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Is there an integrative center in the vertebrate brain-stem? A robotic

evaluation of a model of the reticular formation viewed as an action

selection device
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Neurobehavioral data from intact, decerebrate, and neonatal rats, suggests that the reticular formation provides
a brainstem substrate for action selection in the vertebrate central nervous system. In this article, Kilmer,
McCulloch and Blum’s (1969, 1997) landmark reticular formation model is described and re-evaluated, both in
simulation and, for the first time, as a mobile robot controller. Particular model configurations are found to
provide effective action selection mechanisms in a robot survival task using either simulated or physical robots.
The model’s competence is dependent on the organization of afferents from model sensory systems, and a genetic
algorithm search identified a class of afferent configurations which have long survival times. The results support
our proposal that the reticular formation evolved to provide effective arbitration between innate behaviors
and, with the forebrain basal ganglia, may constitute the integrative, ’centrencephalic’ core of vertebrate brain
architecture. Additionally, the results demonstrate that the Kilmer et al. model provides an alternative form of
robot controller to those usually considered in the adaptive behavior literature.
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1 Introduction

A functioning, mortal, autonomous agent within
a stimulating environment must choose and co-
ordinate behaviors appropriate to both the received
stimulus data (via its external sensory systems) and
its current internal state if it is to survive. For an
animal, inappropriate selection and co-ordination
may lead to death via, for example, starvation or
attack from a predator. For a mobile robot, the
same errors may lead to damage or loss of power.
The problem may be framed as one of action selec-

tion: given all available pertinent information, and
a repertoire of potential actions, what mechanism
should the agent employ to select the most appro-
priate action(s)?

If we wish to build agents (particularly animats)
which adaptively and robustly function in a com-
plex environment, a generally effective strategy is
to reverse-engineer biological control systems that
have already solved the problem. The process of
evolution has produced animals that embody a set
of competent solutions to the action selection prob-
lem; their competency is demonstrated by the in-
dividual animal’s continued survival in the short-
term, and the perseveration of the species in the
long-term.

Ethological models of action selection are reverse-
engineered from observations of animal behavior in
response to varying contexts and stimuli (for ex-
ample Baerends, 1970). They postulate abstract
control systems coordinating elementary behaviors
and thus have a strict hierarchy of control. Robot
control implementations of this form of ethologi-
cal model are able to perform moderately well in a
simulated environment (Tyrell, 1993), but are typi-
cally restricted by their inflexibility. Control archi-
tectures based on ethological principles and using
less-rigid hierarchical structures can overcome this
problem (Tyrell, 1993; Blumberg, 1994).

The level of hierarchical structure necessary for a
robot control system is a continuing debate in the
adaptive behavior literature (Bryson, 2000; Maes,
1995; Blumberg, 1994; Tyrell, 1993). There is a cor-
responding debate on the necessity for a specialized
selection device as opposed to selection emerging
from the architecture, what we may call central-
ized versus distributed selection. Fully heterarchi-
cal (flat) control systems necessarily contain emer-
gent selection. Thus, adaptive behavior researchers
proposing robot control systems are compelled to
address both these issues in the design of their sys-
tems.
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Our approach has been to create robot control ar-
chitectures by reverse-engineering the animal’s cen-
tral nervous system: key components of the con-
troller are accurate models of neural systems known
to be involved in action selection. By examining
the functional architecture of neural systems in-
volved in action selection, we can determine how
a particular successful solution to the action selec-
tion problem works, and state with some confidence
how the mechanism is organized. The degree of hi-
erarchical or heterarchical structure and of central-
ized or distributed selection within our robot con-
trollers is specified by the biology rather than by
the search for some optimally-operating controller
(in turn, the performance of our robots will con-
tribute data on the appropriateness of these design
choices for control architectures). Thus, the neural-
based approach gives us a starting point for candi-
date robot control systems. Moreover, implement-
ing our neural models of action selection systems as
control architectures is also a strong test of those
underlying models: if the robot performs poorly,
then our model is likely to be incorrect. This pa-
per reports work which continues our investigation
of the functional architecture of action selection in
the vertebrate brain.

2 Layered architecture, cen-

tralized control

A review of the vertebrate central nervous system’s
global organization and evolution led us to pro-
pose that there is strong evidence for a neural sub-
strate of a layered control architecture (for details
see Prescott, Redgrave, & Gurney, 1999). The rat’s
defense system illustrates just such a layered archi-
tecture in that the reactions to increasingly complex
classes of stimuli are determined by brain structures
which are higher up the neuraxis. This implies a
distributed control system in which multiple stim-
uli from more than one class can be processed in
parallel. A constraint is that any given animal has
a final common motor pathway: the connections of
the spinal cord and the number of muscle groups
limit the set of actions that can be expressed simul-
taneously. Therefore, some mechanism is required
to reduce the actions represented by the outputs of
the layers to just those actions capable of simulta-
neous expression. In terms of the centralized versus
distributed selection question, there are three alter-
native mechanisms: the higher layers may suppress
the responses of the lower layers given appropriate
stimuli, there may be competition between layers,
or there may be a central selection device.

2.1 The vertebrate basal ganglia as

an action selection device

We have proposed that, given the constraints of bi-
ological tissue, a central rather than distributed se-
lection system would be the preferred solution im-
plemented by a neural substrate (Prescott et al.,
1999). Briefly, our argument runs as follows. Typ-
ically, distributed selection mechanisms, formed by
reciprocally inhibitory links between n behaviour-
representing nodes, contain n(n−1) links and grow
as 2n for every additional node. By contrast, a
central selection device which is reciprocally con-
nected with all n nodes (thus allowing control over
the expression of each node’s represented behavior)
requires just 2n links, and grows by 2 for each addi-
tional node. Thus, a central selection device is more
economical in both the number of connections re-
quired and the cost of adding nodes. Such economy
of wiring appears to be a priority for the central
nervous system (Cherniak, 1994).

