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1  Introduction

The census has a high public and political profile at a time of growing

concern over the use and potential misuse of confidential personal data

held in computer databases.  As a result there is an increasing interest in

what is termed Statistical Disclosure Control (SDC); see Willenborg and

de Waal (1996).  This consists of a set of essentially ad hoc methods

designed to convert sensitive data about people into a safe form for

dissemination and statistical use.  Unfortunately, this task is not simply a

matter of setting size limits on the frequencies produced in tabular data.  It

is more complex because in a census context what matters is whether or

not the frequencies can be used to unambiguously identify individual

persons.  This definition of disclosure risk is harder to measure and there is

a growing danger that well intended but unnecessary privacy and data

protection actions will either damage the data or preclude analysis from

occurring.  The risks of disclosure need to be balanced against the cost of

non-analysis or poor analysis forced on users by over-stringent data

protection devices (Openshaw, 1994).  Of course personal information

should be safe when released and the risks of disclosure judged as

acceptable.  The problem at present is the absence of any methods for

assessing the risks and the proliferation of arbitrary data blurring heuristics

(e.g. global recoding, local value suppression, perturbation of data, record
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swapping etc) that may not be necessary or overly stringent or merely

ineffective.

Historically, census data confidentiality has been achieved via various

essentially ad hoc devices.  Anonymising the data by removing personal

identifiers such as name is a useful step but it is not thought to be an

adequate safeguard by itself, because the information contained within the

personal record may still be sufficient (or so it is alleged) for third parties

to identify the person almost as easily as if the name information had been

revealed.  This is the focus of the problem.  Data matching is widely

perceived to be a real threat. As a result various privacy enhancing

technologies are still being developed.  In the case of the UK census, it is

only in 1991 that a 1% sample of anonymised microdata (the SARs) was

produced and most census data are distributed in a geographically

aggregated form.  Additionally, census data for small areas (enumeration

districts and wards) have been subjective to putative confidentiality

enhancement based on the random modification of values, suppression of

data for areas below a minimum size, imputation of missing information

and sample coding.  This device almost certainly  ensured that the risks of

disclosure were very small although there is as yet no numerical estimate

of what they are.    In the future it is likely that these arbitrary measures
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will be enhanced by the application of newer heuristics, such as record

swapping and sophisticated rounding methods.  It is still unknown as to

whether they work and even whether they are needed.

So a major unresolved methodological problem is that as yet there is no

numerical measure of the confidentiality risks inherent in the release of

census data that can be used to measure in a scientific manner the ‘safety’

or otherwise of census outputs and thus demonstrate which of the various

protection enhancing methods work best or whether any even work at all.

Previously this mattered less than today because of: slow computers,

inflexible and fixed geographical reporting, large individual level databases

containing personal data were rare, and unaware users and media

combined to help preserve the confidentiality of the data.  Nevertheless the

“old” system worked and there has been so far no disclosure.  However

this was achieved at a cost; most users probably did not get what they

really wanted, the results were reported for arbitrary geographies, and the

data was distributed in a cumbersome and potentially ‘damaged’ form due

to the ad hoc nature of the confidentiality modifications.  Today user

expectations are increasing.  They want more relevant but less data, they

want accurate derived statistics to be used in resource allocation, and they

expect to obtain it for finer scaled geographies that are most appropriate to
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their own needs rather than what the Census Offices decree they can have.

Additionally, there is the expectation that there are no longer significant

computer processing (and hence cost) barriers to them receiving what they

want.  It may be assumed that the Office of National Statistics (ONS) is

also keen to both meet these evolving user requirements and seek new

markets for their data that a more flexible census output system may well

create, provided the confidentiality of the original census data is preserved.

The measurement of confidentiality risks is therefore crucial to the future

of the census (and many other data products derived from personal data).

This note makes some suggestions about how the confidentiality risks in

census data can be measured and once measured then there are various

means of controlling the statistical disclosure risks; for instance, by

optimising the geographies used to present the data.

2  Measuring disclosure risks in micro census data

In microdata the risk of disclosure is related to the number of unique

individual records describing persons that exist in the database for the

geographical universe relevant to it.  Let Xij be a data profile for person i

on variable j.  Assume there are N persons in a database (assume that this

is a geographical subset of some far larger database) and M variables
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available as match keys.  The profile of M variables for a person is

regarded as a match key that would allow a person to be identified if an

equivalent set of M variables were available from external sources.  Note

that these M variables would not be the full set of computer information

held about an individual, since the purpose of data matching would be to

use these M variables to ‘find’ a person for which additional M+ variables

could be retrieved as these would not be externally available and it is this

set of information that would be regarded as a disclosure.  However, in a

UK census context the risks of data disclosure are not nearly as important

as the risk of identification of a person, since this would appear to violate

the census confidentiality promise.

