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1 INTRODUCTION 

Information exchange and re-use is crucial to many organisations throughout the world. 

However, some business domains involve different organisations that, although nomi-

nally in competition, must share information. Privatised utility companies in the UK are 

one such example.  

Every year, in excess of four million holes are dug in UK roads to repair assets, provide 

connecting services to new premises and to lay new cables and pipes. Although recently 

installed assets may have been well mapped, location and attribute data on older ser-

vices can be very poor, in some cases even non existent (except perhaps knowing the 

location of the terminating points). This poor data quality can lead to unnecessary holes 

dug in the wrong place and third party damage to other underground services. Equally 

important, there are also considerable indirect costs owing to disruption on the roads 

caused by works, waste and pollution. The core of the problem is that there is at present 

insufficient and inadequate knowledge about what is where. What information there is, 

is not always used to its maximum benefit. 

It is postulated that improving mechanisms of integrating and sharing knowledge on 

utility assets and the location of street works will lead to a reduction in the amount of 

street works in the UK by improving both the co-ordination of works and the quality of 
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In this paper we investigate various factors which prevent utility knowledge from being 

fully exploited and suggest that integration techniques can be applied to improve the 

quality of utility records. The paper suggests a framework which supports knowledge 

and data integration. The framework supports utility integration at two levels: the 

schema and data level. Schema level integration ensures that a single, integrated geospa-

tial data set is available for utility enquiries. Data level integration improves utility data 

quality by reducing inconsistency, duplication and conflicts. Moreover, the framework 

is designed to preserve autonomy and distribution of utility data. The ultimate aim of 

the research is to produce an integrated representation of underground utility infrastruc-

ture in order to gain more accurate knowledge of the buried services. It is hoped that 

this approach will enable us to understand various problems associated with utility data, 

and to suggest some potential techniques for resolving them. 



information which is shared. This paper describes the progress made by the School of 

Computing at the University of Leeds on these issues in both the Mapping The Under-

world (MTU: www.mappingtheunderworld.ac.uk) and Visualizing integrated informa-

tion on buried assets to reduce streetworks (VISTA: www.vistadtiproject.org) projects. 

We start with an overview of the problem and current industrial practices, then present a 

conceptual framework that is designed to support utility knowledge and data integration, 

and report on the progress made on utility data acquisition. This is followed by a discus-

sion on our initial experimental results on schema integration. 

2 BACKGROUND 

The development of buried utility infrastructure goes hand in hand with urbanism. Pota-

ble water and waste disposal systems have been part of the urban fabric for millennia. In 

the UK, most modern utility systems have their developments in the 19th century and 

coalesced into the five main utility services: electricity, gas, sewer, telecommunications 

and water. 

As these networks developed, new infrastructure was required. Much of this was laid in 

the street. Initially new services were laid alongside those that were already there with 

the result that the underground space became congested relatively quickly. This infra-

structure can now be found hiding beneath our feet in the unseen maze of pipes and ca-

bles, some of which have never been accurately mapped or recorded - making them dif-

ficult to find when repairs are necessary.  

Since the mid 19th century, asset records have been transferred between different or-

ganisations as the structure of the industries changed. For the majority of the 20th cen-

tury these records were generated and maintained by teams of cartographers. The re-

cords were drawn on a variety of different media chosen for their integrity (ease of 

storage, degradation over time, durability, warping etc.) which included paper, tracing 

cloth and drafting film. Ordnance Survey mapping was generally used as a reference 

source with some companies annotating their records directly onto map sheets
1
. Over 

time, methods of communicating asset information, such as symbology and company 

standards, were informally developed for each of the utility domains. Although both the 

Highways Authorities and Utilities Committee (HAUC) and the National Joint Utilities 

Group (NJUG) have developed codes of practice to help in identifying and recording 

assets (for example HAUC (2002) and NJUG (2003)), no standards are available for 

how this information should be visualized.  

