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Abstract 
This paper reports on the findings of a study to derive a preference-based measure of health 
from the SF-36 for use in economic evaluation.  The SF-36 was revised into a six dimensional 
health state classification called the SF-6D.  A sample of 249 states defined by the SF-6D 
have been valued by a representative sample of 611 members of the UK general population, 
using standard gamble. Models are estimated for predicting health state valuations for all 
18,000 states defined by the SF-6D.  The econometric modelling had to cope with the 
hierarchical nature of the data and its skewed distribution. The recommended models have 
produced significant coefficients for levels of the SF-6D, which are robust across model 
specification. However, there are concerns with some inconsistent estimates and over 
prediction of the value of the poorest health states. These problems must be weighed against 
the rich descriptive ability of the SF-6D, and the potential application of these models to 
existing and future SF-36 data set.  
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1. Introduction  

Measures of health related quality of life (HRQoL) have become widely used by clinical 

researchers and can provide useful descriptive information on the effectiveness of health care 

interventions covering such disparate range of outcomes for HRQoL. However, these 

measures have not been designed for use in economic evaluation. The main shortcoming of 

using such instruments in economic evaluation is that they do not explicitly incorporate 

preferences into their scoring algorithms. 

This paper reports on a study to derive a preference-based measure of health from the SF-36, 

which is one of the most widely used generic measures of HRQoL in clinical trials.  It has the 

potential to considerably extend the scope for undertaking economic evaluation in health care 

using existing and future SF-36 data sets.   The paper also seeks to address the 

methodological issues this research task raises.    

The next section of this paper briefly describes the SF-36 and some of the problems of using 

it in its current form in economic evaluation. This is followed by a section describing the 

methods of the study, including: the rationale for the choice of approach, the changes made to 

the SF-36, the valuation survey using a version of standard gamble and the issues around 

modelling the data. The valuation survey is reported in sections four and five and the 

modelling reported in section six.  These types of stated preference data are complex to model 

due to their hierarchical nature and skewed distribution, and section six outlines alternative 

specifications for dealing with these problems. The final section considers how the results 

from this work can be used. 

 

2. The Short Form-36 (SF-36) Health Survey 
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The SF-36 health survey is a standardised questionnaire used to assess patient health across 

eight dimensions (Ware et al, 1993). It consists of items or questions which present 

respondents with choices about their perception of their health. The physical functioning 

dimension, for example, has 10 items to which the patient can make one of three responses: 

‘limited a lot’, ‘limited a little’ or ‘not limited at all’. These responses are coded 1, 2 and 3 

respectively and the ten coded responses summed to produce a score from 10 to 30. These 

raw dimension scores are transformed onto a 0 to 100 scale, which are not comparable across 

dimensions.  

There is extensive evidence of the ability of these scores to describe the health differences 

between different patient groups and more importantly for evaluation, their ability to detect 

health changes in populations following intervention (Garratt et al, 1993). However, the 

method of scoring the SF-36 is not based on preferences. The simple scoring algorithm it uses 

assumes equal intervals between the response choices (e.g. the change from ‘no limitation’ to 

‘limited a little’ is regarded as the same the change from ‘limited a little’ to ‘limited a lot’). 

Furthermore, it assumes the items are of equal importance; for example, being limited in 

walking has the same importance as being limited in climbing flights of stairs. The evidence 

has confirmed these concerns with the scoring. Studies have found only low to moderate 

correlations between HRQoL measures and preference-based measures (Revicki and Kaplan, 

1993). The absence of preference data makes it impossible to undertake any trade-offs 

between SF-36 dimensions, or between its dimensions and survival and/or cost.  

 

The remainder of this paper describes a study that introduces preferences into the scoring of 

the descriptive data in order to generate the health state utility values needed to construct 

QALYs and hence conduct cost-utility analyses.  
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3. Methods 

There are three components to this study. Firstly, the SF-36 has been reduced in size and 

complexity in order that respondents can process the information and hence give reliable 

valuations of health states. Secondly, a preference based valuation survey has been 

undertaken. Thirdly, the results of the survey were used in a model to predict values for all 

states of health described by the reduced form version of the SF-36, via alternative 

econometric techniques.  

