UNIVERSITY OF LEEDS

This is a repository copy of Parallel performance prediction for numerical codes in a
multi-cluster environment.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/4921/

Proceedings Paper:

Jimack, P.K. and Romanazzi, G. (2008) Parallel performance prediction for numerical
codes in a multi-cluster environment. In: Proceedings of the International Multiconference
on Computer Science and Information Technology. International Multiconference on
Computer Science and Information Technology : 4th Workshop on Large Scale
Computations on Grids, October 20-22, 2008, Wista, Poland. IEEE , pp. 467-474. ISBN
978-83-60810-14-9

Reuse
See Attached

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

ISBN 978-83-60810-14-9
ISSN 1896-7094

Proceedings of the International Multiconference on
Computer Science and Information Technology pp. 467-474

Parallel Performance Prediction for Numerical
Codes in a Multi-Cluster Environment

Giuseppe Romanazzi, Peter K. Jimack
School of Computing
University of Leeds
LS2 9JT Leeds, United Kingdom
Email: {roman,pk} @comp.leeds.ac.uk

Abstract—We propose a model for describing and predicting

the performance of parallel numerical software on distributed
memory architectures within a multi-cluster environment. The
goal of the model is to allow reliable predictions to be made sto
the execution time of a given code on a large number of process

of a given parallel system, and on a combination of systemsyb

only benchmarking the code on small numbers of processors.his
has potential applications for the scheduling of jobs in a Gid
computing environment where informed decisions about whik

resources to use in order to maximize the performance and/or

minimize the cost of a job will be valuable. The methodologys
built and tested for a particular class of numerical code, baed
upon the multilevel solution of discretized partial differential
equations, and despite its simplicity it is demonstrated tobe
extremely accurate and robust with respect to both the proce-
sor and communications architectures considered. Furthanore,

results are also presented which demonstrate that excellen

predictions may also be obtained for numerical algorithms hat
are more general than the pure multigrid solver used to motiate

the methodology. These are based upon the use of a practical

parallel engineering code that is briefly described. The pantial
significance of this work is illustrated via two scenarios wich

consider a Grid user who wishes to use the available resourse

either (i) to obtain a particular result as quickly as possile, or
(ii) to obtain results to different levels of accuracy.

Index Terms—Parallel Distributed Algorithms; Grid Comput-
ing; Cluster Computing; Performance Evaluation and Predidion;

numerical software that requires a large computationa| aos
a simple and cheap way using only few parallel runs across
few processors.

Multilevel software (such as multigrid) has been selected
for this work due to its growing importance in practical high
performance computing software: as the maturity of muwile
algorithms continues to develop, it is able to provide eecel
efficiency for very wide classes of problem [1], [2], [3], [4]

The methodology is first described and its predictive capa-
bility is then assessed for five different cluster configiorad,
using a typical parallel multigrid code. It is of course dable
that the predictive methodology proposed should be appropr
ate to the widest possible classes of humerical algorithmds a
the paper concludes with a discussion of these issues along
with an illustrative example.

Il. RELATED WORK

In previous work [5] we have begun to consider the use
of simple (and cheap to implement) predictive models for the
solution of certain classes of parallel multigrid codes whe
executed on distributed memory hardware. Whilst the result
obtained in [5] are very encouraging, in this work we develop

Meta-Scheduling.

1)
. INTRODUCTION

S GRID computing becomes available as a practical

commodity for computational science practitioners the
need for reliable performance prediction becomes essentia
In particular, when a variety of computational resources ar
available to a scientific research team they need to be able
to make informed decisions about which resources to use,
based upon issues such as the size of the problem they wish
to solve, the turn-around time for obtaining their solutemd 2)
the financial charge that this will incur. In order to maketsuc
decisions in a reliable way, it is necessary that they are abl
to predict the performance of their software across differe
combinations of these resources.

In this work we present a robust methodology for predicting 3)
the performance of parallel numerical multilevel software
across different clusters (in terms of both processor and
communications architectures) and across combinations of
these clusters. The long term goal of this research is to mode

467

the ideas further in a number of significant ways.