Since the mid 1980s, most utility companies have made significant progress towards 

digitisation of their utility records (Arnott & Keddie (1992), Halfawy et al (2005)). Al-

though digital records can be utilised within GIS asset management systems to accrue a 

number of benefits (notably improved analysis, representation and reporting and argua-

bly a reduction in cost), the process of digitisation has the potential to dilute record 

quality in a number of ways. Information loss can occur through such issues as organ-

isational decisions (a decision is taken not to digitise some components of the record, 

for example service connections), poor digitising methods, missing or out of date re-

cords, incomplete records, human error and inappropriate quality control. These conver-

sion issues compound errors inherent in the source material. 

                                                 
1
 The relative referencing of asset information against Ordnance Survey data has introduced other prob-

lems which will be discussed later. 



Once created, the digital records have continued to develop and are embedded within 

many organisational functions. The data models have become enriched, resulting in data 

that can be used in a range of modelling and business scenarios (e.g. topological net-

work analysis, 3d gravity flow applications, fault reporting and billing systems). As a 

result, a number of different computerized systems have developed: it is not uncommon 

for companies to employ several different software packages and file formats for stor-

ing, editing, analysing and viewing asset data (see Figure 1). Different users of these 

systems can have access to the asset data directly, over the corporate intranet and over 

the internet. 

 

Figure 1 Conceptualised utility GIS framework 

 

 

Prior to invasive works it is normally required that excavators should request and obtain 

record information from all relevant utilities to identify what is buried where. Digital 

GIS records can be tailored to these different user group needs (e.g. GIS data subsets 

(views) or scaled printouts with a standard symbology). Unfortunately, external compa-

nies (including competitor utilities, construction projects and highways authorities) tend 

to have a low level of access to this information which results in a dilution of knowl-

edge about the asset (NUAG (2006)). Much information held in utility records, e.g. in-

stallation details, maintenance history and physical properties of buried assets which are 

relevant to excavation works are not articulated. Furthermore, the spatial inaccuracies of 

these data are unknown. For example, a utility may be confident that it knows where 

90% of its assets are, to a certain accuracy specification, but does not know where the 



10% of unrecorded assets exist in its network. Marvin and Slater (1997) estimate that 

the location of only 50% of buried infrastructure is accurately known. The mechanisms 

of provision (most end-users receive a paper map at a fixed scale) and the reduction in 

information content can lead to unnecessary street works as the planners and excavators 

are working with incomplete knowledge. This is exacerbated as each utility company 

employs their own methods for data recording and presentation and there is significant 

variability within each sector. Both MTU and VISTA have components that examine 

innovative ways of integrating utility data that provide a more effective means of repre-

senting this knowledge. 

 
Figure 2 VISTA Partner Utility Service Areas (excluding telecoms) 

 

 

2.1 VISTA and MTU 

The School of Computing within Leeds University is a member of the VISTA project. 

Visualising integrated information on buried assets to reduce streetworks (VISTA) 

commenced in early 2006 and is a four year joint project with a consortium of academic 

and industry partners. UK water industry research (UKWIR) is the lead co-ordinating 

partner with Leeds and Nottingham Universities providing the research input. In addi-

tion, there are over 20 utility and other industrial organisations. The project is princi-

pally funded though the Department of Trade and Industry Technology Programme with 

in kind contributions from the project partners. VISTA builds on a pre-existing Engi-



neering and Physical Sciences Research Council funded project, Mapping the Under-

world (MTU). 

The VISTA project is limited to utility assets in the United Kingdom. However, as de-

scribed in Figure 2 the current utility partners have service areas that are predominantly 

based in England. 

The Leeds components of the MTU and VISTA projects are, amongst other things, re-

searching techniques to enhance and integrate existing legacy asset information and de-

velop novel techniques to display the resulting knowledge to field teams and network 

planners. VISTA will provide the type of information outlined in section 6.3.1 of AM-

TEC (2004). 

