
promoting access to White Rose research papers 
   

White Rose Research Online 

 
 

Universities of Leeds, Sheffield and York 
http://eprints.whiterose.ac.uk/ 

 
 

 
White Rose Research Online URL for this paper: 
http://eprints.whiterose.ac.uk/5394/ 
 

 
 
Published conference paper 

Kubassova, O., Boyle, R. and Boesen, M. (2008) Registration of dynamic MRI 
data and its impact on diagnostic process. In: Hamarneh, G. and Abugharbieh, 
R., (eds.) Proceedings of the First Workshop on Analysis of Functional Medical 
Images. 11th International Conference on Medical Image Computing & Computer 
Assisted Intervention, September 10th 2008, New York. , New York, pp. 57-64. 

http://bisicl.ece.ubc.ca/functional2008/art/miccai_func2008_proc.pdf 
 

eprints@whiterose.ac.uk 
 

http://bisicl.ece.ubc.ca/functional2008/art/miccai_func2008_proc.pdf


Registration of Dynamic MRI Data and its
Impact on Diagnostic Process

Olga Kubassova1, Roger Boyle1, Mikael Boesen2, Marco A. Cimmino3, and
Henning Bliddal2

1 School of Computing, University of Leeds, United Kingdom,
olga@imageanalysis.org.uk, roger@comp.leeds.ac.uk

2 The Parker Institute Frederiksberg Hospital, Frederiksberg, Denmark,
mikael.boesen@dadlnet.dkh; Henning.bliddal@frh.regionh.dk

3 University of Genoa, Genoa, Italy, cimmino@unige.it ?

Abstract. This paper discusses impact of a novel registration algorithm
for dynamic MRI data on diagnosis of rheumatoid arthritis. The al-
gorithm is based on a hybrid Euclidean-Lagrangian approach. It was
applied to data acquired with low and high-field MRI scanners. The
scans were processed with region-of-interest based and voxel-by-voxel
approaches before and after the registration. In this paper, we demon-
strate that diagnostic parameters extracted from the data before and
after the registration vary dramatically, which has a crucial effect on
diagnostic decision. Application of the the proposed algorithm signifi-
cantly reduces artefacts incurred due to patient motion, which permits
reduction of variability of the enhancement curves, yielding more dis-
tinguishable uptake, equilibrium and wash-out phases and more precise
quantitative data analysis.

1 Introduction

Rheumatoid arthritis (RA) is an inflammatory disease which affects more than
0.3-1% of the adult population [1]. RA patients are often examined with Dynamic
Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI), where joints are
imaged over time resulting in a 4D dataset. Temporal changes of signal intensity
during and immediately after a bolus injection of a contrast agent reflect un-
derlying changes in local concentration of the contrast agent, which are related
to the extent of tissue inflammation. Typically, DCE-MRI data is processed on
a voxel-by-voxel basis, where enhancement curves are extracted from temporal
slices and evaluated using pharmacokinetic [2], heuristic [3], or region of interest
(ROI) based [4] methods.

These approaches for analysis of DCE-MRI data assume that signal intensity
vs. time changes at each voxel can be attributed to the contrast leakage. However,
patient movement can introduce artefactual enhancement with implications to
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the extracted measurements. Hands of active RA patients shiver and the range
of motion is approximately 5-10mm translations and 5−150 rotations in 2D and
3D planes.

Alignment of images is complicated by the non-uniformity of motion across
various regions of the imaged joints and non-homogenous contract and brightness
variations in later volumes.

Early registration methods [5, 6] described motion using rigid transformations
that attempted to minimise the variance ratio between a pair of images. Recently,
motion was modelled using optical flow and affine transformation [7, 8]. However,
some optical flow techniques rely on the assumption that the contrast of the
target and source images remains constant while positions of objects change,
which is untrue for DCE-MRI datasets.

To align DCE-MRI data, we have modified the algorithm presented in [9],
which was designed to deal with partial occlusions. We augmented the registra-
tion model with a Euclidean-Lagrangian incremental approach, which was moti-
vated by the fact that some tissue significantly changes its intensity and bright-
ness in the post-contrast images and therefore alignment of the post-contrast
source to the pre-contrast target may not be accurate.

In this article, we will present the registration model and demonstrate its
value for further quantitative analysis of dynamic data.

2 Data

A total of 37 datasets acquired from patients with low-field (0.2T, ESAOTE,
Italy) and high-field (1.5T, Phillips, The Netherlands) scanners were processed.
10 high-field datasets were acquired from metacarpophalangeal joints (MCPJs)
in the axial direction using T1 weighted spoiled gradient-echo sequence; TR/TE:
14/3.8; FOV/imaging matrix: 100× 200mm / 128× 256, slice thickness 3mm, 6
slices. Acquisition time was 142s. 27 low-field datasets were acquired from the
hand, wrist, and tendon using gradient-echo and spin-echo sequences, TR/TE:
100/16 and 60/6, imaging matrix 256×256, resulting in 3 temporal slices, 22-30
images each. Acquisition time was 300s.