Let Dik be a match indicator which represents whether the ith record is the

same as the kth record (i ≠ k)

hence

D if X X 0ik
j

M

ij kj= ∑ − =0 (1)

else if there is any mismatch then set

Dik = 1

So Dik is set to 0 only if the two records (i and k) are identical in terms of

the M variables and to a value of 1 if there is any difference between them.

The number of times the data profile of person i does not exactly match

any of the other N records in the area of interest is



7

∑
≠i k

N

ikD     (2)

Hence person k is unique in the database of N records only if

∑ = −
≠i k

N

ik
D N 1 (3)

and hence, in theory at least, this person might be identified from

knowledge of his or her data profile.  This assumes that the risk of

disclosure for person k given data M in database N is some function of

how unique the data profile is.

The relative uniqueness of a person’s data profile is, therefore,

∑ −
≠i k

N

ik
D N/ ( )1 (4)

with a maximum value of 1.0 indicating a completely unique data profile.

If

∑ − − =
≠i k

ik
D N( )1 0 (5)

then the risk of disclosure is at a maximum since the record for person k is

unique.  If

∑ =
≠i k

ik
D 0 (5)

then clearly there is a minimum risk provided N is not too small since the

entire population of N records are identical.  Once the value of equation

(2) differs from N-1 beyond a small amount (e.g. 1 or 2) then the risk of
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disclosure will rapidly reduce since there can no longer be any assurance

that an unambiguous correct match can be made.

Note that this is a pathological worst case result for person k because it

makes a number of fairly extreme and unrealistic assumptions.

1. The M numeric variables describing person k are sufficient to uniquely

identify him or her to the challenger.

2. Person k is the object of interest of sufficient intensity to make this

identification worthwhile.

3. There is ‘something’ sufficiently special in the census database (the M+

variables) that justifies the effort, makes it worthwhile doing and is

sufficiently grievous to person k if it were to be disclosed.

4. The external set of j values used to search for person k are:

a) as accurate as the data in X,

b) as comprehensive as the data in X,

c) coded identically to the data in X, and

d) exist for identically the same time as X,

5. There is a perfect association between data uniqueness and disclosure,

whereas in reality there should be a small probability attached to it.

All this is extremely important although the risk of false matches is

probably many times greater than a real match.  Much of the non-census
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data that could be used as census match keys is of a far poorer quality,

than census data, the coding schemes may well be different, and the range

of matchable variables far more restricted than in X.  Finally, it can be

commented that much census data are not particularly sensitive; for

example, tenure type and how many cars belonging to a household can be

observed from the road outside.  However, it is accepted that

commonsense need not prevail in confidentiality debates and the risks of

breaches of confidentiality, however trivial they could be, need to be

averted especially when an official promise is given that it will be none.

Equation (3) can be used to measure the frequency of unique person data

profiles in the entire set of N, by simply counting the number of times the

result is equal to zero.  More formally, define a Kronecker delta δik such

that

δik = 1 if equation (4) is zero

else

δik = 0

The frequency of uniques is

∑ ∑
≠i

N

k

N

i k i

δ
ik

The average risk of disclosure for all N persons under the worst possible

conditions is simply
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∑ ∑ −
≠i

N

k

N

ik

k i

N Nδ / * ( )1 (7)

For equation (7) to be small either requires the unique count to be zero or

N to become increasingly large in size.  In fact the larger the uniqueness

count the larger N needs to become, or else changes made to the coding

detail applied to the M variables.  Broad banding, thresholding, cutting off

extremes, etc all have the effect of reducing the uniqueness of an

individual record and thus lowering equation (7).

Note that there are almost N2 comparisons to be made in the computation

of equation (7) and this could cause computation problems for large N

values.  Also there is no obvious natural threshold which equation (7) has

to meet, other than presumably a very small number.  Finally, the value of

equation (7) clearly depends on both the categorisation used for the M

variables and the size of N.  Nevertheless this type of risk assessment is

appropriate for microdata of the SAR type at the individual level; see

Marsh et al (1991), Skinner et al (1990, 1994).

So whilst it can be argued that these risks of disclosure identified in

equation (7) is an extremely artificial worst case such arguments are not

going to be accepted.  The problem is that the census confidentiality

promise was never qualified (or quantified) and disclosure neurosis



11

remains a major psychological, practical and political consideration that is

sometimes perceived to threaten the viability of future censuses.  It has to

be accepted that the perception that these risks are ‘real’ may be difficult

to dispel by numerical analysis and value based qualification.  As a result

pathological worst cases should be accepted as normal in confidentiality

risk assessment.