A more general model for inter-processor communica-
tion is used which enables less-scalable communications
patterns to be captured than previously. This is important
when there are all-to-all communications at any point
in the code and/or when the hardware does not scale
well (e.g. Ethernet switching). The additional generality
of this work also ensures that both blocking and non-
blocking communication patterns can be reliably cap-
tured and modelled.

We extend our previous work to consider inter-, as well
as intra-, cluster communications. Specifically, we now
permit a single parallel job to be split across two entirely
different clusters and the performance to be reliably
predicted in advance.

In addition to reporting on the performance of our
model as applied to benchmark multigrid codes, we also
provide preliminary results which demonstrate that this
performance is also achieved when applied to a practical
multilevel engineering code [2].

468 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

There is a very substantial body of research into perfor- There is of course a significant body of literature relatiog t
mance modelling [6] that varies from analytical models dgserformance models for large Grid environments. An exoelle
signed for a single application through to general framéworrecent example is the research described in [12] which Break
that can be applied to many applications on a large rangetbé execution time of a parallel application into two parts,
high performance computing (HPC) systems. For example,riepresenting computation and communication costs, theat ar
[7] detailed models of a particular application are built fosubsequently estimated for the target platform. Unlike our
a range of target HPC systems, whereas in [8] or [9] approach [12] is restricted to tasks that run on a single Grid
application trace is combined with some benchmarks of thesource, however the situation in which the load on the
HPC system that is being used in order to produce performamesource varies dynamically is included. Other reseascher
predictions. have also considered this situation, including the posdiise

Both approaches have been demonstrated to be ableotstochastic information to predict an application’s bgbar
provide accurate and robust predictions, although each hesen there is contention for resources [13], [14]. In our kvor
its potential drawbacks: significant code specific knowiedgve assume that once a set of resources have been allocated
being required for deriving the analytic models, whereas tlthey will be held exclusively by the application for the diiva
trace approach may require significant computational effoof the run or the reserved time slot, whichever is the shorter
Moreover, in the former approach, when a different HPBence we do not consider this issue of contention here.
system is used it would generally be necessary to change thé variety of other papers on the subject of performance
model, adding new parameters for example. Instead, in thdelling in both dedicated and non-dedicated environment
latter, we need to add or to find new benchmarks when a nawe described in [6] or [12], for example, so we do not repeat
code is used. Considering these limits, the choice between such reviews here. However, we finish this introduction by
two approaches can depend also on other factors. For exampéging that the precise scheduling mechanism that is used fo
when it is more important to predict the run-time of a largeexecuting jobs on a Grid may have a significant influence
scale application on a given set of systems, as opposed to cam the performance of the prediction models themselves.
paring the performance of the systems in general, resaarchEhroughout this work we are focused on the situation where
(like those in the LANL group [7]) prefer to study deeplywe are interested solely in the computational resources tha
their application in order to obtain its own analytic modet f are either available and ready to be used immediately, or the
the available set of HPC systems. On the other hand, whesources that may be reserved for use at some specified time
it is more interesting to compare performances of differemt the future. All of the tests that were undertaken for theskv
machines on some real-applications, the latter approachwisre executed without the intervention of a schedulerebut
preferable; in that case different benchmark metrics can aeailable resources were reserved and then the required job
used and convoluted with the application trace file. were launched.

Our approach lies between these two extremes. We use
relatively simple analytic models (compared to the LogP
model [10] for example), that are applicable to a generalscla Most numerical methods for the solution of partial differ-
of multigrid algorithms and then make use of a small numbential equations (PDES) are based upon the use of a spatial
of simulations of the application on a limited number of CPUsesh for performing the discretization (as in finite diffece,
of the target architecture in order to obtain values for the pelement, etc.), see for reference [15], [16].
rameters of these models. Predictions as to performanémoft Using parallel resources we are able to solve problems
application on larger numbers of processors may then be magle finer grids than would be otherwise possible, so as to