Econometric methods to estimate a model to predict health state values was chosen over 

techniques based on multi-attribute utility (MAU) theory, such as used to value the HUI 

(Torrance, 1996), due to the structure of the SF-6D system.  The dimensions of the SF-6D are 

not strictly independent, so for example a health state with one dimensions at its worse level 

and all the other being at the best level is extremely unlikely to occur in practice and would 

not be credible with respondents. This presents problems in using MAU theory since it 

becomes necessary to back-off from these ‘corner state’.  Econometric methods do not rely on 

such corner states.   

The feasibility of this approach was demonstrated in a pilot survey. A specially derived 

reduced version of the SF-36 (the ‘SF-6D’) was valued by a convenience sample (n=165) 

using standard gamble (SG), and the results were modelled to estimate a scoring algorithm for 

deriving a preference based single index from the SF-36 (Brazier et al, 1998). This pilot study 

was constrained by the unrepresentativeness of the sample of respondents and limitations in 

the modelling owing to the small size of the dataset. Therefore the study reported in this paper 

was designed using a much larger representative sample of the UK population.  
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3.1 Deriving the SF-6D Health State Classification 

The SF-36 has 35 multi-level items used in its current scoring system, many of which have no 

obvious ordinal relationship; hence many millions of health states can be defined from this 

classification. The valuation of such a large multi-attribute function would present enormous 

estimation problems. Furthermore, experience from other research in transport and health, 

suggests that individuals can only process between five and nine pieces of information at a 

time (Miller, 1956; Pearmain et al, 1991; Dolan et al, 1995). The aim of this stage of the 

project was to produce a health state classification which was amenable to valuation by 

respondents subject to the constraint that responses to the SF-36 could be unambiguously 

mapped onto it.  

The main task was to substantially reduce the number of items for the health state 

classification. The principle criterion was to minimise the loss of descriptive information. 

This item selection process was able to benefit from the research undertaken by Dr John Ware 

and his colleagues on the descriptive importance of the items of the SF-36 in terms of their 

overall contribution to longer versions of the dimension scores (Ware et al, 1995). They 

undertook extensive factor analyses to determine the relative contribution of items to their 

overall dimension scores. This work has already contributed to a further shortened version of 

the instrument, the SF-12, which has become widely used in the USA.  

 

3.2 The SF-6D health state classification 

The number of dimensions was reduced from eight to six. This was achieved firstly, by 

excluding all general health items since the purpose is to generate a single index for health 
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and it would be illogical to include a general health dimension as a constituent element. 

Secondly, the dimension ‘role limitation due to physical problems’ was combined with ‘role 

limitations due to emotional problems’ to form a single dimension for simplicity.  However, 

this important distinction between different sources of role limitation is not lost in the derived 

health state classification system.  

 

The final selection of items uses 8 from the SF-12 and three other items from the SF-36 

physical functioning dimension to extend the scale to cover the full range of functioning 

problems. The result is a six dimensional health state classification shown in Table 1, which 

has been called the SF-6D.  The SF-36 items used in the SF-6D are listed at the bottom of the 

table. This version of the SF-6D differs in a number of important respects from the pilot 

version published in Brazier et al, (1998). 

The SF-6D has six dimensions (δ = 1,2,…,6), each with between two and six levels (λ). An 

SF-6D health state is defined by selecting one statement from each dimension, starting with 

physical functioning and ending with vitality (see Table 2 for examples). A total of 18000 

health states can be defined in this way. All responders to the original SF-36 questionnaire 

can be assigned to the SF-6D provided the 10 items used in the six dimensions of the SF-6D 

have been completed.  