There exists a group of structures in the verte-
brate brain, the basal ganglia, that have the nec-
essary inputs, outputs, and internal connectivity
to function as just such a central switching sys-
tem and which are intimately involved in behav-
ioral control (Redgrave, Prescott, & Gurney, 1999).
Computational modeling of the intrinsic basal gan-
glia circuitry has demonstrated that it is capable of
resolving competition between action-representing
signals (saliences) such that the basal ganglia out-
put expresses the selection of the most appropri-
ate action(s) and suppresses the others (Gurney,
Prescott, & Redgrave, 2001). We refer to this as
the GPR model hereafter. Using the GPR model as
a control architecture for mobile robots has demon-
strated that the ability to resolve individual selec-
tion competitions results in coherent sequencing of
behavior in both a foraging task (Montes-Gonzalez,
Prescott, Gurney, Humphries, & Redgrave, 2001)
and a survival task (Girard, Cuzin, Guillot, Gur-
ney, & Prescott, 2003).

2.2 Central control does not extend

to lower levels of the neural sub-

strate

We know that the basal ganglia cannot be the only
action selection system operating in the vertebrate
brain. Altricial1 neonates and decerebrate rats and
cats have a limited behavioral repertoire that can
be expressed in the absence of basal ganglia (in al-
tricial neonates it is not connected; in decerebrates
it has been lesioned). For example, neonatal rats

1helpless at birth
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have a complete set of ingestive behaviors, such as
lapping, by postnatal day three (Hall, 1979) and
can spontaneously groom by two weeks postnatal
(Berridge, 1994); decerebrate rats can also spon-
taneously groom, locomote, feed in a coordinated
manner, and have intact fear, escape, and defensive
responses (Berntson & Micco, 1976). Thus, some
neural structures within the intact brainstem must
also be capable of functioning as a limited action
selection system.

Neuroscientists have long suspected this to be
true. The eminent neurobiologist and cybernetics
pioneer Warren McCulloch proposed the mode se-
lection2 hypothesis of brainstem function: he iden-
tified 25 or so incompatible general modes of be-
havior common to all vertebrate animals, such as
sleeping, fighting, grooming, and fleeing. An ani-
mal could be considered in a particular mode if its
central nervous system was primarily focused on ex-
ecuting components of that mode. McCulloch pro-
posed that the core of the reticular formation (RF),
the neural structure at the center of the brainstem,
was the substrate of the mode selector. As we de-
tail below, his justifications for this proposal remain
valid and, therefore, we agree that the RF is the po-
tential neural structure for a selection mechanism in
the brainstem.

In a landmark paper, Kilmer, McCulloch, and
Blum (1969) presented a computational model of
RF function which demonstrated mode selection in
simulation. This was the first computational model
explicitly constrained by the known anatomy and
physiology of a neural structure, and its importance
is reflected in the continued citation of the model to
the present day (Leibetseder & Kamolz, 2004; Del-
gado, Mira, & Moreno-Diaz, 1989; Barto, 1985).
Remarkably, the general structure of the model is
still consistent with more modern data on RF orga-
nization and neuron morphology. Moreover, there
have been no alternative quantitative models of the
RF published in the interim. Indeed, the model has
been recently revised by Kilmer himself (Kilmer,
1997). Thus, this model is of more than historical
interest: it remains a valid model of the RF, and
a valid selection mechanism. Given the existence
of this computational model (which we shall refer
to as the Kilmer-McCulloch model) of RF function,
we propose to replicate and test it to assess its suit-
ability to form the action selection mechanism for
the lower levels of the layered-architecture.

To recap, our primary hypothesis is that the
RF and basal ganglia form separate action selec-
tion mechanisms, which must interact in the intact

2Mode selection is synonymous with what adaptive be-

havior researchers now term action selection

vertebrate brain to generate coherent sequences of
behaviors. Indeed, these structures together form
what has been termed the brain’s “centrencephalic
core”, a network of centralized brain structures
that co-ordinate and integrate the activity of neu-
ral centers throughout the brain (Penfield, 1958;
Thompson, 1993). The exact form of the inter-
action is open to investigation, given the paucity
of data on the relationship between behavior and
basal ganglia–RF connectivity. However, before im-
plementing a complete neural model which contains
both basal ganglia and RF components, we must
first assess the hypothesis of RF as action selector.

2.3 Objectives

The aims of this study were: (1) to assess the func-
tional capabilities of the Kilmer-McCulloch model
in simulation as a guide to subsequent robot ex-
periments; (2) to implement the Kilmer-McCulloch
model as a robot control architecture, and compare
its performance to that of alternative controllers.
We would thus be able to assess both the hypoth-
esis of action selection by the RF, and the general
suitability of the model as a robot controller; (3) to
determine if any versions of the Kilmer-McCulloch
model could perform well as a robot controller in-
dependent of any neural-modeling constraints (we
use here a genetic algorithm to search the space of
Kilmer-McCulloch model variants).

On an historical note, McCulloch and his col-
leagues were keen to emphasize that the model of
RF could be used as a robot controller, an idea that
was echoed in Kilmer’s recent paper. Thus, the
testing of this model as a robot control architecture
allows us to fulfill McCulloch’s original hope for the
model for the first time.

3 The Kilmer-McCulloch

model

3.1 Anatomy of the RF

We briefly outline the anatomical features of the RF
(summarized in Figure 1), predominantly based on
the Scheibel’s neuron-staining studies (Scheibel &
Scheibel, 1967), which led McCulloch to propose
this region as the substrate for a plausible selec-
tion mechanism. These anatomical findings have
been repeatedly replicated using a variety of stain-
ing and microscopic techniques (Jones, 1995; New-
man, 1985; Bowsher & Westman, 1970).

The predominant neuron type in the medial core
of the RF has a giant body and undifferentiated
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radially symmetric dendrites which do not signif-
icantly extend in the anterior-posterior direction.
Their axons bifurcate, extending posteriorly to the
spinal cord and anteriorly to the midbrain, giv-
ing off numerous collaterals along their trajectories.
The collaterals form synapses in the extensive den-
dritic trees of other giant cells. These giant neurons
thus form discrete discs or modules of overlapping
dendritic fields which are connected by far-reaching
axons.

The giant neurons receive extensive primary
and secondary afferent ascending sensory input via
the spinothalamic tract, sensory trigeminal nuclei,
vestibular nuclei, and other brainstem relay nuclei.
Thus, the modules are in a position to sample from
every sensory system available to an animal. This
array of inputs has led to the medial RF being
termed the ‘integrative core’ of the brainstem.

