
This is a repository copy of Parallel performance prediction for numerical codes in a
multi-cluster environment.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/4921/

Proceedings Paper:
Jimack, P.K. and Romanazzi, G. (2008) Parallel performance prediction for numerical
codes in a multi-cluster environment. In: Proceedings of the International Multiconference
on Computer Science and Information Technology. International Multiconference on
Computer Science and Information Technology : 4th Workshop on Large Scale
Computations on Grids, October 20–22, 2008, Wisła, Poland. IEEE , pp. 467-474. ISBN
978-83-60810-14-9

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
See Attached

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Proceedings of the International Multiconference on
Computer Science and Information Technology pp. 467–474

ISBN 978-83-60810-14-9
ISSN 1896-7094

Parallel Performance Prediction for Numerical
Codes in a Multi-Cluster Environment

Giuseppe Romanazzi, Peter K. Jimack
School of Computing
University of Leeds

LS2 9JT Leeds, United Kingdom
Email: {roman,pkj}@comp.leeds.ac.uk

Abstract—We propose a model for describing and predicting
the performance of parallel numerical software on distributed
memory architectures within a multi-cluster environment. The
goal of the model is to allow reliable predictions to be made as to
the execution time of a given code on a large number of processors
of a given parallel system, and on a combination of systems, by
only benchmarking the code on small numbers of processors. This
has potential applications for the scheduling of jobs in a Grid
computing environment where informed decisions about which
resources to use in order to maximize the performance and/or
minimize the cost of a job will be valuable. The methodology is
built and tested for a particular class of numerical code, based
upon the multilevel solution of discretized partial differential
equations, and despite its simplicity it is demonstrated tobe
extremely accurate and robust with respect to both the proces-
sor and communications architectures considered. Furthermore,
results are also presented which demonstrate that excellent
predictions may also be obtained for numerical algorithms that
are more general than the pure multigrid solver used to motivate
the methodology. These are based upon the use of a practical
parallel engineering code that is briefly described. The potential
significance of this work is illustrated via two scenarios which
consider a Grid user who wishes to use the available resources
either (i) to obtain a particular result as quickly as possible, or
(ii) to obtain results to different levels of accuracy.

Index Terms—Parallel Distributed Algorithms; Grid Comput-
ing; Cluster Computing; Performance Evaluation and Prediction;
Meta-Scheduling.

I. I NTRODUCTION

A S GRID computing becomes available as a practical
commodity for computational science practitioners the

need for reliable performance prediction becomes essential.
In particular, when a variety of computational resources are
available to a scientific research team they need to be able
to make informed decisions about which resources to use,
based upon issues such as the size of the problem they wish
to solve, the turn-around time for obtaining their solutionand
the financial charge that this will incur. In order to make such
decisions in a reliable way, it is necessary that they are able
to predict the performance of their software across different
combinations of these resources.

In this work we present a robust methodology for predicting
the performance of parallel numerical multilevel software
across different clusters (in terms of both processor and
communications architectures) and across combinations of
these clusters. The long term goal of this research is to model

numerical software that requires a large computational cost, in
a simple and cheap way using only few parallel runs across
few processors.

Multilevel software (such as multigrid) has been selected
for this work due to its growing importance in practical high
performance computing software: as the maturity of multilevel
algorithms continues to develop, it is able to provide excellent
efficiency for very wide classes of problem [1], [2], [3], [4].

The methodology is first described and its predictive capa-
bility is then assessed for five different cluster configurations,
using a typical parallel multigrid code. It is of course desirable
that the predictive methodology proposed should be appropri-
ate to the widest possible classes of numerical algorithms and
the paper concludes with a discussion of these issues along
with an illustrative example.

II. RELATED WORK

In previous work [5] we have begun to consider the use
of simple (and cheap to implement) predictive models for the
solution of certain classes of parallel multigrid codes when
executed on distributed memory hardware. Whilst the results
obtained in [5] are very encouraging, in this work we develop
the ideas further in a number of significant ways.

1) A more general model for inter-processor communica-
tion is used which enables less-scalable communications
patterns to be captured than previously. This is important
when there are all-to-all communications at any point
in the code and/or when the hardware does not scale
well (e.g. Ethernet switching). The additional generality
of this work also ensures that both blocking and non-
blocking communication patterns can be reliably cap-
tured and modelled.

