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Abstract
As stated by Johnson [Joh04], the visualization of uncertainty remains one of the major challenges for the vi-
sualization community. To achieve this, we need to understand and develop methods that allow us not only to
consider uncertainty as an extra variable within the visualization process, but to treat it as an integral part. In
this paper, we take contouring, one of the most widely used visualization techniques for two dimensional data, and
focus on extending the concept of contouring to uncertainty. We develop special techniques for the visualization
of uncertain contours. We illustrate the work through application to a case study in oceanography.

1. Introduction

One of the outstanding challenges in data visualization is the
representation of uncertainty. All data is to an extent uncer-
tain, whether it be due to simulation error or measurement
error, but visualization techniques traditionally assume the
data is exact and generate a picture accordingly. However
there are an increasing number of application areas where
uncertainty is a fundamental property of the data, and the in-
tegrity of the visualization is compromised unless the degree
of uncertainty is made absolutely clear. This is true for ex-
ample in ensemble computing where the underlying physi-
cal model is uncertain, and a range of simulations are carried
out in order to get a broad view of the phenomenon. There
is then no single ‘result’ but a set of possible results, each
having its own probability of being ‘correct’. We need vi-
sualization techniques that can incorporate such uncertainty
information. The issue is particularly pressing in view of the
importance of some of the applications concerned. These in-
clude climate prediction studies where the correct handling
of uncertainty information is vital in making decisions af-
fecting the future of the planet.

In this paper we revisit one of the traditional visualization
techniques, contouring, from the viewpoint of uncertainty.
Normally we think of contouring as an operation on a grid
of ‘exact’ data values, extracting lines along which the value
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is estimated to be constant. But in uncertainty visualization
we do not have scalar values at each grid point, but rather
a Probability Density Function (PDF) of a random variable.
For a random variable, Z, the PDF, fZ , tells us that the prob-
ability that Z lies in the interval [a,b] is given by:

Z b

a
fZ(z)dz (1)

Thus we suppose, at a given set of datapoints (xi,y j), i =
1,2 . . . l, j = 1,2, . . .m, we are given not scalar values zi j , but
random variables Zi j defined by a PDF FZi j (z). Common
PDFs would include Gaussian distributions where the er-
rors are assumed to be normally distributed about the mean,
and uniform or rectangular, where the probability of Z is as-
sumed to be evenly spread within an interval.

How do we extend the concept of contour drawing to
such data? The conventional approach, with exact data, is
based on a vector approach (to an extent inherited from early
graphics technology which itself was line-based). Intersec-
tions of contours with the grid lines are computed, and the
intersection points joined up to provide an estimate of the
contours themselves. This joining up of intersections can be
seen as an approximation to the contour line of the bilinear
interpolant within each grid cell, but for widely spaced grids
this approximation can be poor, and care is needed to handle
ambiguities when each pair of opposite vertices of the cell
are both above, and both below, the contour value [LB98].
As well as contour line drawing, contour area drawing is
also a common visualization technique, where the area in
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2 R. Allendes & K. Brodlie / Contouring with Uncertainty

which the data is estimated to lie between two given val-
ues is drawn. Again this is typically drawn as a vector-based
approach, with the polygonal areas between successive con-
tour lines being shaded in a particular colour representing
the range of values covered.

To handle uncertainty, we take a raster-based approach.
For any pixel, we shall compare its value with the value of
the contour - remembering that the value at a pixel is not a
single scalar, but rather a random variable with associated
PDF. We derive analogues to both contour line drawing, and
contour area drawing.

Our driving application comes from oceanography. The
ocean dynamic topography, defined as the height of the sea
surface above its rest state (the geoid), allows scientists to
study the absolute circulation of the ocean and associated
currents that help regulate the earth’s climate. But deter-
mining this topography is a particular challenge, and dif-
ferent models predict different topographies. Bingham and
Haines [BH06] use an ensemble of eight models to deter-
mine a composite ‘Mean Dynamic Topography’, and we use
their results as our case study. Note that for the North At-
lantic the composite MDT has values ranging between -50
and +50cm, but the RMS error is significant - of the order
of 3.2cm. This large uncertainty needs to be incorporated
within the visualization, otherwise false conclusions might
be drawn.

Section 2 reviews a range of previous work on uncertainty
visualization. Section 3 explores how the notion of interpo-
lation, fundamental in allowing us to create an overall model
from the data, carries over to the uncertainty situation, and
goes on to consider the meaning of a contour in this con-
text. This work underpins section 4 where we look at dif-
ferent ways of representing contours with uncertainty, using
the oceanography case study to illustrate the different tech-
niques. Finally section 5 presents conclusions and discusses
how the work can be extended to isosurfacing of 3D data.