3.2 The computational model

We shall detail the recent revision (Kilmer, 1997) of
the Kilmer-McCulloch model as it is more amenable
to replication than the original version. The
anatomical features reviewed above form the ba-
sis of the model design shown in Figure 2. Each
of the U modules of the model corresponds to an
anatomical module of the RF described above; the
internal computations of a module are detailed be-
low. Sensory input to the RF is represented by S
sensory systems, where the kth output of each Sj

represents that system’s estimate of the probability
of behavior k being selected (and is therefore in the
range (0,1)). The model has M behaviors repre-
sented by M descending and M ascending connec-
tions from each module and M outputs from each
Sj . Each module Uj receives M inputs, each in-
put being from the corresponding mode output of
a randomly selected (with equal probability) sen-
sory system: for example, input k = 1 to module
U1 comes from output k = 1 of a randomly selected
Sj .

The ascending/descending connections are analo-
gous to the far-reaching bifurcating axons from the
giant cells in each module. The probability of a
module receiving an ascending or descending con-
nection from a particular module was specified by a
power law: for any given pair of modules (i, j), the
probability Pij of a connection from j to i was given
by Pij = d−r

ij , where dij is the distance between the
modules,

dij = (U + |i − j|)mod U, (1)

and the exponent r is some positive integer (we use
r = 2 throughout). For each module connection, a

Figure 1: Schematic summary of the vertebrate reticu-
lar formation’s anatomical organization. A Sagittal sec-
tion through the brainstem; the dendritic trees (black
lines) of the giant cells (single cell body shown) ex-
tend throughout the RF core along the dorso-ventral
axis but extend little along the posterior-anterior axis.
These dendritic trees contact axon collaterals of both
ascending sensory systems (grey dashed line) and far-
reaching axons of the giant cells (the axon of the de-
picted cell body is shown by the solid grey line). B

Cross-section through the brainstem (dash-dot line in-
dicates the midline). Left: dendrites extend radially
about the giant cells’ bodies, often preferentially di-
rected to the axon collaterals extending from the passing
sensory fiber tracts. Right: the giant cells’ radial den-
dritic fields and passing sensory fiber tracts’ axon col-
lateralisation create overlapping fields of synaptic con-
tact. C The Scheibel’s summary of RF organization:
the RF core is comprised of stacked disc-like modules
containing giant cells, with limits defined by the den-
dritic extension from the cell bodies. The radial den-
dritic fields allow sampling of ascending and descending
input from both other modules (solid grey line) and sen-
sory systems (dashed grey line). Abbreviations: PT -
pyramidal tract; Vest - vestibular complex; V - sensory
trigeminal system; ST - spinothalamic tract.
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Figure 2: Schematic diagram of a version of the Kilmer-
McCulloch model. This particular version has S = 5
sensory input systems, U = 12 modules, and parallel
ascending/descending connections representing M = 4
modes. Only the connections to and from a single mod-
ule are shown (from Kilmer, 1997).

source module was randomly selected and Pij as-
sessed; this was repeated until a connection was
made.

The output Wi of each module Ui contributes its
kth element to the vector Yk (and thus each Yk has
U components); selection of behavior k (or conver-

gence on that behavior) is signaled by the following
conditions: at least U(1 − δ) of Yk’s components
have high values (H) and at least U(1 − δ) of all
other Yj ’s components have low values (L), where
H ≥ 1 − ǫ and L ≤ ǫ. In all that follows, we fol-
low Kilmer and use values δ = 1/6 and ǫ = 0.49.
With these specific values, convergence on behavior
k would occur if more than 5/6 of the output vector
Yk’s components were greater than 0.51 and if more
than 5/6 of the components in each of the other Y
vectors were less than 0.49.

3.2.1 Module design

We have abstracted a single artificial ‘neuron’ from
the module description of the Kilmer-McCulloch
model so that it may be more easily compared to
artificial neurons in general use. There are M of
these units in each module, one for each behavior,
and their only point of interaction is at the nor-
malization step (equation 3 below). Formally, the
output pk of the kth unit of module Ui can be ex-
pressed as

qi
k =

X2

sk + Γ(A2

dk + B2

bk)

1 + 2Γ
(2)

pi
k = qi

k/
M∑

j=1

qi
j (3)

where Γ is the coupling co-efficient, Xsk is sensory
input from the kth component of the sth sensory
system, Adk is the “descending” input from the kth
component of the dth module, and, similarly, Bak

is the “ascending” input from the kth component
of the ath module.

3.2.2 Operation of the Kilmer-McCulloch

model

At t = 0 a new set of inputs are presented at the
sensory systems S and a new set of S-U (sensory-
system-to-module) and U-U (module-to-module)
connections are created. The modules then com-
pute their outputs for each behavior using the com-
putations given by equations (2) and (3). Γ is set
to zero at this first time-step. At each successive
time-step the modules compute their outputs (the S
values remain fixed) following two changes: first, Γ
increases by 0.25 up to a limit of 2, where it remains
thereafter; second, every Ui is randomly assigned a
new module to receive each of its kth descending
and ascending inputs from. When the convergence
criteria are met the time-step T is recorded: the
elapsed number of steps from t = 0 to t = T is
termed an epoch.

3.3 Simulation results

Our initial task was to run computer simulations
of the Kilmer-McCulloch model and investigate
Kilmer’s (1997) claims for its dynamical proper-
ties. Specifically, he stated that the model would
always converge (as defined above) within 30 time-
steps: a value he claimed to be sufficiently rapid to
demonstrate that the RF could support mode se-
lection. We replicated the model version which he
investigated, with S = 5, U = 12, and M = 4,
and simulated it for 10000 epochs. Inputs from the



6

five sensory systems were sampled from a uniform
random distribution within the range (0,1).

The four modes were each selected in roughly
equal proportion (∼ 2100 times each), as would be
expected when assigning the input values using a
uniform random distribution. However, no conver-
gence on any mode within the 30 time-steps oc-
curred for 1501 epochs, which is roughly 15% of the
total set of simulations. Therefore, Kilmer’s claim
that the model always converges is not entirely cor-
rect: there are some inputs for which the model
does not quickly converge (which is not to say that
it never converges).

