symposium, Santa-Monica, pp. 12–19 (1989)

22. Shih, W.-K., Liu, J.W.S., Chung, J.-Y.: Algorithms for scheduling imprecise computations with timing
constraints. SIAM J. Comput. 20, 537–552 (1991)

23. T’kindt, V., Billaut, J.-C.: Multicriteria Scheduling: Theory, Models and Algorithms. Springer, Berlin
(2002)

	Preemptive Scheduling on Uniform Parallel Machines with Controllable Job Processing Times
	Abstract
	Introduction
	Arbitrary Release Times and Due Dates: Generalized Polymatroid
	Equal Release Times and Due Dates: Single Criterion
	Equal Release Times and Due Dates: Two Criteria
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