2. Background and Related Work
There is a growing awareness of the importance of uncer-
tainty in scientific visualization. Johnson [Joh04] selects the
representation of error and uncertainty as one of his top sci-
entific research problems. He makes the point: ‘when was
the last time you saw an isosurface with error bars?’, con-
trasting this with the presentation of 1D graphs in science
and engineering journals where error bars are common.

A good description on uncertainty visualization specifi-
cally applied to geographical data, including the challenges
that need to be addressed to achieve appropriate represen-
tations, is presented by MacEachren et al. [MRH∗05]. Un-
certainty visualization has also been studied in a series of
papers by Pang, Kao and their colleagues. A good review
of the present state of the art can be found in the paper by
Love, Pang and Kao [LPK05]. We focus in this section on

papers which relate to contouring and the related problem of
isosurfacing.

Rhodes et al [RLBS03] address uncertainty in isosurface
rendering, from a viewpoint of multiresolution modelling.
At coarse resolution, errors are defined at each datapoint.
These are interpolated to give error values at the vertices
of the isosurface triangular mesh, and the error values are
mapped to visual cues such as colour. Thus the isosurface of
the ‘mean’ values is drawn, but coloured with an indication
of the error values at nearby datapoints. This could translate
easily to contour drawing, by drawing the contour line of the
‘mean’ data values, colouring the line with an indication of
the error. The disadvantage of this approach is that it does
not give any clear indication of the range of possible loca-
tions of the contour line (or isosurface).

Bingham and Haines [BH06] in their ocean dynamic to-
pography paper include an indication of uncertainty. Con-
tour lines are used to visualize the height of the composite
MDT, and this is overlaid on top of an ‘error image’: this im-
age shows the error field for the composite MDT. However
this has precisely the same disadvantage as that of Rhodes et
al: the errors relate to the uncertainty of the data values, not
the visualization (i.e. location of contour line).

Love et al [LPK05] consider the visualization of multi-
value data, as is the case with our ocean dynamic topography
data and indeed many other climate simulation studies. They
infer a PDF at each grid point from the multivalue data, as we
shall do. They define an interpolation operator which con-
structs a PDF along the grid line between datapoints. This
allows them to search for the best match against a target PDF
which describes the expected behaviour of the contour value.
This gives intersection points along grid lines, which can be
connected as in conventional contouring. They suggest ex-
actly the same approach for isosurfacing: they match the in-
terpolated PDF along each grid line against a target PDF in
order to get the intersection points, and then pass these to a
standard marching cubes algorithm. Once again the uncer-
tainty in the location of the contour line or isosurface is not
visible in the visualization that is produced.

3. Modelling Uncertain Data

3.1. Interpolation

In visualization we typically begin by creating, from the
given data, an empirical model of the underlying phe-
nomenon from which our data has been sampled. This is
very often achieved by interpolation. This is exactly the ap-
proach we follow here.

We begin by considering interpolation in one dimension,
in the unit interval [0,1]. Suppose we have a random variable
Y1, with PDF fY1(y), at x = 0, and another random variable
Y2, with PDF fY2(y), at x = 1. We are interested in the PDF
of a random variable, W , which is a linear combination of Y1
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and Y2, say:

W = c1Y1 + c2Y2 (2)

Fortunately the derivation of the resulting PDF for the two
types of distribution we are interested in for uncertainty vi-
sualization, Gaussian and uniform, is well known (see, for
example, [CH04]). For our case study, we need the result for
the Gaussian case, and the details are as follows.

Suppose Y1 and Y2 are Gaussian distributions with means
µ1 and µ2, and standard deviations σ1 and σ2. Then the ran-
dom variable W has a Gaussian distribution with mean µW
given by:

µW = c1µ1 + c2µ2, (3)

and standard deviation σW given by:

σW = (c2
1σ2

1 + c2
2σ2

2)
1
2 . (4)

For interpolation at point α in the unit interval, we take
c1 = (1−α) and c2 = α. Note that whereas the mean is a
linear combination of the individual means, the variance is a
nonlinear combination of the individual variances. Thus we
are able to estimate the PDF at any point along the grid line
between two datapoints.