3  Measuring disclosure risks in aggregate census data

Once personal data are aggregated then some modification is necessary to

this measure of record uniqueness.  Personal data that are aggregated to

small geographic areas soon cease to be personal data, maybe after as few

as three to five records are added together.  The data also dramatically

change as individual characteristics coded in immense detail are

aggregated to become frequency counts.  Individual level categorical data

(e.g. Yes/No or multivalued categories) become frequencies when spatial

aggregated with the loss of linkage between different variables.

Continuous variables also suffer on spatial aggregation.  They become

recoded into categories and expressed as frequencies.  With the census

extensive use is made of two and sometimes three dimensional

crosstabulation to preserve at least some of the micro information, as the

unit of observation changes from that of the person to a modifiable
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geographical zone.  Indeed the reduction in the multivariate dimensionality

of the census is immense.  At the microlevel a set of 20 variables for an

individual represent coordinates in a 20 dimensional space.  When the data

are aggregated for a small geographic area much of this 20 dimensional

space is lost and replaced by 1, 2, and sometimes 3 dimensional slices

which represent only a fraction of the original information.

Despite this large degree of data generalisation the same fears of

disclosing information about identifiable individuals are applied to

aggregate census data even if the disclosure risks might well be thought to

be far smaller because of

a) the loss of precision due to the aggregation of dissimilar personal

records for a unit of geographic space,

b) the large amount of recoding and crosstabulation that removes

considerable uniqueness and detail, and

c) a major loss of data dimensionality and information as the M (question

related) dimensional data are replaced by 1, 2, and occasionally 3

dimensions of crosstabulation.

This greater safety against the risks of disclosure because of aggregation

and coarsening of the data is reflected in, for example, 1991 census output

areas in the UK with a limit of 50 people for small area statistics compared
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with a minimum size of 120,000 in the 1991 Sample of Anonymised

Records.  Nevertheless, for areas of less than 50 people (sub thresholded

areas) confidentiality risks are still thought to exist.  This is best seen in

the concern currently being expressed over the so-called differencing

problem  (Duke-Williams and Rees, 1997).  Differencing involves

overlaying data reported for different geographies and arises when simple

arithmetic can be used to provide estimates of census data for small areas

of a size less than the thresholds.  In the context of the 1991 census

disclosure control strategy this represents a potential breach of

confidentiality. In fact all that can safely be deduced is that it is a breach of

an arbitrary minimum size rule, the effectiveness of which as a risk of

disclosure ameliorative device is unknown.  Furthermore, the data as

published were still protected by the secondary mechanism of random

value perturbation.

Two fundamentally different situations exist with respect to aggregate

census data:

1) census data that are expressed as derived summary statistics which is

really an encrypted form that cannot be decomposed to accurately

reveal the constituent raw counts; and
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2) the census data that are presented as raw counts of the traditional small

area statistics form derived directly from the micro census data.

3.1  Derived summary statistics

In case (1) there is ‘probably’ no confidentiality risk depending on the

nature of the derived statistics.  Even if the encrypted statistics can be

decomposed all that is revealed are estimates of small area counts that are

probably considerably inferior to already available data, so there is no real

gain of useful information.  Table 1 outlines examples of the derived

statistics that are confidentiality risk free as census outputs, even if

computed for the smallest available geography using non randomised

census data provided their computation is performed in a safe setting (e.g.

within ONS).  A precedent already exists in the population and household

counts made available for 1991 unit postcodes.  It is totally unrealistic to

expect that a confidentiality intruder would be able (using non-census

data) to compute a series of percentages or component scores or chi-

square statistic for a target individual and then find a match in even the

most minimally aggregated spatial census data.

Instead the census confidentiality debate really needs to be focused more

or less exclusively on count data for small areas.  Traditionally the derived
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statistics are assumed to be 100% confidentiality safe because the data

from which they were computed are themselves 100% safe.  Historically,

slow computer processor speeds, high cost, and other IT related

constraints precluded a more flexible approach.  In the UK the only

significant historical exception is the Longitudinal Study (LS).  The LS

data is held in a secure environment to which non-ONS users have no

direct access to the data.  However, for almost two decades a small

number of privileged users have been able to obtain cross-tabulations and

run indirectly various statistical models on the microdata (via ONS) and

have the confidentiality safe derived results exported and reported to them.