3 RELATED RESEARCH 

For utility assets held in a digital format, the differences in data systems, structures and 

formats limits the ability to integrate data from different utilities effectively. This has 

the potential to hinder its usefulness in street works and has been recognised by the Na-

tional Underground Assets Group (NUAG (2006)). The heterogeneities are caused by 

many factors but the main reason is that utility knowledge and data is typically autono-

mous, i.e. created and maintained independently by individual utility companies. Fur-

thermore, the data is encoded in an uncoordinated way, i.e. without consideration of 

compatibility and interoperability
2
 with other utility systems. This practice is under-

standable as the principal remit for digitising assets is to improve operational systems 

for the company and not to improve data sharing. This means that different companies 

have different abstracted views of reality and consequently record different asset data. 

Overcoming these heterogeneities is an essential first step to achieve utility integration 

and move towards interoperability. 

3.1 Heterogeneities in the Utility Domain 

According to our investigations and reports from UK utility companies, this group of 

heterogeneities covers a wide range of issues, from the underlying data models, to the 

very kind of data and information that are being stored. For the purpose of discussion, 

we classify heterogeneities associated with utility records into the three categories dis-

cussed by Bishr (1998): syntactic heterogeneity, schematic heterogeneity and semantic 

heterogeneity. 

3.1.1 Syntactic Heterogeneity 

Syntactic heterogeneity refers to the difference in data format. The same logical model 

can be represented in a range of different physical models (for example ESRI shape file 

or GML). The treatment of spatial data varies greatly, from compressed binary data 

(such as a scan), to data models specifically designed for spatial data (Rigaux et al 

(2001)). This mismatch between underlying data models implies that the same informa-

tion could be represented differently in different utility systems. The most profound dif-

ference is in the storage paradigm: relational or object orientated. 

However, as described in Figure 1, users in a corporate framework may not be aware of 

how the underlying data is actually stored: they are only aware of the ‘view’ of the data 

                                                 
2
 Interoperability is used to describe the capability of different programs to exchange data via a common 

set of business procedures, and to read and write the same file formats and use the same protocols. 



to which they have access. Hence, organisations can have an extremely rich data model 

and can limit how much of this model different users can view.  

Partner utility companies rely on a range of different GIS including GE Smallworld, 

ESRI ArcMAP, AutoDesk MAP and MapINFO, employing a range of storage solutions 

including Oracle, SQL server and ArcSDE. 

3.1.2 Schematic Heterogeneity 

The database schema is designed at the conceptual modelling stage and reflects each 

company’s abstracted view of reality. Hence, different hierarchical and classification 

concepts are adopted by each company to refer to identical or similar real world objects. 

Heterogeneities can arise at this level in many forms due to the different domain percep-

tions and interests of different user groups. For example, the type of information re-

corded, the ways that this information is represented, the ways that different types of in-

formation relate to each other, and various semantics attached to utility records, as 

detailed below: 

• structures: different utility databases have different record structures.  

• semantics: elements encoded at the schema level are usually attached with 

some data semantics. The following are some typical semantic heterogeneities 

existing among utility records: 

o type mismatch occurs when same class of data are assigned with dif-

ferent data types, e.g. one utility system may use a text field to record 

material type whilst another uses a numeric field.  

o range mismatch arises when different utility systems allow their data 

items to have different value ranges. 

• granularity: different systems encoding data at different levels of detail, e.g. 

one utility system encodes mains pipes whilst another also encodes service 

pipes. 

3.1.3 Semantic Heterogeneity 

Semantic heterogeneity can be subdivided into naming and cognitive heterogeneities. 

Naming mismatch arises when semantically identical data items are named differently 

or semantically different data items are named identically in different utility systems. 

Naming heterogeneities can be relatively easily reconciled with a thesaurus although 

schematic granularity can be a problem. Different companies, or utility domains, have 

subtly different cognitive views of the world which means that they describe similar real 

word objects from different perspectives. Reconciling these cognitive heterogeneities is 

more difficult but is achievable through ontology mapping. 

The following are typical examples of heterogeneities arising at the data level: 

• unit mismatch arises when the same objects are represented using different 

units, e.g. mile in one system but metre in another system. 

• spatial reference mismatch occurs when different spatial reference systems are 

used to specify the data.  