2) We extend our previous work to consider inter-, as well
as intra-, cluster communications. Specifically, we now
permit a single parallel job to be split across two entirely
different clusters and the performance to be reliably
predicted in advance.

3) In addition to reporting on the performance of our
model as applied to benchmark multigrid codes, we also
provide preliminary results which demonstrate that this
performance is also achieved when applied to a practical
multilevel engineering code [2].

467

468 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

There is a very substantial body of research into perfor-
mance modelling [6] that varies from analytical models de-
signed for a single application through to general frameworks
that can be applied to many applications on a large range of
high performance computing (HPC) systems. For example, in
[7] detailed models of a particular application are built for
a range of target HPC systems, whereas in [8] or [9] an
application trace is combined with some benchmarks of the
HPC system that is being used in order to produce performance
predictions.

Both approaches have been demonstrated to be able to
provide accurate and robust predictions, although each has
its potential drawbacks: significant code specific knowledge
being required for deriving the analytic models, whereas the
trace approach may require significant computational effort.
Moreover, in the former approach, when a different HPC
system is used it would generally be necessary to change the
model, adding new parameters for example. Instead, in the
latter, we need to add or to find new benchmarks when a new
code is used. Considering these limits, the choice between the
two approaches can depend also on other factors. For example,
when it is more important to predict the run-time of a large-
scale application on a given set of systems, as opposed to com-
paring the performance of the systems in general, researchers
(like those in the LANL group [7]) prefer to study deeply
their application in order to obtain its own analytic model for
the available set of HPC systems. On the other hand, when
it is more interesting to compare performances of different
machines on some real-applications, the latter approach is
preferable; in that case different benchmark metrics can be
used and convoluted with the application trace file.

Our approach lies between these two extremes. We use
relatively simple analytic models (compared to the LogP
model [10] for example), that are applicable to a general class
of multigrid algorithms and then make use of a small number
of simulations of the application on a limited number of CPUs
of the target architecture in order to obtain values for the pa-
rameters of these models. Predictions as to performance of the
application on larger numbers of processors may then be made.

As already indicated, our emphasis in this paper is to
provide computational science practitioners with the tools
to be able to make informed decisions concerning the Grid
resources that they request. Indeed, the scenarios that we
consider specifically relate to situations in which the Gridusers
are aware of which resources are immediately available (and
can be reserved) or they are able to reserve resources at some
future point in time. More generally however exactly the same
information regarding the predicted execution time of a code
on different resources, and different combinations of resources,
is required by a Grid meta-scheduler for it to be able to work
effectively. The job of such a scheduler is to evaluate different
candidate resource sets and to select the “most suitable”
resources for the execution of the application, e.g. [11]. It is
with this in mind that our relatively light-weight approachto
performance prediction becomes particularly attractive,since
it is both simple and cheap to execute automatically.

There is of course a significant body of literature relating to
performance models for large Grid environments. An excellent
recent example is the research described in [12] which breaks
the execution time of a parallel application into two parts,
representing computation and communication costs, that are
subsequently estimated for the target platform. Unlike our
approach [12] is restricted to tasks that run on a single Grid
resource, however the situation in which the load on the
resource varies dynamically is included. Other researchers
have also considered this situation, including the possible use
of stochastic information to predict an application’s behaviour
when there is contention for resources [13], [14]. In our work
we assume that once a set of resources have been allocated
they will be held exclusively by the application for the duration
of the run or the reserved time slot, whichever is the shorter.
Hence we do not consider this issue of contention here.

A variety of other papers on the subject of performance
modelling in both dedicated and non-dedicated environments
are described in [6] or [12], for example, so we do not repeat
such reviews here. However, we finish this introduction by
noting that the precise scheduling mechanism that is used for
executing jobs on a Grid may have a significant influence
on the performance of the prediction models themselves.
Throughout this work we are focused on the situation where
we are interested solely in the computational resources that
are either available and ready to be used immediately, or the
resources that may be reserved for use at some specified time
in the future. All of the tests that were undertaken for this work
were executed without the intervention of a scheduler. Instead,
available resources were reserved and then the required jobs
were launched.