Developments in IT now make this a possibility that could be applied to

the entire census database for future census.  There are no real

confidentiality reasons why derived statistics, expressed in a suitably

statistically encrypted nature, cannot be reported for virtually any level of

census output geography that users require, provided there is a minimal

degree of geographic aggregation; e.g. unit postcodes; and provided all the

processing is performed in a safe, ONS, setting.  Serious consideration

should be given to this form of specialised census output.
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3.2  Raw counts

The second case involves raw census counts and this has become the

subject of much of the confidentiality debates concerning flexible user

defined output geographies.  The question now is how to generalise

equations (1) to (7) so that they can be applied to aggregate data.  The

same worst case pathological assumptions are considered to continue to be

applied.

The geographical aggregation of microcensus data dramatically increases

the number of “variables” available to users.  The 24 census questions

expand up to about 20,000 cells of crosstabulated variables (for wards)

and about 10,000 for Enumeration Districts (EDs) in the 1991 census.

This reflects the desire to produce counts that satisfy the requirements of

many different users, with widely varying data needs.  It may be fairly

obvious that the confidentiality risk involved in releasing 10,000 counts for

a small area could be greater than if only 100 had been released, and

equally the size of area considered ‘safe’ for 100 counts would presumably

be far smaller than for 10,000.  There is almost certainly some kind of

disclosure risk trade-off between the degree of geographical aggregation

and the coding detail of the variables being aggregated.  The problem is
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how to identify this trade-off when no risk disclosure function has ever

been formally defined.  Additionally, it is probably only since the 1991

census was taken that computer speeds have increased sufficiently to make

computing confidentiality risk functions a practical proposition if indeed

there was a function to compute.

Equations (1) to (7) can be modified to handle spatially aggregated data as

follows.  The same equations are used and all that changes is the nature of

the Xij variables.  Suppose the 10,000 SAS counts as used in the 1991

census are of interest.  The full set of table recodes used to create these

counts are applied to expand out the personal microdata so that each

individual record becomes a long string containing many 0, 1 values.

The previous microdata Xij for the ith individual and jth census variable is

used to generate a new variable Zij which still relates to individual i but the

M original variables have been expanded from about 24 to about

10,000 zero-one valued variables.  Note that there is much redundancy and

the same original microdata variable may have been recoded in several

different ways, according to the definitions of the SAS tables.  These zero-

one values represent the position of a person in all the standard tables used

to report the SAS data. Using this form of data representation the full set
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of 100 tables for an enumeration district (ED) containing 400 individuals

would be represented as a set of about 10,000 counts obtained by

aggregating the 400 individual sets of 0,1 values.  This is a very clumsy

way of aggregating microdata but it is useful as a means of understanding

the proposed statistic.

Lets now define a new aggregated dataset, Ykj, which is an aggregation of

the full set of 0, 1 Zij values to reflect the particular geography of a census

ED labelled k for all count variables labelled j.  The SAS data for any ED

k are calculated as the sum of the N individual microdata records assigned

to this ED, viz

Y Zkj
i

N

ij

k

= ∑ (8)

where

Ykj is the jth count for ED k

Zij is the data for the ith individual of the Nk assigned to this ED k.  Note

that all the i subscripts relating to the individual census microdata records

located in the geographical area labelled k have been added together to

create the SAS count data Ykj.  In this representation of micro census data

there is a count (j) for each of the 10 000 table cells so that if the data Ykj

were mapped onto the SAS table layouts then 1991 SAS data for ED k

would be obtained.
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The confidentiality risk of finding any individual living in ED k on census

night now depends on their being a perfect match between Ykj and a single

unique entry in the Zij’s that were added together to create Ykj.  Equations

(6) and (7) can be re-used here based on a revised Dik values that use Z

and Y and with the matching being restricted to 0-1 values in Z.  Equation

(1) is now re-defined so that

D if Z Yik
j 0

ij kj= ∑ − =
∈

1 Θ (9)

else

D
ik

= 0

where

Θ  defines the j values in Zij that have data values of 1in the Ykj.

So if all the ‘1’s in an individual microdata record for any i all correspond

with totals of 1 in the aggregate Ykj, then equation (9) will equal zero and

that individual will be identifiable as having a unique combination of

characteristics in all the published cross tabulations.  This can be termed a

Full Record Tabular Unique (FRTU) and is considered to represent a risk

of disclosure, although again it is a ‘worst case scenario’ interpretation of

risk since it need not necessarily follow that the 1’s in the unused M+

variables relate to this individual as distinct from any others.  Little risk is
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thought to be attached to partly matched records, the so termed Part

Record Tabular Uniques (PRTU).  The latter is somewhat problematical

since the variables could be so chosen to relate only to a subset of the data

for which a unique match can be made.  Correct identification is now

subject to chance as the remaining set of unused 1’s need not relate to a

unique person.  In practice an ‘attacker’ will not know which of these

unique observations in different output tables all refer to the same person.