As already indicated, our emphasis in this paper is fchieve greater accuracy. When the work per processor ts kep
provide computational science practitioners with the footonstant, a parallel numerical software is consideredieffic
to be able to make informed decisions concerning the Giifdthere is only a slow increase in the execution time as the
resources that they request. Indeed, the scenarios that nuenber of processors used grows. With multigrid algorithms
consider specifically relate to situations in which the Guisgrs when the problem size is increased by a factonpthen the
are aware of which resources are immediately available (asmlution time also grows by this factor, and so when solving o
can be reserved) or they are able to reserve resources at samprocessors (instead of a single processor), the solutiom i
future point in time. More generally however exactly the sanshould be unchanged. This would represent a perfect effigien
information regarding the predicted execution time of aecodut is rarely achieved due to parallel overheads such as inte
on different resources, and different combinations ofueses, processor communications and computations that are egpeat
is required by a Grid meta-scheduler for it to be able to wodn more than one processor.
effectively. The job of such a scheduler is to evaluate iffe In this research our aim is to be able to predict the execution
candidate resource sets and to select the “most suitabtiefie, including these overheads, of parallel numericaigafe
resources for the execution of the application, e.g. [1itlis | running onnp processors. In some of the runs that follow
with this in mind that our relatively light-weight approatthh we use more than one core per physical processor and for
performance prediction becomes particularly attractsiece other runs we use a parallel architecture with a single core
it is both simple and cheap to execute automatically. per physical processor. In each case we use the generic term

Il1l. PARALLEL NUMERICAL SOFTWARE

GIUSEPPE ROMANAZZI ET. AL: PARALLEL PERFORMANCE PREDICTI® FOR NUMERICAL CODES 469

processor to refer to each core or processor respectively. & processors r{p), with the same work assigned to each
suggested above, we restrict our attention to mesh-baséd Ridocessor across all these runs. For convenience, here we
solvers, in this case considering a finite difference codb wi define as “work per processor” the memory required by each
series of non-blocking sends and receives in MPI, that solverocessor: this is because the work load per processor in a
a model PDE problem over a square two-dimensional domainultigrid code is proportional to the problem size assigaed
(of size N x N, say), see the multigrid code:1 in [5]. therefore to the associated memory required by each prarcess
This domain is uniformly partitioned across the processorsThe next basic assumption that we make is that the parallel
by assigning contiguous rows of the mesh to each processofution time (onnp processors) may be represented as
in turn. In the case of a multigrid solver, the partitioninfy o
the coarsest mesh ensures that all finer meshes are uniformly T'=Teomp + Teomm- @)
partitioned too (see [3], [17] for further detalils). In (1), T.omyp represents the computational time for a problem
The top diagram in Fig. 1 illustrates a typical partitionf size N x N on a single processor (whefé = N/np), and
whennp = 4. Each stage of the parallel numerical solvef, represents all of the parallel overheads (primarily due
requires communications between neighbouring processorsg inter-processor communications).
order to update their neighbouring rows. This is typical in The calculation off’.,, is straightforward since this simply
parallel numerical software of this type, e.g. [2], [3], [17 requires the execution of a problem of si2é x N on a
single processor. Note that it is important that the precise

))) _ dimensions of the problem solved on each processor in the
The underlying observation upon which our model is basef}a|lel implementation are maintained for the sequestible

is.that when we scale the size of our computational problgforder to obtain an accurate value fBif,.,,p. This is because
with respect to the number of processors used, the parajed memory access and contention patterns observed in the
overheads observed using just a small number of processgizallel runs (such as cache and multicore effects at the
can describe the communication pattern for runs using a mq%’de-level) vary with respect to the geometrical dimersion
Igrger number of processors. _This occurs when the problg the memory allocated to each processor, and they can
size per processor is kept fixed. In our methodology W&nsequently influence the computational time measured.
therefore use parallel runs across few processors forginegi The more challenging task is to modgl, ..., in a manner

the performance of the parallel run across a large numhgg; will allow predictions to be made for large valuesrof.
Recall that our goal is to develop smple model that will
capture the main features of this class of numerical algarit
with just a small number of parameters that may be computed
based upon runs using only a few processors. We present this
p=3 model in (2) and then justify its simplicity in the remainder
of the section.