3.3.1 Using fixed module-to-module con-

nections

We have investigated many aspects of the Kilmer-
McCulloch model in simulation (Humphries, 2003),
but have space only to report the most pertinent
results for the use of the model in the robot (see
section 5). In particular, we wished to know if the
random re-assignment of module-to-module connec-
tions at every time-step was necessary because (a)
this operation was difficult to reconcile with plau-
sible biological operations and (b) it made analy-
sis of the model’s dynamics impossible. Thus, the
model was simulated for a further 10000 epochs,
with the module-to-module connections randomly
specified at the beginning of each epoch and then
not changed. We found that the lack of module
connection reassignment did not change the con-
vergence proportions.

4 Embodying the Kilmer-

McCulloch model

Given the failure of the Kilmer-McCulloch model
to converge for all input sets, we may ask why we
should continue to investigate it in an embodied
form. The simple answer is that we cannot truly
probe a model’s capabilities using random noise:
the inputs it receives when embodied in a real-world
environment are not just noise, and thus may never
stray into the regions of input-space which result
in the non-convergence of the model. Moreover, we
do not know a priori whether the non-convergence
of the model is sufficiently great to prevent it from
successfully coordinating actions in the long-term.
Thus, we proceeded to test the Kilmer-McCulloch
model as a robot controller.

Our GPR model of basal ganglia function (Gur-
ney et al., 2001) performed well in a robot survival
task in which the robot’s goal was to survive by con-
tinually storing and recharging energy from specific

locations indicated by colored squares (Girard et al.,
2003). It is this task which we chose to assess the
Kilmer-McCulloch model on, because it provides a
set of quantitative measures, such as survival time,
that can be used to assess the relative merits of
different models. A simple winner-takes-all (WTA)
selector and a random controller are also assessed
on this task as control conditions against which the
performance of the Kilmer-McCulloch model imple-
mentation may be compared.

4.1 The task

The form of the task is as described in Girard et
al. (2003): a mobile robot explores an arena with a
grey colored floor (representing neutral) upon which
are laid two white and two black tiles. The robot
continually consumes energy, and may recharge it
from a separate energy store while stopped on a
white tile; it may recharge the energy store when
stopped on a black tile. When all energy has been
used, the robot expires. The aim of the task is to
maximize the lifetime of the robot.

We used a Hemisson robot (K-Team, Switzer-
land) for the real-world experiments and a We-
bots (Cyberbotics, Switzerland) simulation of the
same robot and arena combination to both speed
up data collection and allow us to test in an entirely
noise-free environment, thus ensuring optimal per-
formance from the WTA selector. From the robot’s
array of sensors we have used the two downward fir-
ing infrared sensors for determining floor color and
the front-left and front-right infrared sensors to rep-
resent bumpers for compatibility with Girard et al’s
sensory variables.

4.2 The robot’s state variables and

action repertoire

The robot controller has six state variables avail-
able to it, four external and two internal: BL and
BR represent the binary state of the left and right
bumpers (a value of 1 represents contact); LB and
LD, the Brightness and Darkness values (derived
from the infrared floor sensors) are also binary and
represent the floor color (LB = 1 on white, LD = 1
on black; LB = LD = 0 on neutral); PE represents
the potential energy (which is recharged on black
tiles); and E represents the robot’s energy (which
is recharged on white tiles by consuming potential
energy). Both the internal variables PE and E were
limited to the range (0,1).

Girard et al. (2003) specified the following equa-
tions for E and PE changes. The change δPE in
potential energy when recharging on a black tile for
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Teat seconds is

δPE = 0.027 Teat LD.

The change δE in energy when recharging from
stored potential energy on a white tile for Tdigest

seconds is
δE = 0.027 Tdigest LB

and the corresponding decrease in PE is

δPE = −0.027 Tdigest LB .

The robot has four selectable actions available to
it, each of which take a fixed number of time-steps
(one time-step is one second):

• Wander: a random walk in the environment,
formed by forward movement at a fixed speed
followed by a turn of a randomly selected angle
(2 time-steps).

• Avoid Obstacles: a maneuver to re-enter open
space; the robot moves backwards followed by
either, if both bumpers activated, a turn of
180o or, if one bumper activated, a turn of
45o in the opposite direction to the activated
bumper (2 time-steps).

• Reload On Dark: stop on a black tile and
charge potential energy (1 time-step).

• Reload On Light: stop on a white tile and
charge energy by consuming potential energy
(1 time-step).

Regardless of the action selected, energy E is con-
sumed at a constant rate of 0.002 unit/s. At the
completion of the currently selected action, the con-
troller uses the current sensory data to select a new
action (we call this the behavioral update). If the
controller is unable to resolve the selection com-
petition to one of the above actions, then Rest is
selected for 1 time-step, during which the robot is
stationary but consumes energy at the same rate.

4.3 Implementing the controllers

In the original implementation of the task (Girard
et al., 2003), the selection of the four actions was
based on their saliences: values which indicate the
level of urgency or motivation to perform that ac-
tion. To calculate the saliences Girard et al. hand-
crafted the following equations

SW = −BL − BR + 0.8(1 − PE) + 0.9(1 − E)

SA = 3BL + 3BR

SD = −2LB − BL − BR + 3LD(1 − PE)

SL = −2LD − BL − BR +

3LB(1 − E)[1 − (1 − PE)2]1/2

which are, respectively, the salience calculations for
Wander (SW ), Avoid Obstacle (SA), Reload On

Dark (SD), and Reload On Light (SL).
These salience values are calculated at each be-

havioral update. The WTA controller thus simply
selects the action with the highest salience value
as the winner, and the robot executes that action.
The random controller simply randomly selects one
of the five possible actions with equal probability at
each behavioral update.

For direct comparison with the WTA controller,
and for ease of comparison with the previous
work using the GPR basal ganglia model, we used
the salience equations with the Kilmer-McCulloch
model. Given that there are 4 actions, we required
M = 4 mode lines to represent them. Thus, we used
S = 4 sensory systems for which the corresponding
output carried the salience value. That is, for S1

output 1 had value SW , for S2 output 2 had value
SA, and so on. We used U = 12 modules to enable
direct comparison with the simulated version used
in section 3.

The squaring operation (equation 2) performed
by the modules on their sensory inputs means that
negative salience values would be incorrectly used.
Thus, we threshold the salience equations using the
Heaviside step function, so that the salience values
are either positive or zero. In addition, we found
in simulation that convergence often failed if there
were zero-valued inputs; thus we added a small
amount of noise to the sensory systems’ outputs at
each behavioral update, sampled from a Gaussian
distribution with variance of 0.001.