III. PARALLEL NUMERICAL SOFTWARE

Most numerical methods for the solution of partial differ-
ential equations (PDEs) are based upon the use of a spatial
mesh for performing the discretization (as in finite difference,
element, etc.), see for reference [15], [16].

Using parallel resources we are able to solve problems
on finer grids than would be otherwise possible, so as to
achieve greater accuracy. When the work per processor is kept
constant, a parallel numerical software is considered efficient
if there is only a slow increase in the execution time as the
number of processors used grows. With multigrid algorithms,
when the problem size is increased by a factor ofnp then the
solution time also grows by this factor, and so when solving on
np processors (instead of a single processor), the solution time
should be unchanged. This would represent a perfect efficiency
but is rarely achieved due to parallel overheads such as inter-
processor communications and computations that are repeated
on more than one processor.

In this research our aim is to be able to predict the execution
time, including these overheads, of parallel numerical software
running onnp processors. In some of the runs that follow
we use more than one core per physical processor and for
other runs we use a parallel architecture with a single core
per physical processor. In each case we use the generic term

GIUSEPPE ROMANAZZI ET. AL: PARALLEL PERFORMANCE PREDICTION FOR NUMERICAL CODES 469

processor to refer to each core or processor respectively. As
suggested above, we restrict our attention to mesh-based PDE
solvers, in this case considering a finite difference code with a
series of non-blocking sends and receives in MPI, that solves
a model PDE problem over a square two-dimensional domain
(of size N × N , say), see the multigrid codem1 in [5].
This domain is uniformly partitioned across the processors
by assigning contiguous rows of the mesh to each processor
in turn. In the case of a multigrid solver, the partitioning of
the coarsest mesh ensures that all finer meshes are uniformly
partitioned too (see [3], [17] for further details).

The top diagram in Fig. 1 illustrates a typical partition
when np = 4. Each stage of the parallel numerical solver
requires communications between neighbouring processorsin
order to update their neighbouring rows. This is typical in
parallel numerical software of this type, e.g. [2], [3], [17].

IV. T HE PREDICTIVE MODEL

The underlying observation upon which our model is based
is that when we scale the size of our computational problem
with respect to the number of processors used, the parallel
overheads observed using just a small number of processors
can describe the communication pattern for runs using a much
larger number of processors. This occurs when the problem
size per processor is kept fixed. In our methodology we
therefore use parallel runs across few processors for predicting
the performance of the parallel run across a large number

Fig. 1. Partitioning of a square mesh across four processors(top) and the
equivalent problem considered on two processors (bottom).

of processors (np), with the same work assigned to each
processor across all these runs. For convenience, here we
define as “work per processor” the memory required by each
processor: this is because the work load per processor in a
multigrid code is proportional to the problem size assignedand
therefore to the associated memory required by each processor.

The next basic assumption that we make is that the parallel
solution time (onnp processors) may be represented as

T = Tcomp + Tcomm. (1)

In (1), Tcomp represents the computational time for a problem
of sizeN × Ñ on a single processor (wherẽN = N/np), and
Tcomm represents all of the parallel overheads (primarily due
to inter-processor communications).

The calculation ofTcomp is straightforward since this simply
requires the execution of a problem of sizeN × Ñ on a
single processor. Note that it is important that the precise
dimensions of the problem solved on each processor in the
parallel implementation are maintained for the sequentialsolve
in order to obtain an accurate value forTcomp. This is because
the memory access and contention patterns observed in the
parallel runs (such as cache and multicore effects at the
node-level) vary with respect to the geometrical dimensions
of the memory allocated to each processor, and they can
consequently influence the computational time measured.

The more challenging task is to modelTcomm in a manner
that will allow predictions to be made for large values ofnp.
Recall that our goal is to develop asimple model that will
capture the main features of this class of numerical algorithm
with just a small number of parameters that may be computed
based upon runs using only a few processors. We present this
model in (2) and then justify its simplicity in the remainder
of the section.