3 Methods

The transformation between source f(x, y, z, t) and target f(x, y, z, t−1) volumes
takes the following form:

m13f(x, y, z, t− 1) + m14 =
f(m1x + m2y + m3z + m10,m4x + m5y + m6z + m11,m7x + m8y + m9z + m12, t),

where (m1, ...,m9) represent affine and (m10, ..., m12) translation parameters;
m13 and m14 are spatially varying parameters which explicitly account for con-
trast and brightness variations. m = (m1, ..., m14) are estimated locally for each
small neighbourhood, but for the sake of clarity their spatial notation is dropped.



To avoid making a decision on the optimal size of the neighbourhood, the
assumption that the parameters m do not change within the neighbourhood is
replaced with a smoothness assumption, which implies that physical properties in
the neighbourhood of a space or within the time interval do not change abruptly.

A least square measure has been employed to deduce parameters m via cost
minimisation. The error function is approximated by a 1st order Taylor series
expansion and differentiated to its unknowns m. The result is set to zero, and
the solution takes the following form:

m =
[ ∑

x,y,z∈Ω

c c T
]−1[ ∑

x,y,z∈Ω

c k
]
, (1)

where Ω denotes a neighbourhood of the current pixel, c and scalar k are defined
by Eq. 2, fx(·), fy(·), fz(·), and ft(·) are spatial and temporal derivatives of f(·).

k = ft − f + xfx + yfy + zfz

c = (xfx, yfx, zfx, xfy, yfy, yfy, xfz, yfz, zfz, fx, fy, fz,−f,−1)T (2)

A smoothness constraint is then imposed on the model parameters m and
the error function is augmented by this, which penalises solutions proportional
to the local change in each parameter across a small spatial neighbourhood. The
error function, defined in such a way, allows for a locally smooth, but globally
non-rigid transformation. Minimisation of the error function was done through
differentiating, setting the result to zero and solving for m.

The entire procedure is built upon a differential multiscale framework [10],
that permits the capture of both large- and small-scale transformations.

3.1 Euclidean-Lagrangian Extension

Let UAB denote a transformation between target A and source B obtained with
the algorithm described above. For a sequence of volumes I1, ..., IN , we can derive
U I1I2 , U I1I3 , ..., U I1IN . Let =k, k = 1..N denote the output: =k = U I1Ik [Ik] ≈ I1.

Geometric differences between pre- and post-contrast image might not be sig-
nificant, however contrast and brightness variations, especially in the datasets
acquired from the patients severely affected by RA, are dramatic. Thus, align-
ment of the post-contrast images to the first one of a dynamic series might not
be accurate.

To minimise the registration error the transformation could be performed in
an incremental rather than pair-wise fashion (a.k.a. Euclidian approach). How-
ever, if the alignment between the volumes at the beginning was not accurate,
the error would further propagate. To overcome this, the output of this sequential
transformation is used as an initial solution for the basic registration algorithm.
Such an approach is often referred to as Lagrangian.

So, for a DCE-MRI dataset, we firstly determine transform between neigh-
bouring volumes, where the contrast and brightness variations are less significant:

V Ik = U I1I2 ⊗ ...⊗ U Ik−2Ik−1 ⊗ U Ik−1Ik (3)
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Fig. 1. Left: Bone interiors outlined in source and superimposed on target before (solid)
and after (dashed) registration with W -transformation. Right: MO between bone re-
gions in source and target in 200 images before registration, and after images were
aligned with the registration with basic U - and proposed W -transformations.

This transformation applied to the kth volume yields the volume Jk, Jk =
V Ik [Ik] ≈ I1. However, if the alignment of the first volumes was not perfect,
registration error would propagate when registering volumes from later in the
study. To compensate for this possible error, a sequence of volumes registered
in the sequential manner {Jk}k=1...N is taken as an initial solution for the basic
registration algorithm.

Then, the final transform is defined as W Ik = U I1Jk⊗V Ik , and being applied
to the kth volume yields the volume Lk, Lk = W Ik [Ik]. With this approach a
DCE-MRI study is considered as a whole, which permits reduction of the trans-
formation error and allows compensation for contrast and brightness variations
between the images.

4 Discussion

To evaluate registration with U -, V -, and W -transformations, we measured mu-
tual overlap (MO) [11] between manually outlined rigid bone interiors in 200
source and target images before and after the registration. Fig. 1 illustrates po-
sitions of bone interiors before and after registration in a sample image (left).
True bone interiors outlined in the target are shown in white. Contours of the
bone interiors from the source image before (solid line) and after (dashed) reg-
istration were superimposed on the target. MO here has increased from 0.76 to
0.92. The same experiment was performed on 200 images and the results are
shown in Fig. 1 (right).

MO before registration was on average 0.74 with the minimum at 0.53 and
standard deviation, σ = 0.07. After registration with the U -transformation, it
became 0.8 with σ = 0.06; after registration with the V -transformation – 0.81
with σ = 0.04. Finally, when the W -transformation was applied, the mutual
overlap became on average 0.92 with σ = 0.03.