At each behavioral update the salience values are
calculated from the state variables and presented
at the appropriate outputs of the sensory systems,
as described above. The model is then run for 30
time-steps or to convergence, whichever is sooner. If
convergence is not reached, then the Rest behavior
is selected. Otherwise, the behavior on which the
model converged is executed, where behavior 1 is
Wander, behavior 2 is Avoid Obstacle, and so on.

4.4 Results

At the beginning of each run (whether simulation
or real-world) the robot was initialized with E = 1
and PE = 0.5 and placed at a random location in
the arena. Therefore, if no recharging of energy
occurred then the minimum survival time was 500
seconds.

We tested two different forms of the Kilmer-
McCulloch model. The first was the original model:
a new set of connections was created at each behav-
ioral update in an identical manner to the simulated
model described in section 3. The second was the
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Figure 3: Mean survival times on the energy task for the robot controllers, expressed as multiples of the minimum
possible time. Left: simulated task; robots using the winner-takes-all (WTA) controller survived for substantially
longer than all other robot-and-controller combinations. Right: using the real robot; the relative performances of
the controllers is the same as that for the simulated version. Error bars are ±1 S.E.

“fixed” model: a new set of connections was ran-
domly created at the start of each run of the robot
and then not altered at the start of each behav-
ioral update so that the sensory-system-to-module
and module-to-module connections were the same
throughout. Thus, the “fixed” models created a
set of random samples from the Kilmer-McCulloch
model configuration space.

The majority of robot experiments were con-
ducted in the Webots simulation environment, with
confirming tests run on the Hemisson robot. We
present first the major simulation results.

4.4.1 The Webots simulation of the energy

task

We tested the random, WTA, original Kilmer-
McCulloch model, and 5 different realizations of the
“fixed” Kilmer-McCulloch model based controllers
20 times each. The robot started from a different
position in the arena on each of the 20 tests, the se-
quence of positions being initially randomly chosen
and then repeated for each controller. In the fol-
lowing, we denote the original Kilmer-McCulloch
model as KM, and the five “fixed” models as KMF
1, KMF 2, and so on.

The robot consistently survived longest using the
WTA controller, with a mean time of 18972 sec-
onds; using the random and KM controller, the
robot survived little longer than the minimum pos-
sible time (Figure 3). Using most variants of
the “fixed” Kilmer-McCulloch model as the con-
troller also resulted in comparatively low survival
times. However, for one version (KMF 5) the robot
survived considerably longer (mean 2937 seconds;

maximum 7953 seconds) than all controllers other
then WTA, and than the minimum survival time.
Thus, some fixed configuration of connections for
the Kilmer-McCulloch model can result in improved
robot performance compared to the original Kilmer-
McCulloch model.

We compared the robot’s behavior patterns from
the tests using the WTA, KM, and KMF 5 con-
trollers, to determine what differentiated their per-
formances. Specifically, we measured the mean
duration (period of consecutive selection) and the
mean frequency (per 100 seconds – thus providing
a basis for comparing frequencies between simula-
tions which lasted different periods) of each action’s
selection, averaged over all 20 simulations. Figure
4 summarizes these measures. The WTA controller
selected the reloading actions (Reload On Dark and
Reload On Light) for longer than the other con-
trollers, with a correspondingly lower frequency of
selection. By contrast, the KMF 5 controller se-
lected the reloading actions for considerably less
time, but far more frequently. The KM controller
did not select the reloading actions for long peri-
ods nor did it select them frequently. These char-
acterizations of behavior patterns are borne out
by the sequences of behavior shown by the robot
(Figure 5). Thus, the failure of the KM controller
may be attributed to it not selecting the reload-
ing actions frequently enough to compensate for the
short duration of their selections. We note from
the behavior analysis (Figure 4) that Rest is never
selected by either the original or “fixed” Kilmer-
McCulloch model versions. Therefore, convergence
of the model always occurs given real-world sensory
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Figure 4: Mean frequency per 100 seconds (left) and mean duration (right) of each behavior for three controller
types: the winner-takes-all (WTA) controller, the original Kilmer-McCulloch (KM) model based controller, and
the “fixed” KM model controller KMF 5 (the version which survived the longest). Error bars are ±1 S.E.

data, rather than inputs of pure noise. This result
emphasizes the importance of testing neural mod-
els in embodied systems as well as in simulation, for
the results of section 3.3 may have led a researcher
to immediately abandon the model.

4.4.2 Real-world experiments

We used the real robot and arena to repeat a subset
of the experiments described above, using the ran-
dom, WTA, KM, KMF 1, and KMF 5 controllers.
Each controller was tested three times, the robot
starting from a random location in the arena on ev-
ery test. To keep the experiment times reasonable,
we removed the black and white tiles after 5000 sec-
onds and allowed the robot to expire; this only oc-
curred for the WTA controller. Nevertheless, the
relative performance of the controllers is the same
as for the simulated robot (Figure 3).

4.5 Summary

Our results were consistent across the simulated and
real robot tests; we base our comments on the simu-
lated versions as they were repeated more often. We
used a random controller to demonstrate that the
design of the arena is a sufficient test of the other
controllers. If a random selection of actions was
sufficient for the robot to survive for considerably
longer than the minimum time, then we would not
be able to compare the other controllers on the ba-
sis of survival time, as their performance would be
indistinguishable from chance. Therefore, because
the robot using the random controller survived no
longer then the minimum time, we are able to com-
pare the other controllers’ performances.

The implementation of the original Kilmer-
McCulloch model as a robot controller failed as an
action selection mechanism on the simple behav-
ioral task we used. This is evidence that the orig-
inal model is not an adequate model of the action
selection capabilities of the RF, assuming that the
RF is the action selection mechanism of the brain-
stem. Moreover, as it performed no better than
the random controller yet, unlike that controller,
had information-carrying inputs (saliences), we con-
clude that the computations of the original model
actually degraded the input information.

However, given that we found “fixed” versions
(KMF 5) of the model which resulted in consider-
ably greater survival times than the minimum time,
it is an open question whether or not there are other
configurations of the model which could perform as
well as the WTA algorithm when used as a robot
controller. If these configurations exist, we would
like to know what structural features make them
successful (and how these map onto the behavior
patterns described above), and how easy it is to
find them.