If the row vector of values for Ykj contains no 1’s then there is no

confidentiality problem since there can be no matching unique entry in any

of the Xij. The suggestion is made, therefore, that only the 1 values in Ykj

and corresponding variables in Xij are used in the assessment procedure.

This is the safest possible (i.e. worst case) assumption that can be made.

Complete confidentiality is assured only if the value of equation (9) is zero

for all N individuals in this ed.  Note that as there are only N comparisons

to be performed, so that the computational load of making this estimate is

small.

Equation (9) provides a worst case confidentiality risk estimate.  It can be

made more realistic by restricting the choice of the M variables used in (9)

to those that are available from non-census sources and hence available as
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match keys.  Table 2 lists some of those variables likely to be available

from non-census sources as match keys. This would reduce the 10,000

crosstabulated counts used to generate Z and Y to a much smaller set of

new crosstabulations that represent externally available match keys.  It

would also be possible to adjust for false matches where the 1 values

match on the search key but the remaining 1 values do not relate to the

same individual.  However, this is probably not necessary because the

chances of disclosure given perfect information (equation 9) probably

rapidly goes to zero once the number of individual records (Nk) used to

create the aggregate SAS data for area k exceeds a small value.  It will

also be influenced by the recodes used to create the M counts and the

nature (scale, aggregation, and heterogeneity) of the geography used for

the spatial aggregation.  Nevertheless, understanding these covarying

factors is crucial to any scientific approach to census confidentiality.

4  Handling the differencing problem

In the case of aggregate census data this problem is less serious than it

may at first sight appear because:

1. it can only be attempted by licensed census users and it could therefore

be prohibited by adding appropriate clauses to the legal agreement
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defining conditions of access and, or, by defining codes of good

practice.

2. it can only occur in relation to data for generally available standard

census geographies;

3. it could occur when multiple different user specific own geographies are

used and this can be easily controlled via conditions of access;

4. it can be detected and made part of the risk disclosure assessment

process used here because equation (9) can be applied to the areas

created by the differencing process, and

5. If still required the values in published cross-tabulations can be

protected by secondary mechanism of disclosure control, such as

random perturbation or record swapping.  For any tables ‘revealed’ for

new areas, the degree of uncertainty which is attached to the data will

be equal to the sum of the uncertainties of the two source tables used.  If

the revealed area contains a small (sub-threshold) number of persons,

the amount of error may well be high enough to render the revealed

table unusable.
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5.  Testing risk assessment in tabular and microdata - a small

worked example

5.1  Some sample data

A worked example on hypothetical data may aid understanding of the

proposed measure.  Consider a hypothetical list of individuals, with a few

characteristics.  Two lists are used for comparison: group A consists of all

uniques, group B has one pair of ‘twins’; see Table 3.  There are three

associated variables, which is the minimum required to be able to  define a

set of tables in which one variable is not common across all tables.  Four

variables would be required in order to define a set of tables in which it

would be possible to have tables in which the variables do not appear in

any other tables; sex (1-2), age (0-100), and ethnic group (1-4).  As the

number of variables in increased, so there is greater flexibility in defining

tables which are linked to other tables to a greater or lesser extent.  It is

likely that more realistic results require a larger number of variables but it

is hoped that the small dataset used here will be sufficient to illustrate the

methods used whilst remaining simple enough to follow.

5.2  Measuring disclosure risks in microdata

References in parentheses e.g. (1) refer to equation numbers in the text:
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Table 4 shows the Dik tables for Data A and B in full.  They are

symmetrical around the i=k diagonal and equations (2) and (3) both require

the full array.  The values shows in Table 4 for equation 3’ are a

consequence of equation (3).

∑

−
≠i ik

ik
D

N( _1
3’

This indicates some measure of risk for each record.  If equation 3’ is

equal to 1, then the record is unique with respect to all other records; if it

is equal to 0 then the record is identical to all other records.  In practice it

should be possible to half the computation requirements of filling in the

matrix prior to calculation of these statistics by modifying the formulae

such that only one half of the matrix is required.

Both data sets are small and contain a large proportion of uniques.  One

would respect this to be a high risk scenario, and it can be seen that the

value of equation (7) is 1 for group A (the maximum value possible) and

0.97 is the case of group B (a very high value).

5.3  Measuring disclosure risks in aggregate census data

Using the same data, four tables of aggregate census data may be

constructed:

(1) Age & Sex,
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(2) Age & Ethnic group,

(3) Sex & Ethnic group,

(4) Age & Sex & Ethnic group.

‘Age’ is shown in Table 3 as being single years, but it may be re-coded in

a number of ways; ‘Ethnic Group’ is already assumed to be broad-coded.