IV. THE PREDICTIVE MODEL

p=2 — Teomm = a(np) + y(np) - work. 2

In (2) the termwork is used to represent the work on each
processor, and is expressed in MBytes of the memory required

=1 T) .
P which is proportional to the computational cost. Also ndtatt
the length of the message¥) does not appear in this formula
p=0 N since it is assumed that for a given size of target problem (e.

a mesh of dimensiofi5536 x 65536) the size of the messages

is knowna priori (in this case, since the partition is by rows,

N the largest messages will be of lengthb36). Hence there is

no need to includeV in the model as it is fixed in advance.
This is the primary reason that the expression (2) can be so

simple.
—1 Furthermore, we will assume that the following relations
also hold:
0 N a(np) =~ c+ dlogy(np) 3)
P v(np) =~ constant 4)
N The justification for this model and the above assumptioas ar

based upon our own empirical evidence gained using differen
Fig. 1. Partitioning of a square mesh across four processops and the parallel architectures. Two such illustrations are predidn
equivalent problem considered on two processors (bottom). Fig. 2 and Fig. 3. These show plots of overhead against work

470 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

Overhead, Ethernet, Cluster A, N=32768
ol T T T T T T T
---np=96
~np=64
~-np=32
300 +np=16 1 p=1

2
Q
&
g p=0 N
'_
N
1f 1 1 1 1 1 1 1 1
00 150 200 250 300 350 400 450 500 550
work per proc (MB)
p=1
Fig. 2. OverheadX.omm) associated to a fixed size of messag¥3 (¢sing
Fast Ethernet switching _
P_[) N/2
for two different systems: one based upon a Fast Ethernet N

switching and the other based upon Myrinet. In each case we

observe an almost linear growth in overhead with work, where

the slope is approximately constant and there is an alm&it: 4. Scaling the work per processor whilst maintaining ¢dbmmunication
constant difference between graphssasis doubled. Note YOU™®

that the length of the messages is the same in all of these runs

(see Fig. 1 for constant work with two different choicesgpf

) A summary of the overall predictive methodology is pro-
and Fig. 4 for the samep but half the work per processor).

vided by the following steps. We define & x N and np
the target problem size and number of processors resplgctive

In order to be able to use the model (2) it is necessary {0, \ye wish to predict a code’s performance for these \&lue
evaluate the parametersd andy. These are determined using

ken f) hil Ilso, let N = N/np and defineN x N to be the size of
measurements taken fop = 4 andnp = 8: v = (8) whilst ,5hlem on each processor in the target configuration.
c andd are obtained using a simple linear fit through the two

data points. 1) Run the code on a single processor with a fine grid of
dimensionN x N and then with dimensionV x %.
In each case collect the computational tiffig,,, and
Overhead, Myrinet, Cluster A, N=32768 define aswork the memory allocated in the processor.
U np=96 ' ' ' ' ' ' ' 2) Run the code onp0 = 4,8 processors, with a fine grid

of dimensionN x (np0 * N) and N x (np0 x %) In
each case collect the parallel tifieand then compute
Teomm =T — Tcomp-

3) Fit a straight line as in Eqg. (2) (for both choices of
np = np0) through the data collected in steps 1 and 2
to estimaten(np0) and~(np0).

4) Fit a straight line as in Eq. (3) through the points
(2,(4)) and (3, «(8)) to estimater andd: based upon
Eqg. (3) now computex(np) for the required choice
of np.

5) Use the model in Eq. (2) to estimate the value of
T.omm for the required choice ofip (using the values
~v(np) = v(8) and a(np) determined in steps 3 and 4

Time (secs)

1 1 1 1 1 1 1 1
foo 150 200 250 300 350 400 450 500 550

work per proc (MB) respectively).
6) CombineT,,,, from step 5 v!ithTwmp (determined
Fig. 3. OverheadX.omm) associated to a fixed size of messag¥$ (sing in step 1, with finest sizeV x N) to estimateT" as in

Myrinet switching. Eq. (1).

GIUSEPPE ROMANAZZI ET. AL: PARALLEL PERFORMANCE PREDICTI® FOR NUMERICAL CODES 471

In the parallel runs described in step 2, we use message:
all levels with lengths equal to those used in the parallal i p=5
that we are interested to predict. As we show in the next se Cluster B
tion, this permits us to describe accurately the commuiocicat 4 "
patterns at all mesh levels of the multigrid code. P= B

V. NUMERICAL RESULTS p=3

The approach described in the previous section is now us p=2 Cluster A
to predict the performance of a typical numerical code ragni P=1
on two different clusters, either individually or together p=0 N,

N

A. The White Rose Grid

The White Rose Grid is a collaborative project involvingig. 5. Example partitions by rows of a fine square mesh advesslusters:
the Universities of Leeds, Sheffield and York [18]. In thes& and B.
tests we make use of two clusters on this Grid.