For contouring, we need 2D interpolation and this pro-
ceeds in a similar way. Consider now a unit square, with
Gaussian random variables defined at each vertex, say
Z00,Z10,Z11,Z01, in an obvious notation. At the interior
point (α,β), the random variable Zαβ defined as:

Zαβ = (1−α)(1−β)Z00 +α(1−β)Z01 +

(1−α)βZ10 +αβZ11 (5)

has a Gaussian distribution with mean µαβ given by:

µαβ = (1−α)(1−β)µ00 +α(1−β)µ01 +

(1−α)βµ10 +αβµ11 (6)

and standard deviation σαβ given by:

σαβ = ((1−α)2(1−β)2σ2
00 +α2(1−β)2σ2

01 +

(1−α)2β2σ2
10 +α2β2σ2

11)
1
2 . (7)

This result follows by repeated application of the result
for the 1D case in the paragraph above.

Finally we can apply the above result in each grid square
of our 2D mesh, giving us a piecewise bilinear interpolation
of the PDFs.

3.2. Defining a Contour
From data expressed as PDFs at the points on our grid, we
are now able to calculate the PDF of the random variable
at any interior point. How do we define a ‘contour’ in this
uncertainty context?

In the traditional case with exact values, for a function z,
we can define a contour of iso-value h as the set of points
(x,y), such that:

{(x,y) : z(x,y) = h}. (8)

We need a new definition in the uncertain case because
there is no notion of a random variable having an exact value,
h. Instead we are interested in the probability that Z has a
value ‘close’ to h. Clearly we move from having precise con-
tour lines of value h, to areas where we deem the probability
of the random variable at (x,y) being close to h is sufficient
for it to be highlighted in some way. We need to be con-
cerned with what we mean by ‘close to’, and ‘sufficient’.
We begin by defining a property associated with each point
of the domain, and call this the contour probability - it is a
function Q of the point (x,y), the contour value h, and a pa-
rameter ε. We define the contour probability in mathematical
notation as:

Q(x,y;h;ε) = Pr(|Z(x,y)−h| ≤ ε) (9)

Descriptively, the contour probability measures the proba-
bility that the random variable Z at (x,y) takes a value within
ε of h. That is, it gives some meaning to the expression ‘close
to’.

We are now able to extend the notion of contouring to the
context of uncertainty. In mathematical terms, we are inter-
ested in the points (x,y) where:

Pr(|Z(x,y)−h| ≤ ε) ≥ θ (10)

that is,

Q(x,y;h;ε) ≥ θ, (11)

for some values of ε and θ. We can define this set of points
as the uncertain contour of threshold h. In descriptive terms,
we are defining the uncertain contour as the set of points
where the contour probability is greater than some level θ,
that is, the probability that the random variable Z at (x,y)
takes a value within ε of the contour value, is greater than θ.
This gives some meaning to ‘sufficient’.

4. Results
4.1. Case-Study: Oceanography
As mentioned before, an Ocean Dynamic Topography
(ODT), defined by Bingham and Haines in [BH06] as “the
height of the sea surface above its rest-state (the geoid)”,
is of relevance to oceanographers when studying the abso-
lute circulation of the ocean, which in turn helps them deter-
mine the surface currents involved in regulating the earth’s
climate.

However, difficulties in getting reliable measurements of
the dynamic topography, mainly due to the limitations in the
determination of the geoid, mean that scientists have to use
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alternate methods, such as the calculation of mean dynamic
topographies (MDT), which represents the time-dependent
part of the dynamic topography, allowing them to remove
the geoid from the calculations [BH06].

Bingham and Haines [BH06] propose a new approach to
obtain a composite MDT by combining a number of MDTs
and converting the spread amongst them into a formal error
estimate. Having calculated this composite MDT, it is of im-
portance for the authors to display both the values and the
estimated error.

Working in collaboration with the University of Reading,
it was possible to obtain the eight original models used in the
original derivation of the composite MDT. These models are
each described on a two-dimensional regular grid over the
North Atlantic, in which the coordinates of the lowest-left
grid point in degrees are 41N 79W, and of the upper-right are
77N 13E, and where the height is measured in centimetres.
The spacing between grid points is equivalent to 1/9 degrees
in both latitude and longitude, which results in a 829 by 325
grid.

Having this data, it was possible for us to do our own
derivation of a composite model, which integrates the infor-
mation of the original models and, at the same time, includes
an estimate of the error included in the calculation.

To derive our MDT, we averaged the values from the eight
original models at each point in the grid to obtain a sample
mean. In addition to this, we can calculate the standard devi-
ation of the sample, which is given by the following relation:

s =

√

1
n−1

n
∑
k=1

(zk − z̄)2 (12)

where zk is the value at the current vertex for the k-th original
MDT; z̄ is the mean value, obtained from all MDT’s at the
current vertex; and n = 8 is the number of available MDTs.

Using the mean and the standard deviation statistics, and
assuming a Gaussian distribution, we can generate our com-
posite MDT grid, of the same size as the original MDTs and
where each vertex has a random variable Z with PDF in the
form N(µ,σ) with µ = z̄ and σ = s.