The ‘Sex’ variable cannot be re-coded, although it could (as with any of

the three) be replaced by ‘Persons’.

For the purposes of this example, only three tables will be used as being

representative of SAS data.  These tables are:

(1) Age & Sex (Age at 5-year groupings, 0-4,5-9,...,90+),

(2) Age & Ethnic group (Age in broad ‘life-stage’ groupings, 0-14,15-

29,30-64,65+), and

(3) Sex & Ethnic group.

In all cases, the row variable is quoted first, and it is assumed that cell

numbering is done in a column-then-row pattern.

The table layouts and cell numbers are illustrated in Tables 6, 7 and 8.

In order to avoid complexity at this stage, the broader grouping of ‘age’

has been chosen to have boundaries between classes that are the same as

the 5-year grouping, and to ignore the male-female difference in retirement

age.
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Table 5 shows the sample microdata together with the recode values for

the ‘age’ variable.

The data can now be transformed into a 0,1 vector, where each position on

that vector represents a cell in one of the tables produced.  The value is set

to 1 if the person is a member of that particular combination of values or 0

otherwise.  In this example, the three tables contain respectively 38 cells

(sex=2 by age=19), 16 cells (age=4 by ethnic=4) and 8 cells (sex=2 by

ethnic=4); to give a total length of 62 for the vector of 0, 1 values for each

individual.

Figure (1) shows how the first individual in the sample data would

increment the cross-tabulations, and how those tables would be

transformed to produce the following set of 0, 1 values.

Table 1: 00000000001000000000000000000000000000
Table 2: 0000100000000000
Table 3: 10000000

Person  1: 00000000001000000000000000000000000000 0000100000000000 10000000

The other individuals in group A would produce the following vectors:

Person  2: 00000000000000000100000000000000000000 0000000000010000 00000001
Person  3: 00001000000000000000000000000000000000 0000000010000000 10000000
Person  4: 00000000000000000000000100000000000000 0000000010000000 00001000
Person  5: 00000000000000000000100000000000000000 0000000010000000 10000000
Person  6: 00000000000000100000000000000000000000 0000000001000000 01000000
Person  7: 00010000000000000000000000000000000000 0100000000000000 00000100
Person  8: 00001000000000000000000000000000000000 1000000000000000 10000000
Person  9: 00000000000000000000000000010000000000 0000000000001000 00001000
Person 10: 00000000000000000000000100000000000000 0000000000100000 00000010
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Spaces are included to aid readability by separating out the boundaries of

the three tables.  The SAS data termed here Ykj is defined as an aggregate

of the above Zij vectors.  Assuming that the 10 individuals were the

residents of one ED, then we would get the aggregate vector:

Ykj:

ED total : 00012000001000100100100200010000000000 1100100031111000 41002111

The task now is to compare each of the individuals data profiles with the

aggregate record.  Records are considered to be at risk if a 1 in the

individual record matches a 1 in the aggregate record.  If the value of any

component of the aggregate record is more than 1, then it indicates that the

corresponding cell in a published table would contain a count greater than

one, and thus it would not be possible to conclusively infer anything about

a particular individual. Each individual record will contain a fixed number

of ‘1’s, depending on the number of  tables (or subtables) defined.  If each

1 in the individual record matches a 1 in the aggregate record, then that

individual is at risk of being disclosed.

Using the sample data, we can compare the first record with the aggregate

record:

Person  1: 00000000001000000000000000000000000000 0000100000000000 10000000
ED total : 00012000001000100100100200010000000000 1100100031111000 41002111
                     *                                *            *
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The asterisks identify the locations of ‘1’s in the individual record.  It can

be seen that in the final section there is not a match between the individual

record and the aggregate record, and thus the record is not at risk of

disclosing personal details, and thus Dik for this record is 0 (see equation

9).

If this is repeated for the remaining individuals, we find: Dik

Person  2: 00000000000000000100000000000000000000 0000000000010000 00000001
ED total : 00012000001000100100100200010000000000 1100100031111000 41002111
                            *                                *            * 1

Person  3: 00001000000000000000000000000000000000 0000000010000000 10000000
ED total : 00012000001000100100100200010000000000 1100100031111000 41002111
               *                                          *        * 0

Person  4: 00000000000000000000000100000000000000 0000000010000000 00001000
ED total : 00012000001000100100100200010000000000 1100100031111000 41002111
                                  *                       *            * 0

Person  5: 00000000000000000000100000000000000000 0000000010000000 10000000
ED total : 00012000001000100100100200010000000000 1100100031111000 41002111
                               *                          *        * 0