• scale mismatch occurs when utilities encode their data at different levels of 

accuracy. For example, one system records and maintains its data with an ac-

curacy at centimetre scale while another can only guarantee accuracy at metre 

scale. 

• other data level heterogeneities exist. For example, one system encodes utility 

information as-built, and another encodes utility information as-design. 



3.2 Previous research on Knowledge and Data Integration 

Several research communities (including databases, artificial intelligence and informa-

tion integration) have studied different integration techniques to resolve information 

heterogeneities. A principal objective of integration research is to study how heteroge-

neous information can be reconciled in such a way that a homogeneous and unified rep-

resentation of this information can be constructed. Several research topics are relevant 

to this application. 

Integration architectures Two representative integration architectures are global 

schema based and peer to peer architectures. Systems with a global schema based archi-

tecture are characterized by a global schema which represents a reconciled view of the 

underlying sources (Motro (1987), Motro et al (2004)). A peer to peer integration sys-

tem allows peers (i.e., participating data sources) to query and retrieve data directly 

from each other (Halevy et al (2003)). Integration systems also differ from each other in 

having an architecture that supports either virtual or materialized integration. The for-

mer approach supports integration in a virtual fashion – all data sources remain at the 

local level, and queries to these data sources are expressed against a virtual, integrated 

view. In the materialised integration approach, data sources are merged into a single da-

tabase, which is maintained centrally. Queries are expressed against the integrated 

schema, but without accessing the local databases directly.  

Similarity Measure A fundamental operation for integration is the similarity measure, 

which takes two or more schemas/databases as input and produces a mapping between 

elements that correspond semantically to each other. Similarity measures are typically 

performed based on clues such as element names, types, data values, structures, and in-

tegrity constraints. In addition to attribute properties, some techniques explore how spa-

tial properties can be employed to measure whether two elements match each other or 

not (Samal et al (2004)). The spatial properties used include, the position of objects, ob-

ject geometry and various spatial relations between them.  

Matching Discovery Methods Many matching solutions employ hand-crafted rules to 

match schemas/databases (Madhavan et al (2001)). A broad variety of rules have been 

considered. A common example is that two elements match if they have the same name 

and the same structure. Systems compute the similarity of matching elements as a 

weighted sum of the similarities of various features considered, e.g. name, data type, 

and inheritance relationship etc.  

An alternative technique is to use learning based methods to discover matching pairs 

(Doan et al (2001)). For example, the SeMint system (Li & Clifton (2000)) uses a neu-

ral network learning approach. It matches schema elements based on attribute specifica-

tions (e.g. data types, scale, constraints etc.) and statistics of data content (e.g. maxi-

mum, minimum, average, and variance). The main benefit of learning-based approaches 

is that they maximally support automated integration, though human efforts are required 

to obtain training data. 

Mapping Representation This research studies how to specify the correspondence be-

tween the source schema and the target schema. Two basic approaches have been pro-

posed to support this. The first approach, called global-as-view (GAV), requires that the 

global schema is expressed in terms of the data sources (Halevy (2001)).  The second 

approach, called local-as-view (LAV), requires the global schema to be specified inde-

pendently from the sources, and the relationships between the global schema and the 

sources are established by defining every source as a view over the global schema. In 

addition to GAV and LAV, other mapping approaches have been introduced such as 

GLAV (Friedman et al (1999)) and BAV (McBrien & Poulovassilis (2003)).  



Schema Merging For a global schema based architecture, the global schema itself is 

based on the inter-schema relationships (i.e. the mappings between the global and local 

schemas) produced during the similarity measure (Devogele et al (1999), Lawrence & 

Barker (2001)). In schema merging, each mapping element is analysed to determine if 

and how it will be included in the global schema. The concern here is to resolve various 

conflicts that may exist, e.g. naming conflicts and structural conflicts, as a result of a 

different choice of modelling constructs or semantic constraints. 