 

4. The valuation survey 

The basic design of the survey was that a sample of 249 health states defined by the SF-6D 

was valued by a representative sample of the general public (n = 836). Each respondent was 

asked to rank, and then value, six of these states using a variant of the SG technique. 
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4.1 Selection of respondents 

A representative sample of the general population should be used in this survey since the 

purpose is to inform the allocation of public resources (Gold et al, 1996). The aim of the 

sampling has been to ensure the sample should reflect the variability of the population in 

terms of characteristics such as age, socio-economic status and level of education. The sample 

was drawn using a two-stage cluster random selection design. The primary units were 

postcode sectors stratified by percentage of households with a non-manual occupation. Fifty 

one postcode sectors were selected, and addresses randomly selected from each of these, 

resulting in 1445 potential interviews. Where more than one adult (i.e. 16 or over) was found 

in household, one was selected at random by the interviewer using a standard Kish selection 

grid.  

 

4.2 Selection of health states 

For such a large descriptive system, where it is not possible to value all possible combinations 

of each dimension or attribute, there is little guidance in the statistics literature on selecting 

samples for valuation. The minimum sample of health states was identified using an 

orthogonal design (by applying the Orthoplan procedure of SPSS), which generated 49 health 

states (out of 18,000) required in order to estimate an additive model. It was anticipated that 

more complex specifications, allowing for some form of interaction between dimensions, 

would be estimated and therefore it was desirable to value more states. Another reason for 

valuing more states was to provide scope for examining the predictive ability of the models 

subsequently estimated. However, resources constrained the survey to around 800 interviews. 

The choice was therefore to maximise the number of valuations per state (hence choose the 
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minimum number of states, 49), or maximise the number of health states valued or some 

combination of the two. The latter course was chosen. States were classified as mild, 

moderate or severe and a stratified sampling method was used to supplement the 49 states 

selected by Orthoplan with a further 200 states, to provide 249 health states for valuation. 

Each respondent was asked to value six health states. Care was taken to ensure each person 

was asked to value a range of health states across the space defined by the SF-6D rather than 

a predominantly ‘good’ or ‘bad’ selection of states (Brazier et al, 1999b). The allocation 

procedure was also designed to maximise the chance that each of the 249 cards would be 

valued by an equal number of respondents.  

4.3 The interviews 

A trained and experienced interviewer conducted the interviews in the respondent’s own 

home. The interviewers were employed by the Social and Community Planning Research 

(SCPR), who are a private survey organisation that has undertaken numerous surveys for 

Government agencies and academics, including the MVH EQ-5D valuation survey (Dolan et 

al, 1995). The interview began with the respondent being asked to complete a short self-

completion questionnaire about his or her own state of health, that included completing the 

SF-6D in the format that appears in Table1. This familiarised the respondent with the idea of 

describing health in terms of the SF-6D. It also provides a self-assessment of health which 

could be subsequently used in the modelling to estimate the impact of respondent’s own 

health on their valuation of other health states.  

At the next stage of the interview, the respondent was asked to rank a set of eight cards: one 

for each of the health states they would have to value, along with the best state defined by the 

SF-6D, the worst state and immediate death. This task provided an opportunity for the 
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respondent to familiarise themselves with the cards and the notion of having preferences for 

one health state over another.  

The main part of the interview was the SG valuation of six health states.  This study 

employed a variant of the SG using props developed by a team at McMaster  (Furlong et al, 

1990).   In the interview, the respondent is asked to choose between the certain prospect (A) 

of living in an intermediate state defined by the SF-6D and the uncertain prospect (B) of two 

possible outcomes, the best state defined by the SF-6D or the worst (‘pits’). The chances of 

the best outcome occurring is varied until the respondent is indifferent between the certain 

and uncertain prospects.  At all times the probabilities are displayed on a chance board, both 

numerically and in the form of a pie chart. This ‘ping pong’ with props version of SG was 

chosen for its ease of use by interviewers. The chance board is designed to make the interview 

as straightforward as possible, by leading the interviewer through a set of questions 

depending on the respondents answer to the previous question, and minimise the risk of 

interviewer variation. The developers have tried and tested the procedure and its associated 

prop over many years and it has become widely used in health economics. The McMaster 

team were able to provide training to the study investigators and produce the chance boards 

for the survey interviewers. All interviewers were trained in the use of this SG valuation 

technique by the investigators.  