Person  6: 00000000000000100000000000000000000000 0000000001000000 01000000
ED total : 00012000001000100100100200010000000000 1100100031111000 41002111
                         *                                 *        * 1

Person  7: 00010000000000000000000000000000000000 0100000000000000 00000100
ED total : 00012000001000100100100200010000000000 1100100031111000 41002111
              *                                    *                    * 1

Person  8: 00001000000000000000000000000000000000 1000000000000000 10000000
ED total : 00012000001000100100100200010000000000 1100100031111000 41002111
               *                                  *                * 0

Person  9: 00000000000000000000000000010000000000 0000000000001000 00001000
ED total : 00012000001000100100100200010000000000 1100100031111000 41002111
                                      *                       *        * 0

Person 10: 00000000000000000000000100000000000000 0000000000100000 00000010
ED total : 00012000001000100100100200010000000000 1100100031111000 41002111
                                  *                         *            * 0

The risk of disclosure given by equation (7) is δ
k

k

N

N∑ /  = 3/10  = 0.3

Incidentally, using group B, which has two non-unique individuals also

generates a risk of 0.3, however the sample is too small to comment on

what the relationships might be between the proportion of microdata

uniques in a population and the proportion of SAS data uniques.
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Thus we find that for this ‘ED’, although all individuals are unique when

considered as microdata, only 3 records are at risk when considered as

SAS or aggregate data.  Clearly, much of this reduction of risk is due to

broadcoding of the age variable.

The other significant issue in assessing the risk of disclosure in aggregate

data is the way in which tables are linked by common variables.  At one

end of a spectrum, we could imagine a set of tables in which all tables

share a particular variable with common coding standards.  If it is possible

to identify an individual given this variable (e.g. if ‘age’ is common, and

there is, say, only one 17 year old in the ED) then it would be possible to

construct an individual record by tracking this person across tables.  At the

other end of this spectrum would be a set of tables in which no variable

was used more than once.  Clearly, there would be no way to reconstruct

an individual record from these tables, and only partial disclosure could

occur (i.e. we might discover from the tables that there is only one 27 year

old female, and we might also discover that there is only one person who

travels to work by car, but unless there was only one person in the ED

there would be no reason to suppose that these two facts referred to the

same person).  In practice, the set of tables will be somewhere between

these two extremes, with some variables occurring in many (but not all
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tables), with a number of different coding schemes.  Age and sex are the

obvious common keys.

The question posed is whether or not the proposed method will take into

account the effects of linking tables.  If the set of tables contain a large

number of linked tables, then will the proposed method be more likely to

produce a match between an individual and the aggregate record?  If two

variables produce a large number of uniques when crosstabulated, then

necessarily the distribution of individuals between categories of at least

one of the variables must include some single counts.  If that variable is

used repeatedly (with the same coding) then it seems plausible to suggest

that it will lead to the presence of uniques in other tables in which it is

used, (or at the very least, it will make the presence of uniques more

probable) and that the method will then find more matches.

The possibility of false matches also needs to be considered.  For a fixed

number of true matches, if one set of tables generates a large number of

false matches then it implies a lower risk of disclosure.  Using the data

previously described above, it can be seen that there are 6 ‘1’s in the first

section, 7 in the second, and 4 in the third.  This gives a total of 6*7*4 =
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168 theoretical combinations of ones across all three tables, of which all

but three would be false matches with individuals.

ED total   : 00012000001000100100100200010000000000  110010031111000  41002111
                *      *   *  *  *      *            **  *   ****      *   ***

The real number of potential matches will be somewhat less than 168,

because of the way that tables are linked.  Nevertheless, this high risk of

false matching may well be regarded as an additional disclosure safeguard.

A modification to the method to take false matches into account which

might be introduced is to consider the average risk as defined by equation

(7) compared to the risk of a false match.  If such a step was taken, then it

might be useful to take into account the various forms of data modification.

Although the total number of potential matches (i.e. including false

matches) should be calculated using all the (modified) microdata records,

the actual risk should perhaps be calculated only using unmodified Zij

records.  This could be achieved by defining some value Xi which would

be set to 0 if a record was unmodified, but set to 1 if the record had been

modified through some pre-tabulation protection method such as record

swapping, or had been introduced to the dataset via imputation.  Clearly

such records do not refer to real people, and thus can not be at risk of

disclosure, even if they are FRTUs when the tabulation process is

conducted.
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5.4  Using more tables

The methodology scales up to handle all the SAS cells.  Indeed there is a

suspicion that with aggregate census data the risks of disclosure actually

decrease when more cells are used (or at least they do not dramatically

increase as they do in the microdata) because of the increase in

dimensional complex creates a dense fog of uncertainty within which the

probability of a false match is many orders of magnitude greater than that

of a real match.  This conjecture can only be proven by computer

experimentation on larger numbers of tables.  This work is now underway

funded by the ESRC.