5 Optimising the Kilmer-

McCulloch model

5.1 Possible modifications

We know that some aspect of the Kilmer-McCulloch
model’s structure can be fixed so that a robot con-
trolled by such a model performs competently dur-
ing the energy task (section 4.4.1). In addition, we
know that the randomization of module-to-module



10

Figure 5: Example behavioral sequences from the simulated Hemisson, showing the selected actions and their
durations for the first 500 seconds of the robot test. Left: the winner-takes-all (WTA) controller. The robot
has infrequent but long selections of the reloading actions; Middle: the original Kilmer-McCulloch model; Right:
the best performing “fixed” Kilmer-McCulloch model (KMF 5). The robot has frequent short selections of the
reloading actions. The robot started at the same position and orientation in the arena for the tests which generated
these sequences.

connections made no difference to the ability of
the model to converge (section 3.3). Therefore,
we hypothesize that it is only the particular con-
figuration of sensory-system-to-module connections
which crucially determine the selection capabilities
of the Kilmer-McCulloch model.

The following describes how we searched the con-
figuration space using the Webots simulation of the
robot task (carrying out such a search using the He-
misson would have been too time-intensive). For all
the robot tests, the module-to-module connections
were randomly but evenly distributed, such that ev-
ery mode output from a module contacts exactly
two other modules (one an ascending, and one a
descending connection). Thus, the outputs of each
module were evenly sampled by the other modules.
This connection set was maintained across all the
robot experiments discussed below.

5.2 Evolving structure using a ge-

netic algorithm

The model used for the robot has S = 4, U =
12,M = 4. There are MU = 48 sensory-system-
to-module connections to specify, where each con-
nection takes an integer value specifying its origi-
nating sensory system. Therefore, there are 448 =
7.9928× 1028 possible combinations of connections.
We cannot reasonably explore such a large param-
eter space through random search, so our strategy
is to evolve the connections using a genetic algo-
rithm (GA) and examine the structure of the mod-
els which have the greatest genetic fitness. The
following describes our design choices for the chro-
mosome, measurement of fitness, and form of algo-
rithm.

The chromosome for the GA is straightforward:
it has 48 elements, one for each sensory-system-to-
module connection, which can take integer values in
the range (1,4) specifying the sensory system from
which the connection is made. The first four ele-
ments specify the connections to module 1, the next
four elements specify the connections to module 2,
and so on.

The key design choice for a GA is the measure-
ment of genetic fitness which is used to rank the
chromosomes in order of performance and to decide
which produce offspring and which are removed.
For this study, we are applying the GA to a problem
which has a direct biological parallel, that of evolv-
ing an action selection mechanism. Therefore, the
obvious choice for measure of genetic fitness would
be survival time. However, as we have seen in sec-
tion 4.4.1, it is possible for a robot to survive in
excess of 20000 seconds and so such a GA would in
practice take many days, even in simulation; more-
over, given that survival time is unbounded, it is
possible that a robot will never expire and, there-
fore, will not be assigned a fitness value.

As an alternative to survival, it seems reasonable
to suppose that a biological controller could be at-
tempting to maximize the agent’s (or animal’s) en-
ergy in the short-term thus ensuring that the agent
is able to reproduce. In other words, the selec-
tion pressure is exerted on the evolution of con-
trollers which maximize energy rather than survival
time (as the latter subsumes the former: a con-
troller which minimizes energy will inevitably lead
to short survival times). Therefore, we measure
mean E over a fixed time window of 3000 seconds;
we demonstrate below that this fitness measure-
ment is viable. (The time window was chosen to be
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considerably greater than the best survival time of
the original Kilmer-McCulloch model, thus heavily
penalizing any controllers which allowed the robot
to expire). Our resulting fitness function naturally
falls in the range (0,1), with 1 indicating maximum
fitness.

The algorithm was specified as follows. An ini-
tial population of 20 chromosomes was created, each
element chosen randomly from the possible inte-
ger range (1,4). For every chromosome population,
each chromosome in turn was converted into a set
of sensory-system-to-module connections, and the
resulting model evaluated on the energy task.

The population was then ranked by fitness level,
and the best 10 chromosomes retained. From this
remaining population, 10 pairs of chromosomes
were randomly chosen for mating: from each pair,
a new chromosome is created by conjoining the
two chromosomes at a randomly chosen split point.
Thus, a new population of 20 chromosomes results
(10 parents, 10 offspring).

The new population is subjected to mutation,
where each element is changed to one of the other
possible integer values with a probability of 0.05.
The top chromosome of the parent population is
never mutated, so that the most fit parent is always
retained intact (elitism).

Once all pairings and mutations have been car-
ried out, the resulting population is again evaluated
on the energy task. This process was iterated until
the termination condition was reached, that the top
chromosome was unchanged for 10 consecutive gen-
erations (iterations of evaluation-ranking-selecting-
mating-mutating).

5.3 Results

5.3.1 Fitness of the other controllers

As a basis for comparison, it was necessary to de-
termine representative fitness measurements for the
WTA, original Kilmer-McCulloch model, and ran-
dom controllers. These were computed by averag-
ing the fitness measurement (defined above) over
20 runs of the robot test used in section 4, each
run again starting from a randomly selected posi-
tion in the arena. The resulting mean fitness val-
ues were: WTA, 0.6669; original Kilmer-McCulloch
model, 0.1006; random, 0.0852.

5.3.2 Using normal inputs

For the first GA test we used the inputs defined
in section 4.3, with salience values on the appro-
priate mode output from the sensory system and
low-valued noise on the others. The GA terminated

after 24 generations with the best chromosome hav-
ing a fitness of 0.9203 (found on generation 14),
which was considerably more than all other con-
trollers. Moreover, from the total population, over
all generations, 52 (out of 480) chromosomes pro-
duced Kilmer-McCulloch controllers with higher fit-
ness then the WTA controller. Repeated runs of the
GA produced similar results. Thus, the GA found
numerous versions of the Kilmer-McCulloch model
which had greater fitness than the WTA controller.

5.3.3 Using probabilistic inputs

We wished to see if the model could be evolved to
handle a harder version of the task, using noisier
inputs to the model than those tried previously. If
a successful model could be evolved, this would fur-
ther demonstrate its capabilities as a general archi-
tecture for robot action selection.