In the SG valuation task respondents were asked to value each of the five certain SF-6D 

health states against the best and ‘pits’ health state. For calculating QALYs it is necessary to 

transform the results onto a scale where 1 is full health and 0 equivalent to death. The best 

health state defined by the SF-6D is full health.  The worst state defined by the SF-6D must 

be valued on the full health to death scale and the five health state values adjusted 

accordingly. All respondents were therefore asked a sixth SG question. Depending on 
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whether they thought the ‘pits’ state was better or worse than death they would be asked to 

consider a choice between either: i) the certain prospect of being in the ‘pits’ state and the 

uncertain prospect of full health (state 111111) or immediate death, or ii) the certain prospect 

of death and the uncertain prospect of full health or the ‘pits’ state.  

The use of the ‘pits’ state as the reference state is an important feature of the SG valuation 

task used in the survey. It is more conventional to use death as the worst outcome (and more 

convenient for the purposes of deriving QALYs where it is necessary to place the health state 

values directly onto a scale where 1 is full health and 0 is regarded as equivalent to death). 

The ‘pits’ state was chosen for two reasons. The first arose from a concern that the ‘ping 

pong’ version of SG used in the survey was insensitive at the upper end of the scale. 

Respondents are asked to consider probabilities up to 0.95 and yet the pilot study using an 

earlier version of the SF-6D found many respondents would only consider having the 

operation at higher odds (Brazier et al, 1998). The two stage valuation process allows 

respondents who believe the ‘pits’ state is better than death (and most did) to value the 

intermediate state above 0.975. The second benefit is that it enables people who regard the 

‘pits’ state and other health states defined by the SF-6D to be worse than death to do so in one 

go at the end of the interview rather have to incorporate the states worse than death gamble 

into every question.  

It was necessary to ‘chain’ the health state values in order to place them on the zero to one 

scale. For health states better than death, where the best outcome is set at 1 and death is 0, 

then expected utility theory would indicate that the health state value of the intermediate state 

is the probability of the better outcome at the respondent’s point of indifference. For states 

worse than death, the equivalent value would be -P/(1-P); where P is the valuation of the 

‘pits’ state. However, this results in a scale ranging from -∞ to +1, which gives greater weight 
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to negative values in the calculation of mean scores and presents problems for the statistical 

analysis. It has therefore been recommended in the literature that states valued worse than 

death should be simply the negative of the indifference probability of the best outcome 

(Patrick et al, 1994). This has the effect of bounding negative values at minus one.  It is 

acknowledged that this has no theoretical support and is only one of a number of possible 

ways of dealing with the problem, but it is one that has become widely used elsewhere in the 

literature and a similar transformation has been used on TTO values in the MVH study 

(Dolan, 1997).  Furthermore, it is less of an issue in the valuation of the SF-6D since there are 

proportionately fewer SG observations below zero and very few below minus one using the 

formula -P/(1-P) than has been found for the HUI and EQ-5D.   

Having valued the ‘pits’ state (P), the final step is to adjust the five intermediate SF-6D health 

state valuations (SG) onto the scale where the best SF-6D state is 1 and death 0. The health 

state value used in the modelling is therefore: SGADJ = SG + (1-SG) * P.          

 

5. The Data  

Out of the 1445 addresses contacted for interview, 167 proved to be ineligible1. Of the usable 

addresses there were 836 successfully conducted interviews (a 65% response rate). 

Respondents were found to be representative of the national population in terms of the 

distribution by age group, education and social class (Sturgis and Thomas, 1998).  