3.3 Discussion of Data and Knowledge Integration in VISTA and MTU 

Although the existing research provides a framework, many utility specific heterogenei-

ties remain to be resolved. For example, different units and reference systems are rea-

sonably constrained as all companies use the Ordnance Survey National Grid projection. 

However, the Positional Accuracy Improvement (PAI - Ordnance Survey (2007)) pro-

gramme, used to address accuracy issues in Ordnance Survey data that became apparent 

after the introduction of absolute positioning technologies (such as GPS), provides an 

95% accuracy estimate of 1m in urban environments. The differences in precision and 

accuracy of relative and absolute positioning devices may increase data uncertainty. 

Furthermore, 3-dimensional representations of utility asset may be problematic. If the 

3rd dimension is recorded, it is normally as a depth (a relative measure) or an Ordnance 

Survey height (an absolute measure). However, these fields are variably populated in 

every asset dataset. The challenge here is to identify the appropriate measurements and 

apply them to the 2-d polylines to create topologically correct 3-d polyline networks.  

Finally, though the literature is rich on techniques for resolving various heterogeneities, 

the assumption is that various meta-data and documentation is available to assist inte-

gration work. Without good quality metadata some problems may be intractable.  

4 A FRAMEWORK FOR UTILITY KNOWLEDGE AND DATA INTEGRATION 

The previous sections have introduced the nature of utility asset data in the UK and the 

range of heterogeneities that exist within the utility domain. In response to this, we have 

designed a conceptual framework which supports utility knowledge and data integra-

tion. The assistance of partner utility organisations has been essential in the design of 

this framework. They have provided us with a range of information including data and 

metadata pertaining to their individual physical and logical data models. 

The framework is characterised by a number of features: 

• The framework supports utility integration at two levels: the schema level and 

the data level. The schema level integration ensures that a single, unified inter-

face is provided to access utility data in a consistent way, and to enable un-

derground asset data from multiple utilities to be represented in a common 

format. The data level integration improves utility data quality by reducing in-

consistency, duplication and conflicts. 

• A virtual approach for integration is employed. This is justified by the fact 

that utility data is usually autonomous and it changes frequently due to the 

ongoing need for installing, repairing or replacing utility assets. A virtual ap-

proach preserves the autonomy and distribution of data
3
 and at the same time 

ensures that up to date utility data are available. 

                                                 
3
 Hence, such a system will have minimal impact on the operational use of the system by the host utility. 



• A global schema (common data model) based architecture is adopted.  

• A bottom up approach is employed to construct the global schema/model of 

utility data. This contrasts with many other domains, where shared, standard 

models/ontologies usually exist, and such models are often adopted as the 

common data model to support integration.  

The framework incorporates the following assumptions: 

• Data will only flow from utility companies to consumers. The current frame-

work will not allow users to update records in utility data stores.  

• The global schema will provide all the data required by street workers. 

 
Figure 3 VISTA Framework for Utility Knowledge and Data Integration 

 

 

As shown in Figure 3, the main components of the framework are the Schema Integra-

tion Manager, Data Integration Manager and Query Manager. The Schema Integration 

Manager is designed to support schema level integration, which is mostly performed at 

the pre-processing stage of the utility integration. It takes schema level knowledge, gov-

ernment legislation, codes of practice and users’ knowledge as inputs, and produces 

mappings between global and local schemas as well as the global schema. 

The Data Integration Manager supports utility integration at the data level. Together 

with the Query Manager, it supports run time integration activities. All queries are 

specified in terms of the global schema. A query submitted to the utility integration sys-

tem is first sent to the Query Manager. Based on the mappings generated by the Schema 

Integration Manager, the Query Manager decomposes the query into several local que-

ries specified in terms of local schemas. These local queries are then forwarded to un-

derlying utility DataBase Management Systems (DBMSs) where the data records of in-

dividual utility companies are maintained. The query results produced by local DBMSs 

are firstly sent to the Data Integration Manager to reduce any duplications or conflicts 

that may exist and then sent back to the user interface via the Query Manager. The re-

maining part of this section introduces each of these components in detail. 