The GA proceeded as described above. To create
noisier inputs to the model in a consistent manner,
the output of a sensory system was interpreted as
a probability vector: every output value indicated
the probability of that action being selected. The
salience values were calculated as before (section
4.3), then normalized with respect to their maxi-
mum value. The other 3 outputs for each sensory
system were then randomly assigned values that
would make the total output for each sensory sys-
tem equal one.

Using this input scheme, the GA terminated after
25 generations, with the best chromosome having a
fitness of 0.7099 (found on generation 15). This is
better than (random, original Kilmer-McCulloch),
or roughly equal to (WTA), the fitness that the
other controllers were able to achieve on the simpler
normal-input task. Again, repeated runs of the GA
produced similar results.

5.3.4 Energy-based fitness translates to

survival time

To justify the comparison between the fitness of
the previously tested controllers (in section 4) and
the evolved versions, we must demonstrate that the
mean-energy based fitness measurement is a suit-
able alternative to measuring survival time directly.
We do this by assessing the survival times of the
robot controlled by Kilmer-McCulloch models de-
coded from the most-fit chromosomes.

The most-fit chromosome evolved for the normal-
and probabilistic-input GAs were tested on the
robot experiments described in section 4: the
Kilmer-McCulloch model structure was decoded,
the robot started from 20 random locations in the
arena, and run each time until expiration. The
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mean survival times (±S.E.) for the three con-
trollers were: WTA 18972± 4461 s; from the most-
fit normal-input chromosome 105023 ± 20465 s;
from the most-fit probabilistic-input chromosome
3023±382 s. Thus, the greater fitness of the normal-
input evolved Kilmer-McCulloch model is reflected
in its survival time. Its maximum survival time was
307841 seconds, which is roughly 85 hours (or five
and a half days), demonstrating the necessity of us-
ing a fitness measurement other than survival time

To verify that the GA was finding a generally-
useful model, the above test was repeated once on
the real Hemisson robot, using the most-fit chro-
mosome from the normal-input GA as the basis for
the model. The robot survived in excess of 6000 sec-
onds, thus demonstrating that the evolved model-
based controller was at least equivalent to the WTA
controller when used on the real robot. (We could
not, of course, verify that the robot was able to sur-
vive to the same extent that it did in simulation).
Therefore, using a simulation-based GA produced
a controller that could be successfully used by the
real robot.

5.3.5 Structure of the model from the best

chromosomes

The pertinent structural feature for the normal in-
puts (and, as it turns out, for the probabilistic in-
puts) is the mapping of the salience-carrying out-
puts of the sensory systems to the appropriate in-
puts on the modules. To illustrate, consider a chro-
mosome for which the first four elements are [3 1
2 4]. Figure 6 demonstrates the decoding of this
part of the chromosome, with module U1’s inputs
mapped thus: the first output of S3 connects to in-
put 1; the second output of S1 connects to input 2;
the third output of S2 connects to input 3; and the
fourth output of S4 connects to input 4. It is only
this last connection which carries a salience value
(for Reload On Light). We may thus characterize
a chromosome-encoded structure by the number of
such salience connections from each sensory system
Ns, where s is the number of that sensory system.

For the most-fit chromosomes from both the
normal- and probabilistic-input GAs, we find that
N1 < N2 < N3 < N4. That is, the sampling of
Reload On Light salience is greater than the sam-
pling of Reload On Dark, which in turn is greater
than that for Avoid Obstacle, which in turn is
greater than that for Wander. Thus, it appears
that the GA has produced a mapping of connec-
tions which favors the reloading behaviors.

Yet, the behavioral patterns of the robot when
assessing the most-fit chromosomes (Figure 7) show
that, for both input types, this mapping of input

Figure 6: Decoding a chromosome into a Kilmer-
McCulloch model structure. The first four elements of
this chromosome are [3 1 2 4], which code the sensory
system inputs to the first module U1. Only the fourth
element specifies a connection which carries a salience
value, the others specify connections with noise (N).

connections results in a behavior pattern roughly
similar to that resulting from the WTA controller.
The main difference, compared to WTA, is a much
shorter duration of Reload On Dark.

The behavioral analysis also shows that both of
the most-fit chromosomes encoded models which
did not always converge. Robots using controllers
based on these models enacted the Rest behavior
at least once during each of the 20 runs. For the
probabilistic-input evolved model-based controller,
the frequency of occurrence was roughly the same
as that of the reloading behaviors. These results
are evidence that fixed Kilmer-McCulloch models
which do not always converge may actually be op-
timal for real-world tasks.

5.3.6 Summary

For both input forms, the comparatively few gen-
erations (14 for normal, 15 for probabilistic) that
were required to find the best chromosome, and the
number of chromosomes better than WTA indicates
that, although the configuration space is massive,
many configurations work as robot controllers. Re-
peated robot tests using the best evolved chromo-
somes demonstrated the flexibility of the Kilmer-
McCulloch model, as the analysis showed that it
could cause a WTA-like behavior pattern as well as
the frequent-selection behavior pattern seen in the
previous robot test (section 4).
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Figure 7: Behavioral statistics of the most-fit Kilmer-McCulloch models. Left: mean duration of behaviors. Right:
mean frequency of behaviors. These statistics show that the most-fit Kilmer-McCulloch models on both input
tests caused a behavior pattern roughly similar to that caused by the winner-takes-all (WTA) controller, though
with considerably shorter durations of Reload On Dark. Error bars are ±1 S.E.

6 Discussion

The preceding results have demonstrated that: (1)
in simulation, the original Kilmer-McCulloch model
often, but not always, rapidly converges on a par-
ticular selection, and convergence does not depend
on the continual random re-connection of module-
to-module connections; (2) in a robotic evaluation
of action selection capability, the original Kilmer-
McCulloch model is inferior to a simple winner-
takes-all algorithm. Random sampling of the space
of possible fixed Kilmer-McCulloch architectures
provides an existence proof that fixed versions can
perform better than the original version; (3) using
a genetic algorithm, the space of possible Kilmer-
McCulloch architectures can be rapidly searched to
find versions which out-perform the winner-takes-
all algorithm; (4) even when using a noisier input
representation, the genetic algorithm can still find
Kilmer-McCulloch model architectures which per-
form competently; (5) robots using the best evolved
architectures as controllers have very different be-
havioral patterns to those using the best randomly-
generated architectures as controllers, evidence of
the flexibility of the general Kilmer-McCulloch ar-
chitecture.