Tcomm = α(np) + γ(np) · work. (2)

In (2) the termwork is used to represent the work on each
processor, and is expressed in MBytes of the memory required,
which is proportional to the computational cost. Also note that
the length of the messages (N) does not appear in this formula
since it is assumed that for a given size of target problem (e.g.
a mesh of dimension65536×65536) the size of the messages
is knowna priori (in this case, since the partition is by rows,
the largest messages will be of length65536). Hence there is
no need to includeN in the model as it is fixed in advance.
This is the primary reason that the expression (2) can be so
simple.

Furthermore, we will assume that the following relations
also hold:

α(np) ≈ c + d log
2
(np) (3)

γ(np) ≈ constant. (4)

The justification for this model and the above assumptions are
based upon our own empirical evidence gained using different
parallel architectures. Two such illustrations are provided in
Fig. 2 and Fig. 3. These show plots of overhead against work

470 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

100 150 200 250 300 350 400 450 500 550
10

15

20

25

30

35

work per proc (MB)

T
im

e
 (

s
e

c
s
)

Overhead, Ethernet, Cluster A, N=32768

np=96
np=64
np=32
np=16
np=8
np=4

Fig. 2. Overhead (Tcomm) associated to a fixed size of messages (N) using
Fast Ethernet switching

for two different systems: one based upon a Fast Ethernet
switching and the other based upon Myrinet. In each case we
observe an almost linear growth in overhead with work, where
the slope is approximately constant and there is an almost
constant difference between graphs asnp is doubled. Note
that the length of the messages is the same in all of these runs
(see Fig. 1 for constant work with two different choices ofnp
and Fig. 4 for the samenp but half the work per processor).

In order to be able to use the model (2) it is necessary to
evaluate the parametersc, d andγ. These are determined using
measurements taken fornp = 4 andnp = 8: γ = γ(8) whilst
c andd are obtained using a simple linear fit through the two
data points.

100 150 200 250 300 350 400 450 500 550
2

4

6

8

10

12

14

work per proc (MB)

T
im

e
 (

s
e

c
s
)

Overhead, Myrinet, Cluster A, N=32768

np=96
np=64
np=32
np=16
np=8
np=4

Fig. 3. Overhead (Tcomm) associated to a fixed size of messages (N) using
Myrinet switching.

Fig. 4. Scaling the work per processor whilst maintaining the communication
volume.

A summary of the overall predictive methodology is pro-
vided by the following steps. We define asN × N and np
the target problem size and number of processors respectively
(i.e. we wish to predict a code’s performance for these values).
Also, let Ñ = N/np and defineN × Ñ to be the size of
problem on each processor in the target configuration.

1) Run the code on a single processor with a fine grid of
dimensionN × Ñ and then with dimensionN × Ñ

4
.

In each case collect the computational timeTcomp and
define aswork the memory allocated in the processor.

2) Run the code onnp0 = 4, 8 processors, with a fine grid
of dimensionN × (np0 ∗ Ñ) andN ×

(
np0 ∗ Ñ

4

)
. In

each case collect the parallel timeT and then compute
Tcomm = T − Tcomp.

3) Fit a straight line as in Eq. (2) (for both choices of
np = np0) through the data collected in steps 1 and 2
to estimateα(np0) andγ(np0).

4) Fit a straight line as in Eq. (3) through the points
(2, α(4)) and(3, α(8)) to estimatec andd: based upon
Eq. (3) now computeα(np) for the required choice
of np.

5) Use the model in Eq. (2) to estimate the value of
Tcomm for the required choice ofnp (using the values
γ(np) = γ(8) and α(np) determined in steps 3 and 4
respectively).

6) CombineTcomm from step 5 withTcomp (determined
in step 1, with finest sizeN × Ñ) to estimateT as in
Eq. (1).

GIUSEPPE ROMANAZZI ET. AL: PARALLEL PERFORMANCE PREDICTION FOR NUMERICAL CODES 471

In the parallel runs described in step 2, we use messages at
all levels with lengths equal to those used in the parallel run
that we are interested to predict. As we show in the next sec-
tion, this permits us to describe accurately the communication
patterns at all mesh levels of the multigrid code.

V. NUMERICAL RESULTS

The approach described in the previous section is now used
to predict the performance of a typical numerical code running
on two different clusters, either individually or together.