One hundred and thirty respondents had to be excluded from the analysis for failing to value 

the ‘pits’ state; therefore it was not possible to generate an adjusted SG value (see below). A 

further 9 were excluded for not valuing two or more health states. Finally, there were 86 
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respondents whose health state values did not change between the five states. This last group 

have been excluded because the lack of variation is likely to indicate that the respondent did 

not understand the task. Other grounds for excluding individuals were considered, such as 

logical inconsistencies between their responses and the ordinal properties of the SF-6D, but 

these were discounted in favour of leaving individuals in the data set where possible. 

A comparison of included and excluded respondents is presented in Table 3. The 225 

excluded cases tended to be older, were marginally more likely to be male and unmarried, and 

less likely to have children under 16. They were more likely to rent rather than own their 

home and were less likely to be in full-time employment. They tend to have less educational 

qualifications and were slightly more likely to have problems understanding the standard 

gamble valuation task. Out of the 611 individuals included in the data set there were 148 

missing values from 117 individuals. This results in 3518 observed SG valuations across 249 

health states and these form the data set reported and analysed below.  

 

5.1 Health state values 

Descriptive statistics for 50 of the 249 health states are shown in Table 4. Each health state 

has been valued an average of 15 times. Mean health state values range from 0.10 to 0.99, and 

generally have large standard deviations. Median health state values usually exceed mean 

values, reflecting the positive skewness of the data. The relative health state valuations 

broadly conform with the logical ordering of the SF-6D. 

                                                                                                                                                         
1  These were addresses which contained no resident household for various reasons including: insufficient 

address, not traced, not yet built, derelict/demolished, business only, empty, institution only, 
weekend/holiday home. 
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At the level of individual observations the degree of skewness is even more evident. A 

histogram and descriptive statistics for the 3518 individual adjusted health state valuations is 

shown in Figure 1. Negative observations did occur but were comparatively rare (245/3518) 

and over 23% of observations lie between 0.9 and 1.0. Interestingly, even for the ‘pits’ health 

state most respondents valued it as better than death (445/611). However, very few health 

states were valued at 1.0 (20/3518), indicating the willingness of respondents to risk a worse 

health state in order to have the chance of a better state of health.  

 

6. Modelling 

The overall aim is to construct a model for predicting health state valuations based on the SF-

6D. The appropriate modelling strategy is not clear a priori, and the econometric analysis is 

necessarily of an exploratory nature (Busschbach et al, 1999). The data generated by the 

valuation survey described above, has a complex structure which creates a number of 

problems for econometric estimation. Firstly, the data are skewed and bimodal (see Figure 1). 

Conventional power transformations are therefore not appropriate. The skewness in the data 

also raises questions about the appropriate measure of central tendency. There are statistical 

and political (e.g. median voter) arguments for using the median, but for economic evaluation 

the mean is usually recommended. The choice of dependent variable in this respect is also 

influenced by the second consideration - the form of heterogeneity that characterises this data.  

Variation is both between respondent and within respondent (across health states). 

Furthermore, health state valuations are likely to be clustered by respondent. Level 1 denotes 

the individual health state valuations, which are clustered according to level 2 – the 

respondents. Respondents did not value the same set of states, although allocation of states to 
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respondents was essentially random, differences between health state values may be partly 

due to differences in the preferences of the respondents, rather than the attributes of those 

states. Disentangling the respondent effect is a complex task and can only be tackled at the 

individual level, where each valuation is regarded as a separate observation, rather than using 

the mean value for each health state. The former has the advantage of greatly increasing the 

number of degrees of freedom available for the analysis (from 249 to over 3500) and enabling 

the analysis of respondent background characteristics on health state valuations. Despite these 

apparent advantages, it is not clear whether one is necessarily superior for the purposes of 

predicting mean health state values (Gravelle, 1995) and hence models have been estimated at 

both the individual and aggregate levels.  