6.1 The reticular formation as action

selector

By our own criteria, the performance of the origi-
nal Kilmer-McCulloch model as a robot controller
is evidence that either it is not an accurate model
of the RF or that the RF is not the action selection
mechanism of the vertebrate brainstem. We be-

lieve the former to be true: a simple modification
of the model – stopping all random re-assignment
of connections – was able to produce competent
robot controllers. Yet this modification increases
the biological plausibility of the model: it is un-
likely that such a neural structure, with indirect
control over such basic physiological processes as
respiration and heartbeat (Yates & Stocker, 1998),
has a place for large degrees of randomness in its
structure. Thus, we argue that it is the operational

features of the Kilmer-McCulloch model that are
not accurate, whereas the architectural features are
accurate to the extent that we have tested them.
The tentative conclusion therefore must be that
the reticular formation, as conceptualized by the
Kilmer-McCulloch model architecture, is a candi-
date for the action selection mechanism of the ver-
tebrate brainstem.

6.2 Implications for the model of

vertebrate action selection

How then to proceed with the development of the
general model of the vertebrate action selection sys-
tem? If we accept that the RF is the candidate
action selection mechanism of the brainstem, we
must address the issue of how the basal ganglia and
RF interact to produce coherent sequences of be-
havior. From the available neuroanatomical data,
it appears that the basal ganglia outputs do di-
rectly contact regions of the medial RF (Schneider,
Manetto, & Lidsky, 1985), but are principally re-
layed via the pedunculopontine nucleus, a structure
which is not represented in the Kilmer-McCulloch
model (Delwaide, Pepin, De Pasqua, & Noordhout,
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2000). Thus, we wish to extend the model to incor-
porate the necessary neural structures to test the
form of interaction.

In doing so, we may incorporate more recent data
on the medial reticular formation that has added
detail to the Scheibel’s studies which formed the
basis for the Kilmer-McCulloch model. The ex-
istence of small- and medium-size neurons (New-
man, 1985), and of neuromodulator (noradrenaline
and serotonin) receptors in the giant cells’ den-
dritic fields (Stevens, McCarley, & Greene, 1994;
Kobayashi, Matsuyama, & Mori, 1994), has been
demonstrated and these may add to the compu-
tational capabilities of an RF model. In addi-
tion, it must be admitted that the operations per-
formed by the Kilmer-McCulloch model are some-
what removed from the now-traditional forms of
neural modeling, particularly in the model “neu-
ron” as we have abstracted it. A replication of
the selection results using more realistic model neu-
rons would provide further evidence for the RF-as-
action-selector. Thus, we propose to construct a
more directly biologically-constrained model of me-
dial reticular formation function, with the hypothe-
sis that such a model would show the same basic se-
lection operations as the Kilmer-McCulloch model.

6.3 General action selection mecha-

nisms

Our robot’s performance demonstrates that the
Kilmer-McCulloch model can form an action selec-
tion mechanism for artificial agents. Finding the
best models using the GA required only a quick
search of the space of all possible model configura-
tions; and, even then, the GA found many config-
urations which performed better than the alterna-
tive controller types. We conjecture that such rapid
optimization makes the fixed Kilmer-McCulloch
model suitable for a wide range of robot tasks. It
remains to be seen if the model can adapt to a
changing environment using a continuous learning
method rather than a GA.

We are not claiming that the Kilmer-McCulloch
model will always perform better than the WTA
algorithm. To fully demonstrate such a claim, we
would have to optimize the salience equations to de-
termine what their maximal possible fitness would
be: for example, we could replace the salience equa-
tions’ constants with variables that can be opti-
mized using a GA, evaluating the fitness with a
robot using the WTA controller. However, this does
not alter our finding that the Kilmer-McCulloch
model has potential as general action selection
mechanism.

6.3.1 Potential advantages of Kilmer-

McCulloch type architectures

It is worth noting how the Kilmer-McCulloch model
fits into the adaptive behavior debates on hierarchy
and centralized control. The model is a distributed
selection architecture, but does not require inhibi-
tion: for the purposes of simulation, the mode deci-
sion was made by summing over output vectors. For
a model with U modules and M modes, there are
3UM links. Adding a new mode requires an addi-
tional 3U links. However, this is a constant rate for
a given model, whereas global reciprocal inhibition
nets grow at an increasing rate with each additional
node.

Most, if not all, current models of action selection
in the adaptive behavior literature have some form
of modular decomposition of the agent’s behavioral
repertoire (Bryson, 2000). That is, they have dis-
crete functional modules which each represent an
action or group of actions. The Kilmer-McCulloch
model offers an alternative to modular representa-
tions: the behaviors are distributedly represented
by connections rather than functional units within
the selection mechanism. This offers a great ad-
vantage over a modular representation to hardware
or biological implementations as damage to part of
the system does not result in the loss of ability to
represent an action in the selection mechanism.

6.4 Conclusions

What general lessons may we take from this study?
Certainly there is a reaffirmation of the importance
of embodying neural models. The simulated ver-
sion of the Kilmer-McCulloch model did not always
converge on a selection. Yet the initial robot tests
demonstrated that real-world inputs are sufficiently
limited (or structured) to ensure convergence for
some versions of the model. And, as it turned out,
the optimally-performing versions – determined by
a genetic algorithm – did not require the model to
always converge. The occasional inability to make a
decision seems to have been a worthwhile trade-off
for ensuring consistently high levels of energy.

Unintuitive results such as these demonstrate the
usefulness of reverse-engineering robot controller
from biological substrates. The biological action
selection mechanisms may have built-in features
that solve problems we are unable to anticipate, or
may demonstrate the efficiency or utility of a de-
sign methodology that we had not considered. The
Kilmer-McCulloch model’s take on the reticular for-
mation anatomy has provided both of these, by not
always requiring a decision, and by demonstrating
a modular architecture without modular represen-
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tation.
We have yet to determine whether the evolution

of the modern vertebrate brain has deemed the
brainstem selection mechanism sufficiently useful
to build upon, or if it has found a better solution
within the structures of the basal ganglia. How-
ever, given that functions supported by other lower
neural structures, such as the superior colliculus’s
role in vision, are maintained in the modern verte-
brate brain it is likely that the reticular formation
continues to form a crucial part of the vertebrate
action selection mechanism.
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