4.1 Schema Integration Manager 

The range of strategies for holding buried asset data means that a Schema Integration 

Manager is required to reconcile heterogeneities. The Schema Integration Manager is 

responsible for reconciling schema level heterogeneities of utility records. It takes utility 

schemas as the input and produces a global schema and mappings between elements of 

the global schema and local ones that correspond semantically to each other. Figure 4 

shows the constituent components of the Schema Integration Manager. 

 
Figure 4 Schema Integration Manager 

 

 

The Semantic Enrichment component complements existing local schemas with addi-

tional data semantics which are either missing or can not be expressed in the specified 

local data models. This information is provided by domain experts or utility data admin-

istrators. The Transformation component takes semantically enriched local schemas and 

translates them into a common data model (or formalism) according to a set of trans-

formation rules. Since utility data are spatial, this may include turning raster data into 

vector data, or vice-versa. 

Matching Discovery aims at the identification of all correlations among existing ele-

ments of local schemas (inter-schema correspondences), according to a set of predefined 

matching criteria. A data dictionary or a light-weight ontology may be employed to re-

solve semantic heterogeneities at this stage. The Integration component is designed to 

resolve any conflicts among schema elements, creating the integrated global schema 

based on the integration rules, and establishing the mappings between elements of 



global and local schemas
4
. National legislation is taken into account at this stage to en-

sure that the global schema constructed conforms to government, and other agreed, 

standards. Domain experts are required to verify whether the defined mapping is correct 

and unambiguous based on their knowledge of the semantics of the data. 

4.2 Query Manager 

Requests for data arrive in the form of queries expressed in terms of the global schema. 

The Query Manager rewrites them into queries that can be understood by local utility 

DBMSs. The rewritten queries are then processed by the local utility database and the 

corresponding results retrieved. Since data retrieved from various local databases may 

contain duplications or conflicts, data level integration must be performed (see below) 

before the retrieved results can be sent back to the query manager. Figure 5 shows the 

constituent components of the Query Manager. 

 
Figure 5 Query Manager 

 

 

To cope with platform heterogeneities of utility DBMSs, a query is usually expressed in 

a standard query language, e.g. SQL. When such a query is accepted by the Query Man-

ager, it is firstly sent to the Query Decomposition component which unwraps the query 

using the definition specified in the mappings generated by the Schema Integration 

Manager, and translates it into several sub-queries expressed in terms of local schemas. 

Each sub-query is then forwarded to a wrapper, which is a component which communi-

cates with a specific utility database. A wrapper translates a sub-query expressed in a 

standard query language into the one in the local query language, and retrieves data 

from an underlying utility data store. Once initial query results are obtained from local 

DBMSs, they are sent to the Data Integration Manager to resolve duplication or con-

flicts. 

                                                 
4
 A mapping is specified by associating each element of the global schema with an assertion expressed in 

elements of a local schema instance. 



4.3 Data Integration Manager 

The Data Integration Manager is responsible for reconciling data level heterogeneities 

of utility records. It takes all the query results (often with duplication and conflicts) re-

trieved from local utility DBMSs as input and generates a merged query result. Accurate 

data is retained, redundancies are eliminated, and data conflicts are reconciled. The final 

query result is sent to the Query Manager. Figure 6 shows the constituent components 

of the Data Integration Manager. 

The main components of Data Integration Manager are the Transformation, Matching 

Discovery and Merging components. The Data Integration Manager resolves inconsis-

tencies arising at the data level, for example transforming all geometric data into a sin-

gle, agreed spatial reference system, and converting data into a common unit: for exam-

ple all length data into metres and all diameter measurements into millimetres. This 

process is performed at the pre-processing stage according to pre-defined transformation 

rules. 

 
Figure 6 Data Integration Manager 

 

 

The Matching Discovery component identifies potentially identical data instances com-

ing from different utility data stores, according to matching criteria. Both the spatial and 

a-spatial properties of utility records take part in the matching process as well as in de-

signing matching criteria. As with the Data Integration Manager, a data dictionary or a 

light-weight ontology may be employed to resolve the semantic heterogeneities at this 

level. 