 

6.1 Models 

A number of alternative models can be formulated for predicting the SG gamble scores 

generated in the valuation survey. The general model is defined as:  

ijjijijij gy εδθβ +′+′+′= )( zrx    (1) 

where i = 1, 2, …, n represents individual health state values and j = 1,2, …, m represents 

respondents. The dependent variable, yij, is the adjusted SG score for health state i valued by 

respondent j (SGADJ). x is a vector of dummy explanatory variables (xδλ) for each level λ of 

dimension δ of the SF-6D. For example, x31 denotes dimension δ = 3 (social functioning), 

level λ = 1 (health limits social activities none of the time). For any given health state, xδλ 

will be defined as  

xδλ = 1 if, for this state, dimension δ is at level λ 
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xδλ = 0 if, for this state, dimension δ is not at level λ 

In all there are 25 of these terms, with level λ = 1 acting as a baseline for each dimension. 

Hence for a simple linear model, the intercept represents state 111111, and summing the 

coefficients of the ‘on’ dummies derives the value of all other states.  

The r  term is a vector of terms to account for interactions between the levels of different 

attributes. The estimation of all possible interaction terms would have required a substantially 

larger proportion of the 18,000 health states of the SF-6D to be valued. There are, for 

example, 465 first order interactions alone. Given, the large number of possible interactions, 

and little evidence on which are likely to be important, there is a risk of finding significant 

interactions due to the play of chance. Further discussion of interaction effects is given below. 

z is a vector of personal characteristics that may also affect the value an individual gives to a 

health state, for example, age, sex and education. The role of personal characteristics is not 

discussed in this paper. g is a function specifying the appropriate functional form. εij is an 

error term whose autocorrelation structure and distributional properties depend on the 

assumptions underlying the particular model used.  

This is an additive model, which, apart from additivity, imposes no restrictions on the 

relationship between dimension levels of the SF-6D. For example, it does not enforce an 

interval scale between the levels of each dimension. Earlier empirical work on valuing the 

Euroqol assumed equal intervals, but this has since been found to be invalid for certain 

dimensions (van Hout and McDonnell, 1991, and Dolan, 1997). This additive model does not 

impose ordinality on the levels.  

 

6.2 Alternative Model Specifications 

brazierje10.doc 14



 15

The starting point is OLS estimation of model (1), with g as a linear function. This simple 

specification assumes a standard zero mean, constant variance error structure, with 

independent error terms, that is cov(εij,εi'j) = 0, i≠i '. This specification ignores the potential 

multilevel variation in the data and assumes that each individual health state value is an 

independent observation, regardless of whether or not it was valued by the same respondent.  

An improved specification, which takes account of variation both within and between 

respondents, is the one-way error components random effects model. This model explicitly 

recognises that n observations on m individuals is not the same as n×m observations on 

different individuals. For the random effects model the errors from model (1) are subdivided 

such that, 

    ijjij eu +=ε      (2) 

uj is respondent specific variation, which is assumed to be random across individual 

respondents. eij is an error term for the i th health state valuation of the j th individual, and this is 

assumed to be random across observations, with eij ~ [0, ]. In addition cov(uj,eij) = 0 which 

signifies that allocation of health states to respondents is random. Estimation is via 

generalised least squares (GLS) or maximum likelihood (MLE).  

2
eσ

A one-way error components fixed effects model can also be specified. This differs from the 

random effects specification in that the respondent specific effects uj are not assumed to be 

random, but are a set of fixed effects to be estimated, together with the vector of coefficients 

on the explanatory variables; hence cov(ujxij) ≠ 0.  

The choice between random and fixed effects specification depends largely on the sample 

design and the purpose of the study. In this case, respondents constitute a random sample and 
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the assumption of the random effects specification are met. Ultimately the choice is an 

empirical matter and will be determined by the Hausman test.  

The multi-level nature of variation in these data suggests a further class of models for 

consideration, those developed specifically to deal with hierarchical data structures. The two-

level multi-level model is similar to the one-way error components random effects model, and 

algebraically can be denoted by the specification given in (1) and (2) above. Estimation is by 

iterative GLS (IGLS), and this allows for more complex modelling of the variance 

components observed at both levels of the hierarchy (Goldstein, 1995).  