Figure 1 shows the mean values of our composite MDT. It
is clear from the image that the data is defined over the North
Atlantic area. Known landmasses such as the British Isles
(lower right corner) and Canada (left side) are also clearly
recognizable despite the low resolution derived from the sev-
eral different original sampling techniques. An HSV colour
scale has been used to map valid data values, whilst black is
used to depict no data values.

4.2. ‘Line’ methods
In Section 3.2 we presented a definition of uncertain con-
tours as the group of points where the probability that the

random variable is ‘close’ to the contour value exceeds a
constant. We need now to find ways in which this descrip-
tion can be translated to a visual format.

Uncertainty bands
From Equation 10, it is clear that, any pixel in the final im-
age will either satisfy or not the condition of having proba-
bility above a preselected value θ. Having a boolean type of
output, it is quite simple and straightforward to map this to
intensity as follows:

I(x,y) =

{

1 i f Pr(|Z(x,y)−h| ≤ ε) ≥ θ
0 otherwise (13)

where θ represents the constant selected for the probability.

As expected, the visual result of this operation is seen as a
band, or a two-dimensional contour (having a finite width),
which contrasts with the more usual one-dimensional con-
tours.

Figure 2: Zero band for the composite mdt dataset.

The zero contour, h = 0, is of particular interest. Figure 2
shows the application of such a method for the calculation
of a ‘zero-band’ in the composite MDT dataset. In our ex-
perience, a distance from the contour value of ε = σ with a
probability θ = 0.65 is useful, and thus was used to produce
the image. In other words, each pixel highlighted in the im-
age indicates that there is a 65% or greater probability of the
pixel having value close enough to the contour value, and
thus, satisfying the equation Pr(|Z(x,y)− h| ≤ σ) ≥ 0.65,
for h = 0.

Fuzzy contours
In the previous method, we used the contour probability
function Q, defined in section 3.2 to visually identify points
in the domain with value close enough to a specific contour.

The next obvious step is to identify how close in value
the pixels are to a given contour value. Again, by looking
at Equation 9, we see that because function Q is described
as a probability, it can be used directly as a measure of the
closeness of a point to a given contour.

Probability values can therefore be mapped directly to in-
tensity as follows:

I(x,y) ∝ Q(x,y;h,ε) = Pr(|Z(x,y)−h| ≤ ε) (14)
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Figure 1: Colour map of the mean values (height) at each pixel for the composite MDT dataset.

Figure 3: A fuzzy zero contour for the composite MDT
dataset.

Figure 3 shows the result of calculating a zero-contour
for the composite MDT dataset using this method. Again,
a value ε = σ was chosen to identify pixels in the image
close to the zero-contour, however, it is also clear from the
intensities in the image that the degree of closeness varies
between pixels.

4.3. ‘Area’ methods
A usual extension for contouring algorithms is to use colour
to shade the areas that lie in between contour lines [SML98].
After looking into ways in which traditional contour lines
can be extended to include uncertainty notions, we will now
look into how the idea of colour shading can also be ex-
tended to the case where each vertex in the grid has a PDF
rather than a scalar value.

In the simplest case of just one zero-contour, if we con-
sider that PDFs are continuous functions defined in the range
(−∞,∞), then the zero-contour would divide the whole
range into two regions R1 = (−∞,0) and R2 = [0,∞). And
the probability of each point in the domain to be on each of
these regions is given by the integral of the PDF between the
limits of each range.

If we want to generalise this to N contours and N + 1 re-

gions, and recalling the definition given in Equation 1, we
can see this would imply the calculation of the following
probabilities

Pr(Z(x,y) ∈ Ri) =
Z hi

hi−1
f (x,y;z)dz ∀i = 1 . . .(N +1) (15)

where h0 = −∞, hN+1 = ∞ and hi; i = 1 . . .N are the N
contours.

Uncertain banded areas
A first way of shading areas whilst considering the un-
certainty can be derived directly from the uncertain bands
method introduced earlier. By selecting an appropriate value
θ > 0.5, and comparing it with probabilities calculated ac-
cording to Equation 15, then for each point in the domain
it is possible to say whether it has some certainty (probabil-
ity greater than θ) of belonging to one particular region, or
whether it is impossible to make any definite assignment.

Thus, areas can be shaded according to the following

C(x,y) =

{

ci i f Pr(hi−1 ≤ Z(x,y) ≤ hi) > θ
0 (background) otherwise (16)

where ci represents the base colour for the i-th section.

Figure 4: Colour coding of two distinct areas according to
a value of θ = 0.65.