» Cluster A (White Rose Grid Node 2) is a cluster of 12 e effects [19] of the memory contention at the node-lewel i
dual processor nodes, each based around 2.2 or 2.4 ; ;
X ulti-core architecture.
Intel Xeon processors with 2GBytes of memory an
512 KB of L2 cache. Either Myrinet or Fast EtherneB. Methodology for Inter-Cluster applications

switching may be used to connect the nodes. As mentioned above, it is also possible to run a single
« Cluster B (White Rose Grid Node 3) is a cluster Ofop across both clusters using Fast Ethernet switching. Fig
87 Sun microsystem dual processor AMD nodes, eagfysirates a typical partition, for which the work per pessor
formed by two dual core 2.0GHz processors. Each of thg,y e different on each cluster. In this example a target
87x 4 = 348 batched processors has L2 cache memory ghnfiguration withnp.. processors on cluster A (each working
S|ze.512KB and access to 8GBytes of physm;al MeMORith a sub-mesh of sizeV x N.4) and nps Processors on
Again, both Myrinet and Fast Ethernet switching argyster B (each working with a sub-mesh of sixex Np) is
available. assumed. In order to predict the overall solution time fahsa
In addition to running jobs on either cluster, using eithafulti-cluster run we make the assumption that the intesteiu
switching technology, it is also possible to run a singleafial communication costs, whilst greater than those within each
application across both clusters together (using Fastrighe cluster, will generally be negligible compared to the inabie
only). imbalance of execution times between the clusters. Hence ou
Because users of clusters A and B do not get exclusisgethodology is to use the approach of the previous section to
access to their resources some variations in the executigedictT)y for the problem of sizeV x (np4 * N4) assigned
time of the same parallel job can be observed across differémthenp4 processors of cluster A arilz for the problem of
runs. A simple way to reduce such effects in the predictivize N x (npp *NB) on thenpp processors of cluster B. We
methodology is to take average timings on a limited numb#ten take the simple estimate
of runs. However, this approach alone is not sufficient since
specific hardware features must also be accounted for.
For cluster A, for example, there are 75 2.4GHz and 53
2.2GHz dual processors, hence it is necessary to ensure that
all runs used in the parameter estimation phase make GseResults
of at least one slower processor. This is because if only thewe have tested our models for a range of problems with five
faster processors are used to estinfatg,,, and7..m,, then different cluster architectures and present a selectidypital
the resulting model will under-predict solution times orgl results in Tables | and Il below. These tables are focused
numbers of processors (where some of the processors willd¥eund two potential applications of the predictions withi
2.2GHz rather than 2.4GHz). Similarly, on the multicoreselu a Grid environment, which we refer to here as scenarios.
ter B, care needs to be taken to account for this architdcturowever the key observation that wish to we make here is
feature. For example, all of the sequential runs are unkiemta the consistent accuracy of the predictions when compared to
using four copies of the same code: each running on the sasie actual run times that have subsequently been computed.
(four-core) node. Again, this decision is made bearing indni _
the situation that will exist for a large parallel run in whiall Scenario 1
the available cores in a node are likely to be used. Moreoverin this scenario, it is assumed that a problem of a particular
on this cluster the&d core runs, distributed as two full nodessize must be solved and that two clusters are scheduled to
are able to catch both intra- and inter-node communicatiome partially available, witwp4 andnpp processors free on
see [5] for further details. This strategy permits to repica clusters A and B, respectively. Specifically, we consider th

T =max (Ta,Th). (5)