The appearance of the images before and after registration with the proposed
transformation is visibly different and medical observers’ judgement was posi-
tive. The algorithm has not failed on any of the images. Registration permits
reduction of the noise artefacts and significant improvement in the location of



Fig. 2. Pre-contrast (a), post-contrast (b) images of the MCPJs (bottom) and tendon
(top) and subtractions between pre- and post- contrast images before (c) and after (d)
registration. After registration, artefacts have been reduced; shape and location of the
inflamed areas are clearer.

the blood vessels, bone interiors, skin, but most importantly synovial tissue. This
is especially prominent on the data acquired with the low-field scanner (Fig. 2,
top), where the signal to noise ratio is significantly lower and acquisition times
are longer. Fig. 2 illustrates pre- and post-contrast images and their subtraction
before and after registration.

To evaluate the improvement in visual appearance, we subtracted source
before and after registration from the target and estimated the mean square
errors (MSE) on intensity values of subtracted images.

Ideally, in the absence of patient motion and contrast agent MSE between
the registered images should be zero. However, due to the effect of the contrast
agent, MSE is always greater than zero, reflecting the magnitude of the enhance-
ment. Figures 3 illustrates MSE computed before and after the registration with
various transformations applied to 100 images.

The shape of the MSE graphs corresponds to the expected change in the
intensity. The major variations of the intensity occur at the wash-in and wash-
out phases. At the baseline and plateau phases (1-3 and 7-16 time instants,
respectively), where no significant intensity changes are expected, reduction in
MSE can be attributed mostly to the effect of the registration. This experiment
demonstrate that on average for the high-field data MSE has decreased from
0.35 to 0.2 and for low-field data from 0.25 to 0.08.

4.1 Estimation of enhancement curves

Normally, to perform quantitative analysis of DCE-MRI data, a clinical expert
extracts from a small ROI signal intensity vs. time curves. Parameters describing
their shape (maximum of intensity and a slope) are then extracted. Curves cor-
responding to the inflamed synovial tissue exhibit steep wash-in, high maximum
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Fig. 3. MSE between 100 target and source images acquired with the high-field (left)
and low-field (right) scanners and aligned with the registration with U -(bold) and W -
(thin) transformations. The length of the error bars is 1.96σ. Time - number of frames
per acquisition.

intensity values, and a wash-out phase. Curves corresponding to tissue which is
not affected by RA normally exhibit no enhancement.

Patient motion can change the shape of the enhancement curves. Fig. 4 il-
lustrates signal intensity vs. time curves before (left) and after (right) the reg-
istration. A comparison of these two sets suggests that significant movement
occurred between 5th and 10th time instants. Evidently, enhancement curves ex-
tracted from the registered images show much less variation during the wash-in
and equilibrium phases.

The bold black curve (the mean) is the one used by the radiologist to evaluate
the nature of the enhancement. Without registration, the curve shows contin-
ues increase and no wash-out phase, despite the fact that enhancement of the
inflamed synovium is expected to peak around the 15th time instance. After
registration, the behaviour of the enhancement curves corresponds much better
to the nature of the enhancement: with more pronounced wash-in and wash-out
phases, evaluation of the inflammation can be performed more accurately. This
experiment illustrates that registration significantly improves the accuracy of
the estimation.

Fig. 5 illustrates parametric maps of maximum enhancement (ME), com-
puted with the automated quantitative approach [3], superimposed on low-field
post-contrast image of the wrist (top) and MCPJs (bottom), extracted from ac-
tive RA patient and healthy control, respectively. In the top row, it is expected
that synovial tissues and erosions will exhibit high ME (yellow-white colours),
intermediately active tissues will be coloured in dark red, and non-enhancing
tissue have no colour. Before the registration (mid) the most significant enhance-
ment corresponds to skin area; the joint with an erosion in the center is shown
in darker red colours. After registration, a quantitative map of ME reflects ex-
pected activation events (pixels within an erosion are in white-yellow). In the
bottom row, the ME map for a healthy control should only show enhancement
within the blood vessels. Before registration, we observe some activation around



the joints, after the registration, the inflammation map corresponds precisely to
clinical expectation. This demonstrates that the algorithm allows elimination of
the artifactual enhancement.

5 Conclusion

The paper discussed registration algorithm for alignment of non-rigid multi-slice
DCE-MRI data, which accounts for significant variations in contrast and bright-
ness that occur in the post-contrast volumes. The approach was demonstrated
on data acquired from active RA patients using low and high field scanners.
Enhancement curves extracted from the registered images demonstrate less vari-
ability and more distinguished wash-in and wash-out phases. The registration
algorithm has significant impact on the accuracy of quantitative analysis tech-
niques and allows for significant reduction of the artefactual enhancement. This
contributes to the data fidelity for diagnosis of RA.

The scheme presented here is yet to be tested with other similarity mea-
sures such as local normalised cross-correlation, correlation ratio or mutual in-
formation [7] and in application to other DCE-MRI studies. Our preliminary
experience suggests that it is acceptable for a wider application.
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