A. The White Rose Grid

The White Rose Grid is a collaborative project involving
the Universities of Leeds, Sheffield and York [18]. In these
tests we make use of two clusters on this Grid.

• Cluster A (White Rose Grid Node 2) is a cluster of 128
dual processor nodes, each based around 2.2 or 2.4GHz
Intel Xeon processors with 2GBytes of memory and
512 KB of L2 cache. Either Myrinet or Fast Ethernet
switching may be used to connect the nodes.

• Cluster B (White Rose Grid Node 3) is a cluster of
87 Sun microsystem dual processor AMD nodes, each
formed by two dual core 2.0GHz processors. Each of the
87×4 = 348 batched processors has L2 cache memory of
size 512KB and access to 8GBytes of physical memory.
Again, both Myrinet and Fast Ethernet switching are
available.

In addition to running jobs on either cluster, using either
switching technology, it is also possible to run a single parallel
application across both clusters together (using Fast Ethernet
only).

Because users of clusters A and B do not get exclusive
access to their resources some variations in the execution
time of the same parallel job can be observed across different
runs. A simple way to reduce such effects in the predictive
methodology is to take average timings on a limited number
of runs. However, this approach alone is not sufficient since
specific hardware features must also be accounted for.

For cluster A, for example, there are 75 2.4GHz and 53
2.2GHz dual processors, hence it is necessary to ensure that
all runs used in the parameter estimation phase make use
of at least one slower processor. This is because if only the
faster processors are used to estimateTcomm andTcomp, then
the resulting model will under-predict solution times on large
numbers of processors (where some of the processors will be
2.2GHz rather than 2.4GHz). Similarly, on the multicore clus-
ter B, care needs to be taken to account for this architectural
feature. For example, all of the sequential runs are undertaken
using four copies of the same code: each running on the same
(four-core) node. Again, this decision is made bearing in mind
the situation that will exist for a large parallel run in which all
the available cores in a node are likely to be used. Moreover
on this cluster the8 core runs, distributed as two full nodes,
are able to catch both intra- and inter-node communications,
see [5] for further details. This strategy permits to reproduce

Fig. 5. Example partitions by rows of a fine square mesh acrosstwo clusters:
A and B.

the effects [19] of the memory contention at the node-level in
a multi-core architecture.

B. Methodology for Inter-Cluster applications

As mentioned above, it is also possible to run a single
job across both clusters using Fast Ethernet switching. Fig. 5
illustrates a typical partition, for which the work per processor
may be different on each cluster. In this example a target
configuration withnpA processors on cluster A (each working
with a sub-mesh of sizeN × ÑA) and npB processors on
cluster B (each working with a sub-mesh of sizeN × ÑB) is
assumed. In order to predict the overall solution time for such a
multi-cluster run we make the assumption that the inter-cluster
communication costs, whilst greater than those within each
cluster, will generally be negligible compared to the inevitable
imbalance of execution times between the clusters. Hence our
methodology is to use the approach of the previous section to
predictTA for the problem of sizeN × (npA ∗ ÑA) assigned
to thenpA processors of cluster A andTB for the problem of
sizeN × (npB ∗ ÑB) on thenpB processors of cluster B. We
then take the simple estimate

T = max (TA, TB). (5)

C. Results

We have tested our models for a range of problems with five
different cluster architectures and present a selection oftypical
results in Tables I and II below. These tables are focused
around two potential applications of the predictions within
a Grid environment, which we refer to here as scenarios.
However the key observation that wish to we make here is
the consistent accuracy of the predictions when compared to
the actual run times that have subsequently been computed.