472 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

TABLE |
MEASUREMENTS AND PREDICTIONS(BOTH QUOTED IN SECOND$ FORSCENARIO 1.
procs npa =64 | npa =64 | npp =32 | npg =32 | (npa,npr) = (64,32)

switching Ethernet Myrinet Ethernet Myrinet Ethernet

size 655362 655362 655362 655362 655362

mem. per core/prog 2GB 2GB 4GB 4GB (1GB, 2GB)

measurement 1703.9 1014.9 - - 1104.6

prediction 1715.7 983.9 - - 1044.4

lerror| 0.69% 3.05% - - 5.45%

casenps = 64, npp = 32 for a target problem size a¥ x N Table Il shows five different predictions, along with the

with N = 65536, see Table |. The memory requirement acrosrresponding measured runs times, for different cluster c
some different combinations of processors is shown in tfigurations. It is assumed that up 3@ processes are available
fourth row. The columns entitlednp 4 = 64" show two sets on either of cluster A or B, or on each of them together.
of predicted and actual results using 64 processors oneclush the single-cluster cases the largest problem that may be
A: based upon Ethernet and Myrinet switching respectivelsolved for which N is a power of 2 is32768 x 32768,
The columns entitledipp = 32" are empty, reflecting the which corresponds to approximately 1GByte of memory per
fact that insufficient memory is available to execute a job @frocessor. By combining the two clusters however it is pissi
this size on 32 cores of cluster B alone. The final columo obtain a solution withV = 65536. As for the previous
shows predicted and actual results when the job is splitlsquaable of results, it is again clear that the predictions ibleiz
between the two clusters (using 64 and 32 cores on clustersiging the methodology described in this paper prove to be
and B respectively). In all cases, the model is demonstitatedremarkably robust given their simplicity.
provide excellent predictions to the actual measured megi The significance of this scenario is that, in a Grid computing
The purpose of this scenario is to illustrate a situatiognvironment, our predictions provide users with the toels r
in which the user wishes to decide which of a number efuired to make an informed decision as to what resources they
combinations of available resources will deliver the reedi wish to request. By combining resources from two different
answer in the shortest time. Here the user is able to determiusters it is possible to solve a problem with greater mesh
whether it will be better to use 64 processors of cluster Fesolution however the cost of doing so may be substantial.
alone or a combination of these processors along with the Bethis specific case if, for example, cluster A is charged at 1
available cores of cluster B. In this particular case, ifyonlunit per cpu hour and cluster B is charged at 2 units per cpu
Ethernet is available then the latter approach is fastersese hour, then the financial cost (both predicted and actual) of
the former would be better if Myrinet is available on clustepbtaining the greater resolution by using both clusterslevou
A. Assuming that pricing information is available to the usebe approximately 10 times the cost of tB&768 x 32768
(based upon a different rate per cpu hour on each clusterygsolution run using cluster B with Myrinet.
is also possible to predict the financial cost of each option i Note that, as with scenario 1, it is possible to consider
advance. other combinations of available processors using this same
Other combinations of processors and job partition may [@@proach. Unlike scenario 1 however, in this case our focus
assessed in the same manner according to what resourcedsa@® maximizing the amount of memory available rather than
scheduled to be available at any given time. For examplenfinimizing the run time required.

there are an equal number of processors available on clsster
i . : VI. DISCUSSION
and B then it is likely to be desirable to give the faster @ust _)
more than half of the computational domain to work with. [N this paper we have proposed a simple methodology for

predicting the performance of parallel numerical codesiwit
a multi-cluster environment. The philosophy upon whicts thi
methodology is based is to produce a general empirical model
In the second scenario that we present, a user wishesthat involves a minimum number of parameters, and then
consider solving a problem with different levels of mesko determine appropriate values for these parameters fpr an
resolution. That is, given two Grid resources that are simuiven combination of code and hardware resources. These
taneously available, they can either choose to solve on th@&ameter values are determined based upon the charticseris
larger of these two resources or else they can make use of boftithe code when it is executed on much smaller numbers of
resources together in order to solve a problem with even mgmcessors than are ultimately required. This allows nessu
unknowns (using the memory of both resources together).thmat are not currently available to be reserved for future
the latter case it will clearly be possible to get more resofu execution based upon the predicted need. Results presented
but the user may wish to know how much extra this will cosin the previous section demonstrate that the methodology is
and will therefore need a reliable estimate of the solutioret both robust and accurate across five different combinatbns
for each alternative. parallel architecture for a given multigrid code. Furtherm