The Merging component takes a set of candidate matching pairs produced in the match-

ing component, and a pair is merged into a single instance if it satisfies the merging 

rules. Again, domain experts may verify that the merging process produces correct and 

unambiguous results. 

4.4 Potential implementation issues 

In this section we have described the conceptual approach to data integration. This is a 

virtual approach; no data is permanently held, rather, the data that is required to answer 

a query is accessed directly from the appropriate utility databases, dynamically inte-

grated and represented to the user as described in Figure 3. However, after feedback 

from a number of utility database managers and administrators it was clear that they 

would be reluctant to allow an external source to dynamically access their primary data 

store. This is for a number of reasons which commonly included potential impacts on 



operational data and security. Although this does not affect the proof of concept goal for 

this project it will ultimately impact on any future implementation phases. Therefore, 

we have considered mechanisms of bypassing direct access to any primary data stores. 

One solution is to access data snapshots held in an interoperable file format (such as 

Geography Markup Language (GML) or as a Web Feature Service (WFS)). This has a 

number of benefits: 

• The utility company retains full autonomy of its primary data store. 

• Only the attributes required by MTU/VISTA will be exported, ensuring the 

security of non-essential, but potentially sensitive, data. 

• The underlying data store can be changed with only minimal impact on the 

framework. 

• The interoperable file can be held on a separate utility server with specific se-

curity settings. 

 
Figure 7 GML based virtual schema 

 

 

Figure 7 describes a GML based virtual schema based on this virtual integration model. 

If such a system is desirable and the security implications can be resolved then it may be 

possible to store the data snapshots on a secure server outside the utility company’s 

firewall. This would allow the data sets to be integrated incrementally (every time a 

snapshot is updated) reducing the need, and processing overhead, of dynamically inte-

grating the data with every query request. Response time would be improved and the 

data could be used in a number of other scenarios (for example, as an emergency re-

sponse resource). This would result in a materialized rather than a virtual view the data 

would still be up-to-date, although at a lower level of temporal granularity. 

5 SCHEMA INTEGRATION 

A critical step in utility knowledge and data integration is to produce a single, integrated 

data model. The two main problems in designing a common data model are determining 

the mappings between elements of individual utility data models (or database schemas), 

and integrating them into a unified model based upon these mappings. Initially, auto-



mated and semi-automated techniques were employed to determine schema mappings. 

Unfortunately the heterogeneities in the supplied data models meant that this approach 

was unsuccessful. Hence, the global schema was defined manually. 

5.1 Manual schema integration 

Each of the original databases had a range of different asset records for each domain. 

Although each of these record types was nominally structured by their geometry 

(mainly polyline for pipes, points for network furniture), the differences in representa-

tion between the utility companies was significant. Some companies held a single point, 

polyline and polygon spatial database and relied on the attributes to distinguish between 

the different asset types. Other companies provided multiple spatial databases corre-

sponding to the different asset types in their network (each with their own set of attrib-

ute information). For practical reasons the domain of the problem was reduced by focus-

ing only on principal pipe/cable datasets from each of the utility companies (see Table 

1). 
Table 1 Anonymous extract of data used for global schema matching 

 
 

A database was created that summarised the nature of each asset type and recorded the 

field names, data types and value examples for each field in the supplied physical model 

of the spatial databases. Using the supplied metadata (logical model and other support-

ing documentation) logical mappings and explicit definitions were added to these re-

cords wherever possible. A key issue in resolving semantic heterogeneity is the acquisi-

tion of appropriate metadata and discerning the semantic relationships between 

constructs of the different database schemas. Variable levels of metadata were provided 

by the utility companies which made this matching process difficult.  