Finally we consider alternative functional forms - g in (1) - to account for the skewed 

distribution of health state valuations. Four functional forms are used. Firstly, a Logit 

transformation and two complementary log-log transformations suggested by Abdalla and 

Russell (1995). These are chosen to map the data from the range (-1,1) to the range (-∞,∞) via 

the unit range (0,1).  

Before applying these transformations it was necessary to transform the SGADJ data to get 

rid of negative values using:  

  SGADJU=(SGADJ+1)/2     (3) 

Secondly, a Tobit transformation which, although designed to deal with truncated data, can 

approximate for the left skew in this data, where 25% of the values lie between 0.9 and 1. 

This is done by specifying a Tobit model with upper censoring at 1.  

All modelling was done using EVIEWS 3.1, STATA 6.0 and MLwinN 1.02. 

 

6.3 Interaction Effects 
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Analysis of first order interaction effects was problematic, since the large number of possible 

effects means there is a risk of finding some are significant purely by chance. Also when first 

order interaction terms were found to be significant, they generally displaced the main effects 

due to collinearity between main effects and first order interaction terms.  

It was therefore necessary to investigate alternative ways of accounting for interactions. 

Extreme level dummies were created to represent the number of times a health state contains 

dimensions at the extreme ends of the scale (Dolan, 1997). Least severe is defined as level 1 

or 2 on each dimension. Most severe is defined as levels 4 to 6 for physical functioning (PF), 

levels 3 and 4 for role limitation (RL), 4 and 5 for social functioning (SF), mental health 

(MH) and vitality (VIT), and 5 and 6 for pain. A number of alternative definitions of most and 

least severe were investigated but these made little difference to the results. The most and 

least extreme dummies are denoted by EMδ and ELδ respectively, where δ = 1,2,…,6 and 

describes the number of times the least or most severe levels appear in a state.  

Two further methods for accounting for any additional effect from dimensions at the most 

severe levels were tried. Firstly, count variables represent the number of dimensions at the 

least (most) severe level. Secondly, dummy variables LEAST (MOST) take a value of 1 if 

any dimension in the health state is at the least (most) severe level, and 0 otherwise. Further 

dummies MOSTn (n = 2, 3, …,5) takes the value 1 if at least n dimensions are at the most 

severe level.  
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Functional Form 

Four transformations have been attempted to get remove the skew in the health state valuation 

data. Three ad hoc adjustments suggested by Abdalla and Russell (1995)2 and a TOBIT 

transformation. All of these transformations were modelled with random effects since 

Breusch Pagan and Hausman tests suggest these are appropriate.  

(i) Logit transformation,   SGAG1 = ln (SGADJU /(1 – SGADJU) 

(ii) complementary log-log transformation SGAG2 = ln (-ln (1 – SGADJU) 

(iii) complementary log-log transformation SGAG3 = ln (- ln (SGADJU) 

(iv) Tobit transformation (see Breen, 1996). 

6.4 Results 

Basic Models – Main Effects  

The results are shown in Table 5 for OLS and random effects models at the individual level, 

and OLS models using mean and median health state values. These models include only the 

main effects dummies. 

The main effects dummies represent progressively worse problems on each dimension 

compared to a base line of no problem for that particular dimension. As such the coefficient 

estimates are expected to be negative and increasing in absolute size. An inconsistent result 

occurs where a coefficient on the main effects dummies decreases in absolute size with a 

worse level. 

                                                 
2  Abdalla and Russell (1995) did not attempt to model transformed data while also allowing for individual 

effects. Here we attempt to simultaneously cope with these two characteristics of the data.  
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For the OLS model (1) the vast majority of coefficients have the expected (negative) sign. In 

all 13 of the 26 coefficients are significant and there are 2 inconsistencies, where the 

estimated effect decreases from RL3 to RL4, and VIT2 to VIT3. The explanatory power of 

the model is 0.204. Diagnostic tests reveal problems with non-normal and heteroscedastic 

residuals3. Further these data represent repeated observations on 611 individuals and a 

Breusch-Pagan LM test for individual effects reveals that these are important (χ2 = 1717.02, p 

= 0.000). In addition Hausman’s test suggests that random, rather than fixed, effects, is the 

appropriate specification ((χ2 = 27.11, p = 0.35)4.  