Scenario 1

In this scenario, it is assumed that a problem of a particular
size must be solved and that two clusters are scheduled to
be partially available, withnpA and npB processors free on
clusters A and B, respectively. Specifically, we consider the

472 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

TABLE I
MEASUREMENTS AND PREDICTIONS(BOTH QUOTED IN SECONDS) FOR SCENARIO 1.

procs npA = 64 npA = 64 npB = 32 npB = 32 (npA, npB) = (64, 32)
switching Ethernet Myrinet Ethernet Myrinet Ethernet

size 655362 655362 655362 655362 655362

mem. per core/proc 2GB 2GB 4GB 4GB (1GB, 2GB)
measurement 1703.9 1014.9 - - 1104.6

prediction 1715.7 983.9 - - 1044.4
|error| 0.69% 3.05% - - 5.45%

casenpA = 64, npB = 32 for a target problem size ofN ×N
with N = 65536, see Table I. The memory requirement across
some different combinations of processors is shown in the
fourth row. The columns entitled “npA = 64” show two sets
of predicted and actual results using 64 processors on cluster
A: based upon Ethernet and Myrinet switching respectively.
The columns entitled “npB = 32” are empty, reflecting the
fact that insufficient memory is available to execute a job of
this size on 32 cores of cluster B alone. The final column
shows predicted and actual results when the job is split equally
between the two clusters (using 64 and 32 cores on clusters A
and B respectively). In all cases, the model is demonstratedto
provide excellent predictions to the actual measured run times.

The purpose of this scenario is to illustrate a situation
in which the user wishes to decide which of a number of
combinations of available resources will deliver the required
answer in the shortest time. Here the user is able to determine
whether it will be better to use 64 processors of cluster A
alone or a combination of these processors along with the 32
available cores of cluster B. In this particular case, if only
Ethernet is available then the latter approach is faster whereas
the former would be better if Myrinet is available on cluster
A. Assuming that pricing information is available to the user
(based upon a different rate per cpu hour on each cluster) it
is also possible to predict the financial cost of each option in
advance.

Other combinations of processors and job partition may be
assessed in the same manner according to what resources are
scheduled to be available at any given time. For example if
there are an equal number of processors available on clusterA
and B then it is likely to be desirable to give the faster cluster
more than half of the computational domain to work with.

Scenario 2

In the second scenario that we present, a user wishes to
consider solving a problem with different levels of mesh
resolution. That is, given two Grid resources that are simul-
taneously available, they can either choose to solve on the
larger of these two resources or else they can make use of both
resources together in order to solve a problem with even more
unknowns (using the memory of both resources together). In
the latter case it will clearly be possible to get more resolution
but the user may wish to know how much extra this will cost,
and will therefore need a reliable estimate of the solution time
for each alternative.

Table II shows five different predictions, along with the
corresponding measured runs times, for different cluster con-
figurations. It is assumed that up to32 processes are available
on either of cluster A or B, or on each of them together.
In the single-cluster cases the largest problem that may be
solved for which N is a power of 2 is32768 × 32768,
which corresponds to approximately 1GByte of memory per
processor. By combining the two clusters however it is possible
to obtain a solution withN = 65536. As for the previous
table of results, it is again clear that the predictions obtained
using the methodology described in this paper prove to be
remarkably robust given their simplicity.

The significance of this scenario is that, in a Grid computing
environment, our predictions provide users with the tools re-
quired to make an informed decision as to what resources they
wish to request. By combining resources from two different
clusters it is possible to solve a problem with greater mesh
resolution however the cost of doing so may be substantial.
In this specific case if, for example, cluster A is charged at 1
unit per cpu hour and cluster B is charged at 2 units per cpu
hour, then the financial cost (both predicted and actual) of
obtaining the greater resolution by using both clusters would
be approximately 10 times the cost of the32768 × 32768
resolution run using cluster B with Myrinet.

Note that, as with scenario 1, it is possible to consider
other combinations of available processors using this same
approach. Unlike scenario 1 however, in this case our focus
is on maximizing the amount of memory available rather than
minimizing the run time required.

VI. D ISCUSSION

In this paper we have proposed a simple methodology for
predicting the performance of parallel numerical codes within
a multi-cluster environment. The philosophy upon which this
methodology is based is to produce a general empirical model
that involves a minimum number of parameters, and then
to determine appropriate values for these parameters for any
given combination of code and hardware resources. These
parameter values are determined based upon the characteristics
of the code when it is executed on much smaller numbers of
processors than are ultimately required. This allows resources
that are not currently available to be reserved for future
execution based upon the predicted need. Results presented
in the previous section demonstrate that the methodology is
both robust and accurate across five different combinationsof
parallel architecture for a given multigrid code. Furthermore,