After evaluating the information from each of the different utility domains (with the ex-

ception of telecoms) a tentative Global Schema was designed. This schema selected 

fields that were considered important for street works and back office planning and used 

the recommendations from (NUAG (2006), Parker (2006)) (see Table 2). The individual 

fields from the physical models were then manually mapped to the global schema. For 

each record in the database a value from the Global Mapping Table was applied. Where 

a field was not considered important it was given the value ‘NA’. Those fields that may 

be important were given the value ‘unsure’. Where there was not enough information to 

accurately map the field it was given ‘unknown’ (this information is summarised in Ta-

ble 1). All other fields were mapped to the other values in the Global Schema Mapping 

Table (in some instances many fields in the utility database were mapped onto one field 



in the Global Schema). Data from Partner C data has not yet been mapped owing to dif-

ficulties in interpreting the fields in the physical model. 

Transformation issues were recorded for each field. Two principal types of transforma-

tion issue were encountered: 

• Consistency reconciliation: how units or measurements require transforming 

for a consistent representation. For example, all depths/height should be to the 

top of the asset. 

• Data Dictionary (lookup table) reconciliation: how different data dictionaries 

can be merged to generate a global utility domain data dictionary. 
Table 2 Global Schema 

 

5.2 Global Schema validation 

At the beginning of 2007 a second call for data was issued to each of the project utility 

partners. The data from this call is being used, amongst other things, to validate the 

global schema described above. This validation occurs by mapping utility data directly 

onto the global schema under the supervision of a domain expert from each company. 

The software package RadiusStudio from 1Spatial (www.1spatial.com) is used to man-

age these mappings between the utility schema and the global schema. RadiusStudio 

maintains mappings and transforms as metadata which can be accessed via a web 

server. This means that any changes to the mappings can be easily reviewed and vali-

dated by domain experts. 

Although this work is still on-going, the initial findings are that the global schema is ro-

bust. The majority of field declarations are appropriate. Some fields, such as jointType 

need removing as they are superfluous and others, such as assetTopBuriedDepth, need 

extending as the utility data models are richer than expected. In general, the global 

schema can successfully store information across utility domains and address the needs 

of both network and furniture data. 



6 FURTHER WORK 

Once the global schema mapping has been completed against all utility partners a sec-

ond, and hopefully final, version of the global schema will be produced. The final 

schema will place attributes into two categories: core attributes and extended attributes. 

Core attributes are essential elements of the schema that are required by end users. Ex-

tended attributes enrich the data model but are not essential for its successful implemen-

tation. After the mapping and transforms have been determined for each utility partner 

then the software architecture and delivery systems will be generated. 

To represent data in the integrated utility data store, VISTA is developing a visualiza-

tion service which will deliver maps on the fly that are tailored for specific user needs 

(e.g. utility providers, utility contractors, highway agencies and local authorities). Each 

user group has different requirements for the display of raw data and the various uncer-

tainties associated with this data. The visualization service responds to user requests by 

retrieving data from the data store, enriching the retrieved information and then visual-

izing the output.  Our initial work (Boukhelifa & Duke (in press)) addresses the visuali-

zation needs of users who would like maps of utility data to be delivered via a web in-

terface. Thus, we are working on a visualization web service that generates data 

requests (via a web interface allowing the user to, for example, specify the geographical 

extents of the area of interest and types of assets to be visualized). The retrieved data is 

then enriched with a set of asset rules that govern how to display the raw asset data and 

a set of uncertainty rules that augment the display based on available information on un-

certainty (such as information on the provenance of data and locational and attribute un-

certainty). The output is rendered and displayed using a web browser as a 2D map. Our 

future work will explore 3D visualizations and various techniques for uncertainty visu-

alization. 

Finally, the University of Leeds is working on mechanisms to integrating non-vector 

holdings into each data store. This, predominantly, raster data is not amenable to direct 

integration in the manner detailed in this document without further work to convert the 

scans to vector format. The approach of utility companies to raster to vector conversion 

(RVC) has been almost exclusively manual or semi-automated. We are not currently 

aware of any utility companies in the UK that have used an automated RVC system to 

import non-digital data into a GIS. We are developing algorithms that encode and im-

pose semantic features on the raw raster data automatically (Hickinbotham & Cohn (in 

press)). 
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