Figure 4 shows the application of this method to the com-
posite MDT dataset considering only the basic zero-contour,
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6 R. Allendes & K. Brodlie / Contouring with Uncertainty

thus dividing the whole range over which PDFs are defined
in only two distinctive, non-overlapping sections, and using
a value of θ = 0.65.

For the previous example, black has been selected as
background colour. Also clear from Figure 4 are the areas
where, according to Equation 16, background color has been
applied, i.e. points where we can not be sure with a probabil-
ity greater than θ, to which region the point should belong.

Fuzzy areas
As a second step in the colour shading of areas, and also ex-
tending from the idea of fuzzy contours presented earlier, if
we discard the idea of a limit θ and simply blend the base
colours according to the probabilities calculated from Equa-
tion 15, it is possible to achieve the effect of having a fuzzy
boundary between the differently shaded areas.

There are multiple ways in which we can achieve the
blending of base colours. In particular, we have experi-
mented with linear combination of colours and the use of
transparency. We will describe both approaches using the
same general frame of having a series of N + 1 different,
non-overlapping sections, and the corresponding N contour
levels (h1 . . .hN), and having h0 = −∞ and hN+1 = ∞.

Firstly, if we think of the blending process as the linear
combination of base colours, then we can use the probabil-
ities from Equation 15 as weighting factors. Using this ap-
proach, the final colour for each point is obtained with the
following relation

C(x,y) =
N+1
∑
i=1

ci ∗Pr(hi−1 ≤ Z(x,y) ≤ hi) (17)

where C(x,y) represents the final colour at each point and ci
represents the colour used to shade the i-th section.

Figure 5: Colour coding of two distinct areas using a fuzzy
boundary.

Figure 5 shows the results of using a weighted sum of
colours (in this particular case red for values below zero and
green for those above it) to represent two different sections
within the composite MDT dataset. Notice that, as expected
from the results shown so far, the boundary between the two
areas does indicate the mixture of both original colours.

A second way to achieve the blending of colours is by
using transparency. To implement such a method, we first

need to select a background colour, on top of which succe-
sive semi-transparent layers, one for each of the individual
sections, are painted. The transparency value for each sec-
tion is taken as the probability.

Random areas
In general, PDFs can be taken as input for random generat-
ing number algorithms. In our case, by generating random
numbers based in the PDFs at each vertex of a grid, we cre-
ate a random instance of the original data. And, because this
new instance is made of scalar values, traditional visualiza-
tion techniques, such as a normal region based shading, can
be used to visualize them.

Even though we have reduced the information when cre-
ating an instance from a whole PDF to a single scalar value,
uncertainty would still be shown by a normal colour shad-
ing algorithm. This is because each pixel is individually as-
signed to a particular colour. Then because of the random na-
ture of the data values generated, the classification of points
close to the contour will tend to vary greatly in comparison
to those further away from it, thus translating into visual cues
of uncertainty.

Figure 6: Snapshot showing colouring of pixels according
to the value randomly generated from the original PDFs.

Figure 6 shows the result of using a normal shading ap-
proach to depict a zero-contour in a randomly generated in-
stance of the composite MDT dataset. In the image, areas
with larger number of points classified to different sections
show the uncertainty in the boundary between sections.

Additionally, by generating a sequence of random in-
stances, using a normal colour shading algorithm on each of
them, and animating them through time, it is possible to in-
crease the number of cues regarding the uncertainty in the lo-
cation of the border between areas. Such an application will
show a larger number of variations in the colour the same
point is classified through different instances, whilst show-
ing a constant colour in those areas where the classification
is less uncertain.

5. Conclusions and Future Work
In this paper we have extended the traditional notion of con-
touring to the situation where the given data is accompanied
by an uncertainty measurement. We have developed a variety
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of methods which can be used to incorporate an uncertainty
component into a contour-type visualization. In contrast to
other approaches, we have aimed to give an indication of
the different locations a contour line might have. The work
has been illustrated through its application to a case study in
oceanography, of importance to climate change studies.

Our approach in this paper has been pixel-based: that is,
we compare each pixel value against the contour value. This
is more computationally demanding than the more tradi-
tional vector-based approaches, but is well within the capa-
bility of modern processors. However we are also interested
in extending vector-based methods to the uncertainty case,
and in comparing the results with the pixel-based approach
here.

The concepts developed in this paper will extend to 3D
datasets, giving us an approach to isosurfacing of uncertain
data. We can use the same methods as in this paper to deter-
mine the probability that a particular voxel has value suffi-
ciently close to an isosurface value , as we used to determine
the closeness of a pixel value to a contour value. We aim to
report on this in a later paper.
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