GIUSEPPE ROMANAZZI ET. AL: PARALLEL PERFORMANCE PREDICTION FOR NUMERICAL CODES 473

TABLE II
MEASUREMENTS AND PREDICTIONS(BOTH QUOTED IN SECONDS) FOR SCENARIO 2.

procs npA = 32 npA = 32 npB = 32 npB = 32 (npA, npB) = (32, 32)
switching Ethernet Myrinet Ethernet Myrinet Ethernet

size 327682 327682 327682 327682 655362

mem per core/proc 1GB 1GB 1GB 1GB (2GB, 2GB)
measurement 776.7 628.3 444.4 281.0 1645.5

prediction 739.2 628.6 451.9 259.5 1686.0
|error| 4.83% 0.05% 1.69% 7.65% 2.46%

two different Grid scenarios have been considered, for which
the performance prediction is of clear practical value.

Although the results presented in this work have been com-
puted without the aid of any automatic scheduling software,
it is clear that the performance prediction capability thathas
been demonstrated is of great potential value to Grid mid-
dleware and meta-schedule developers. When applications are
submitted to a Grid, the scheduler needs accurate information
regarding the potential performance of those applicationson
different resource combinations in order to be able to make
optimal choices regarding the allocation of jobs to resources.
We hope to explore this feature of our work further in future
research. In order to be of maximum value however it will
be necessary to demonstrate the generality of our approach to
other numerical software.

In addition to the standard linear multigrid code that has
been used for testing here, the methodology can be shown to
extend to other parallel multilevel software too. Examplesfrom
our current work include the simulation of the spreading of
fluid droplets [3] and the simulation of nonlinear lubrication
problems involving fluid-structure interaction [2]. Details of
the practical application to these engineering problems ona
single cluster form the subject of another publication [20],
however sample results are included here as evidence of the
generality of our approach. Table III illustrates timings and
predictions for the code described in [2], where we use the
same methodology as described in this paper, based upon the
separate prediction ofTcomp andT . In this case the code has
additional components to the pure multigrid codes used for the
rest of this paper and the work no longer scales linearly with
memory. Nevertheless, as Table III clearly shows, providedthis
is taken into account the basic methodology that we propose
again provides excellent predictions.

In addition to applying and testing our methodology to
practical scientific codes in 2-d, one of the next steps that
we wish to undertake is the application in 3-d. When the
same linear partition of the problem is used then it is expected
that the approach will be equally successful however further
developments are required in order to deal with more general
partitioning strategies. It is also our intention to assessthe
quality of the methodology when applied to other numerical
schemes than the multilevel finite difference and finite element
codes so far investigated. Candidates for a successful appli-
cation includes other structured approaches such as Lattice-
Boltzmann simulations [21].

ACKNOWLEDGEMENTS

We are very grateful to Drs. Chris Goodyer and Jason Wood
for their valuable input to this research which is supported
by EPSRC grant EP/C010027/1. We also thank anonymous
referee for their comments concerning Grid meta-scheduling.

REFERENCES

[1] R. E. Bank, and M. J. Holst, “A New Paradigm for Parallel Adaptive
Meshing Algorithms,”SIAM Review vol. 45, 2003, pp. 292–323.

[2] C. E. Goodyer, and M. Berzins, “Parallelization and scalability issues
of a multilevel elastohydrodynamic lubrication solver,”Concurrency and
Computation, vol. 19, 2007, pp. 369–396.

[3] P. H. Gaskell, P. K. Jimack, Y. Y. Koh, and H. M. Thompson, “Develop-
ment and application of a parallel multigrid solver for the simulation of
spreading droplets,”Int. J. Num. Meth. Fluids, vol. 56, 2008, pp. 979–
1002.

[4] P. Ladeveze, A. Nouy, and O. Loiseau, “A multiscale computational
approach for contact problems”,Comput. Meth. Appl. Mech. Engrg.,
vol. 191, 2002, pp. 4869-4891.

[5] G. Romanazzi, and P. K. Jimack, “Parallel performance prediction for
multigrid codes on distributed memory architectures”, inHigh Perfor-
mance Computing and Communications (HPCC-07), ed. R. Perrott et al.
(LNCS 4782, Springer), 2007, pp. 647–658.