Scenario 2

GIUSEPPE ROMANAZZI ET. AL: PARALLEL PERFORMANCE PREDICTI® FOR NUMERICAL CODES 473

TABLE Il
MEASUREMENTS AND PREDICTIONYBOTH QUOTED IN SECOND$ FOR SCENARIO 2.
procs npa =32 | npa =32 | npp =32 | npg =32 | (npa,npr) = (32,32)
switching Ethernet Myrinet Ethernet Myrinet Ethernet
size 327682 327682 327682 327682 655362
mem per core/prog 1GB 1GB 1GB 1GB (2GB, 2GB)

measurement 776.7 628.3 444 .4 281.0 1645.5

prediction 739.2 628.6 451.9 259.5 1686.0

lerror| 4.83% 0.05% 1.69% 7.65% 2.46%

two different Grid scenarios have been considered, for whic ACKNOWLEDGEMENTS

the performance prediction is of clear practical value. i
We are very grateful to Drs. Chris Goodyer and Jason Wood

Although the results presented in this work have been Com their valuable input to this research which is supported
puted without the aid of any automatic scheduling softwarﬁy EPSRC grant EP/C010027/1. We also thank anonymous

it is clear that the pgrformance predlct!on capability thas referee for their comments concerning Grid meta-schedulin
been demonstrated is of great potential value to Grid mid-

dleware and meta-schedule developers. When applicatiens a
submitted to a Grid, the scheduler needs accurate infoomati

regarding the potential performance of those applicatimms [1] R. E. Bank, and M. J. Holst, “A New Paradigm for Parallel sjudive
different resource combinations in order to be able to make Meshing Algorithms,"SAM Review vol. 45, 2003, pp. 292-323.

. . ; : ; [2] C. E. Goodyer, and M. Berzins, “Parallelization and abdlty issues
optlmal choices regardlng the allocation of JObS to resesirc of a multilevel elastohydrodynamic lubrication solve€bncurrency and

We hope to explore this feature of our work further in future computation, vol. 19, 2007, pp. 369-396.
research. In order to be of maximum value however it wilB] P. H. Gaskell, P. K. Jimack, Y. Y. Koh, and H. M. ThompsoDetelop-

: ment and application of a parallel multigrid solver for thmuslation of
be necessary to demonstrate the generality of our approach t spreading droplets,fnt. J. Num. Meth. Fluids, vol. 56, 2008, pp. 979-

other numerical software. 1002.

. : P] P. Ladeveze, A. Nouy, and O. Loiseau, “A multiscale comaganal
In addition to the standard linear multigrid code that hdé approach for contact problemsComput. Meth. Appl. Mech. Engrg.

been used for testing here, the methodology can be shown toyol. 191, 2002, pp. 4869-4891.
extend to other parallel multilevel software too. Examfitesn [5] G. Romanazzi, and P. K. Jimack, “Parallel performancedation for

; ; ; ; multigrid codes on distributed memory architectures”,High Perfor-
Ou.r current work include the SIm.U|at|0n of J.[he sprea_dmg of mance Computing and Communications (HPCC-07), ed. R. Perrott et al.
fluid droplets [3] and the simulation of nonlinear lubricati (LNCS 4782, Springer), 2007, pp. 647—658.

problems involving fluid-structure interaction [2]. Ddtaiof [6] S. Pllana, I. Brandic and S. Benkner, “A survey of the estaf the

; inati i i art in performance modeling and prediction of parallel amtributed
the practlcal appllcatlon to t.hese engineering pr_oblgmaon computing systems”|nt. J. Comput. Intel. Res. (IJCIR), vol. 4, 2008,
single cluster form the subject of another publication [20] ;. 17-26.

however sample results are included here as evidence of fHeD. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasman and
generality of our approach. Table Il illustrates timingsda M. Gittings, “Predictive performance and scalability miig of a large-

.. . . scale application”, irProceedings of SuperComputing 2001, 2001.
pred|Ct'OnS for the code described in [2]’ where we use t[G. Rodriguez, R. M. Badia, and J. Labarta, “Generatiosinfple analyt-

same methodology as described in this paper, based upon thacal models for message passing”,Euro-Par 2004 Parallel Processing,
separate prediction &f,,,,,, andT. In this case the code has _ €d- M. Danelutfo et al. (LNCS 3149, Springer), 2004, pp. 1&B-

o, - [9] L. Carrington, M. Laurenzano, A. Snavely, R. Campbelddn Davis,
additional components to the pure multigrid codes useder ™ .\ "\ ail can simple metrics represent the performance oEHPpli-

rest of this paper and the work no longer scales linearly with cations?”, inProceedings of SuperComputing 2005, 2005.
memory. Nevertheless, as Table Il clearly shows, provitiedd [10] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. Ech8user,

;] ; E. Santos, R. Subramonian and T. von Eicken, “LogP: towafgeaistic
is taken into account the basic methodology that we propose Model of Parallel ComputatioS GPLAN Not., vol. 28, 1993, pp. 1-12.

again provides excellent predictions. [11] A. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagfg Roche and S.