6  Conclusions

The development of an explicit measure of the confidentiality risks implicit

in the release of census data is viewed as extremely useful for the

following reasons:

1. it demonstrates and thus enhances the confidentiality of census data by

ensuring safe release by measuring the actual risks and by applying

consistent standards;

2. it creates the prospect of more useful and flexible census outputs that

may better match user needs; and it opens up a safe new approach to
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census dissemination appropriate for 2001 and beyond with the prospect

of new markets for census data.

The challenge now is three-fold:

1. to complete the research and demonstrate that the statistical assessment

of risk disclosure is viable and works;

2. to demonstrate a prototype system that illustrates the functionality

described here and is proven safe on synthetic data; and then

3. apply the prototype system to real world data in a safe setting and hence

demonstrate to census agencies that the proposals are viable.
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Table 1  Examples of confidentiality safe aggregate data census outputs

__________________________________________________________

• population and household counts

• an index based on two or more individual variables expressed as an

integer

• a derived statistic computed from several variables; i.e. signed chi-

square

• a set of principal component scores based on 40 variables

• one or more variables recoded as percentages and integerised

• parameters in a statistical model derived from the data

• a multivariate classification cluster code

__________________________________________________________
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Table 2  Possible non-census based personal data match keys

__________________________________________________________

gender

age

occupation (broad banded)

house type

tenure

car ownership

__________________________________________________________
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Table 3  Synthetic data

Group A (all unique) Group B (one pair)

Person Sex Age Ethnic Person Sex Age Ethnic

1 1 27 1 1 1 27 1

2 2 40 4 2 2 40 4

3 1 11 1 3 1 11 1

4 2 59 1 4 2 59 1

5 1 52 1 5 1 52 1

6 1 38 2 6 1 38 2

7 2 5 2 7 2 5 2

8 1 13 1 8 1 13 1

9 2 68 1 9 2 68 1

10 2 57 3 10 1 52 1
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Table 4  Dik values for data A and B

                                        Data A

k

1 2 3 4 5 6 7 8 9 10

i 1 X 1 1 1 1 1 1 1 1 1

2 1 X 1 1 1 1 1 1 1 1

3 1 1 X 1 1 1 1 1 1 1

4 1 1 1 X 1 1 1 1 1 1

5 1 1 1 1 X 1 1 1 1 1

6 1 1 1 1 1 X 1 1 1 1

7 1 1 1 1 1 1 X 1 1 1

8 1 1 1 1 1 1 1 X 1 1

9 1 1 1 1 1 1 1 1 X 1

10 1 1 1 1 1 1 1 1 1 X

eq(2) 9 9 9 9 9 9 9 9 9 9

eq(3’) 1 1 1 1 1 1 1 1 1 1

eq(7) = 1

Note:  D
ik

is used to measure the similarity of pairs of records: 0 where records are

identical, 1 where they are not.

                                         Data B

k

1 2 3 4 5 6 7 8 9 10

i 1 X 1 1 1 1 1 1 1 1 1

2 1 X 1 1 1 1 1 1 1 1

3 1 1 X 1 1 1 1 1 1 1

4 1 1 1 X 1 1 1 1 1 1

5 1 1 1 1 X 1 1 1 1 0

6 1 1 1 1 1 X 1 1 1 1

7 1 1 1 1 1 1 X 1 1 1

8 1 1 1 1 1 1 1 X 1 1

9 1 1 1 1 1 1 1 1 X 1

10 1 1 1 1 0 1 1 1 1 X

eq(2) 9 9 9 9 8 9 9 9 9 8

eq(7) 1 1 1 1 .88 1 1 1 1 1

eq(4) = 0.9777
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Table 5  Recoded Microdata

Group A (all unique) Group B (one pair)

Person Sex Age Age1 Age2 Ethnic Person Sex Age Age1 Age2 Ethnic

1 1 27 6 2 1 1 1 27 6 2 1

2 2 40 9 3 4 2 2 40 9 3 4

3 1 11 3 1 1 3 1 11 3 1 1

4 2 59 12 3 1 4 2 59 12 3 1

5 1 52 11 3 1 5 1 52 11 3 1

6 1 38 8 3 2 6 1 38 8 3 2

7 2 5 2 1 2 7 2 5 2 1 2

8 1 13 3 1 1 8 1 13 3 1 1

9 2 68 14 4 1 9 2 68 14 4 1

10 2 57 12 3 3 10 1 52 11 3 1