[6] S. Pllana, I. Brandic and S. Benkner, “A survey of the state of the
art in performance modeling and prediction of parallel and distributed
computing systems”,Int. J. Comput. Intel. Res. (IJCIR), vol. 4, 2008,
pp. 17–26.

[7] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman and
M. Gittings, “Predictive performance and scalability modeling of a large-
scale application”, inProceedings of SuperComputing 2001, 2001.

[8] G. Rodriguez, R. M. Badia, and J. Labarta, “Generation ofsimple analyt-
ical models for message passing”, inEuro-Par 2004 Parallel Processing,
ed. M. Danelutto et al. (LNCS 3149, Springer), 2004, pp. 183–188.

[9] L. Carrington, M. Laurenzano, A. Snavely, R. Campbell and L. Davis,
“How well can simple metrics represent the performance of HPC appli-
cations?”, inProceedings of SuperComputing 2005, 2005.

[10] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser,
E. Santos, R. Subramonian and T. von Eicken, “LogP: towards aRealistic
Model of Parallel Computation”,SIGPLAN Not., vol. 28, 1993, pp. 1–12.

[11] A. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg, K. Roche and S.
Vadhiyar, “Numerical libraries and the grid: The grads experiments with
scalapack”,J. of High Performance Applic. and Supercomputing, vol. 15,
2001, pp. 359–374.

[12] H. A. Sanjay and S. Vadhiyer, “Performance modeling of parallel
applications for grid scheduling”,J. Parallel Dist. Comput., vol. 68, 2008,
pp. 1135–1145.

[13] J. Schopf and F. Berman, “Performance prediction in production en-
vironments”, in Proceedings of 12th International Parallel Processing
Symposium, Orlando, USA, 1998.

[14] J. Schopf and F. Berman, “Using stochastic informationto predict
application behaviour on contended resources”,Int. J. Found. Comput.
Sci., 12, 2001, pp. 341364.

[15] J. Blazek,Computational Fluid Dynamics: Principles and Applications,
Elsevier, 2002.

[16] S. S. Rao,The Finite Element Method in Engineering, Butterworth-
Heinemann, 2005.

474 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

TABLE III
MEASUREMENTS AND PREDICTIONS(BOTH QUOTED IN SECONDS) FOR THE COMPUTATIONAL ENGINEERING APPLICATION SOFTWARE DESCRIBED IN

[2], BASED UPON OUR PREDICTIVE METHODOLOGY ASSESSED FOR CLUSTERS A AND B USING MYRINET SWITCHING.

procs cluster A npA = 64 npA = 128
size 16385 × 8193 16385 × 16385

measurement 1074.86 1260.24
prediction 1051.31 1242.86
|error| 2.91% 1.38%

procs cluster B npB = 64 npB = 128
size 16385 × 8193 16385 × 16385

measurement 908.44 1124.19
prediction 904.39 1107.79
|error| 0.44% 1.45%

[17] S. Lang, and G. Wittum, “Large-scale density-driven flow simulations
using parallel unstructured grid adaptation and local multigrid methods”,
Concurrency and Computation: Practice and Experience, vol. 17, 2005,
pp. 1415–1440.

[18] P. M. Dew, J. G. Schmidt, M. Thompson, and P. Morris, “TheWhite
Rose Grid: practice and experience,”in Proceedings of the 2nd UK All
Hands e-Science Meeting, ed. S.J. Cox, EPSRC, 2003.

[19] M. D. McCool, “Scalable programming models for massively multicore
processors”,Proceedings of the IEEE, vol. 96, 2008, pp. 816-831.

[20] G. Romanazzi, P. K. Jimack, and C. E. Goodyer, “Reliableperfor-
mance prediction for parallel scientific software in a multi-cluster grid
environment”, in Proceedings of the Sixth International Conference
on Engineering Computational Technology, Civil-Comp Press, 2008, to
appear.

[21] A. R. Davies, J. L. Summers, and M. C. T. Wilson, “Simulation of a
3-D lid-driven cavity flow by a parallelised lattice Boltzmann method”,
in Parallel Computational Fluid Dynamics: new Frontiers and Multi-
Disciplinary Applications, 2003, pp. 265-271.