. . . Vadhiyar, “Numerical libraries and the grid: The grads ekpents with
In addition to applying and testing our methodology to scalapack”J. of High Performance Applic, and Supercomputing, vol. 15,

practical scientific codes in 2-d, one of the next steps that 2001, pp. 359-374.
we wish to undertake is the application in 3-d. When thié2] H. A. Sanjay and S. Vadhiyer, “Performance modeling afrgfie!

: " : s applications for grid schedulingd. Parallel Dist. Comput., vol. 68, 2008,
same linear partition of the problem is used then it is exgubct op. 1135-1145.

that the approach will be equally successful however furth@s) j. schopf and F. Berman, “Performance prediction indpotion en-
developments are required in order to deal with more general vironments”, in Proceedings of 12th International Parallel Processing
itioni i ; ; ; RS Symposium, Orlando, USA, 1998.

partlltlonlng strategies. It is also our I.ntemlon to ass i gl4] J. Schopf and F. Berman, “Using stochastic informatton predict
quality of the meth0d0_|09y V‘_/h_en Q.pphed to Othe_r_numenc application behaviour on contended resourcéat, J. Found. Compui.
schemes than the multilevel finite difference and finite &em Si., 12, 2001, pp. 341364. _ . o

codes so far investigated. Candidates for a successfui- appf! Et:/'iizre';ggg‘p“ta“o”a' Fluid Dynamics: Principles and Applications,
cation includes other structured approaches such as éattigg s s Rao,The Finite Element Method in Engineering, Butterworth-

Boltzmann simulations [21]. Heinemann, 2005.

REFERENCES

474 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008
TABLE Il

MEASUREMENTS AND PREDICTIONS(BOTH QUOTED IN SECOND3 FOR THE COMPUTATIONAL ENGINEERING APPLICATION SOFTWARE DECRIBED IN
[2], BASED UPON OUR PREDICTIVE METHODOLOGY ASSESSED FOR CLUSTER AND B USING MYRINET SWITCHING.

procs cluster A| npy = 64 npa = 128
size 16385 x 8193 | 16385 x 16385
measurement 1074.86 1260.24
prediction 1051.31 1242.86
lerror] 2.91% 1.38%
procs cluster B npp = 64 npp = 128
size 16385 x 8193 | 16385 x 16385
measurement 908.44 1124.19
prediction 904.39 1107.79
lerror| 0.44% 1.45%

[20] G. Romanazzi, P. K. Jimack, and C. E. Goodyer, “Reliaptfor-

[17] S. Lang, and G. Wittum, “Large-scale density-driverwflsimulations
using parallel unstructured grid adaptation and local ignidt methods”, mance prediction for parallel scientific software in a maltister grid
Concurrency and Computation: Practice and Experience, vol. 17, 2005, environment”, in Proceedings of the Sxth International Conference
on Engineering Computational Technology, Civil-Comp Press, 2008, to

pp. 1415-1440.
[18] P. M. Dew, J. G. Schmidt, M. Thompson, and P. Morris, “Théite appear.
[21] A. R. Davies, J. L. Summers, and M. C. T. Wilson, “Simidat of a

Rose Grid: practice and experiencéy’ Proceedings of the 2nd UK All

Hands e-Science Meeting, ed. S.J. Cox, EPSRC, 2003. 3-D lid-driven cavity flow by a parallelised lattice Boltzma method”,
[19] M. D. McCool, “Scalable programming models for masgiveulticore in Paralledl Computational Fluid Dynamics: new Frontiers and Multi-

processors”Proceedings of the |EEE, vol. 96, 2008, pp. 816-831. Disciplinary Applications, 2003, pp. 265-271.