For the random effects specification all coefficients have the expected negative sign. There 

are 17 significant coefficient estimates and 2 inconsistencies, with a decrease in the size of the 

coefficient from PF4 to PF5 and SF2 to SF3. Explanatory power is 0.200 and the variance 

decomposition suggests slightly more variation between respondents than within respondents. 

The Breusch–Pagan test for heteroscedasticity suggests that a problem still exists. The 

Ramsey RESET test shows no evidence of specification problems which is surprising given 

the skewness of the residuals.  

The mean (3) and median (4) models presented in Table 5 have much greater explanatory 

power than the individual level models, explaining almost 60% of the variation in health state 

values. The mean model has serial correlation and heteroscedasticity problems, while the 

median model appears to have non-normal residuals.  

Coefficients can be compared directly across the first 4 models presented in Table 5. There 

are similarities in that the important effects are found among the most severe levels of each 

dimension. Most of these effects are robust across model specification. 

                                                 
3  The model was estimated using White’s heteroscedasticity consistent standard errors.  
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Predictive Ability 

Given our overall aim of predicting health state valuations the best way to compare these 

models is via their predictive ability. Summary statistics for inside sample predictions are 

presented in the lower half of Table 5. The median model appears to be the worst but there is 

little to chose between the other three, which have similar mean absolute errors (MAE) and 

result in similar numbers of errors greater than 0.05 and 0.10 in absolute value. The 

proportion correctly predicted to within |0.1| was nearly 80%, and 54% to within |0.05|. In all 

cases the predictions are unbiased (t-test), and prediction errors are normally distributed (JB 

test).  

The most serious problem at this stage is that Ljung-Box (LB) statistics reveal significant 

autocorrelation in the prediction errors of all models, when the errors are ordered by actual 

mean health state valuation. Figure 2 shows actual and predicted health state valuations for 

the random effects model (2). This reveals a tendency to over predict at low health state 

values (i.e. poor health states) and under predict at high health state values. A similar result is 

found for all models (1) to (4).  

Restricting the intercept to unity 

There are strong theoretical arguments for restricting the intercept to unity. The adjusted SG 

value for each state has been estimated according to the axioms of EUT by assuming SF-6D 

state 111111 health is to equal one and death is equal to zero.   For state 111111 to hold any 

other value would change the scale.  Furthermore, for use in CUA it is necessary to assume 

                                                                                                                                                         
4  Hierarchical models were estimated using MLwiN 1.02. The results are identical to those for the random 

effects models to 4 decimal places.   
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that health state 111111 is equivalent to full health and hence has a value of one.  The best 

way to ensure health state 111111 has a value of one is to restrict the intercept to unity.  

For models (5) and (6) in Table 5 the intercept has been restricted to unity. Coefficient  

estimates can be directly compared to those for models (1) to (4). For both of these models 

there is a substantial increase in the number of significant coefficient estimates and a slight 

increase in the number of inconsistencies. While there is a slight increase in error size 

compared with models (2) and (3) there is less autocorrelation in the errors; although the LB 

statistics are still significant. Figure 3 shows actual and predicted health state valuations for 

the random effects model (5). This shows that while the tendency to under predict at good 

health states has been removed there is still a problem of over prediction at poor health states. 

A similar result is found for the mean model.  

Interaction Effects 

Models which include some of the interaction effects discussed above are presented in Table 

6. A number of ways of dealing with interaction effects were investigated and these three 

models are the most successful. The random effects and mean models (7 and 8) include the 

dummy variables MOST and LEAST, which take a value of 1 if any dimension in the health 

state is at the most or least severe level. The coefficient estimates suggest a further negative 

effect if any dimension is at the most severe level which is slightly reduced by a positive 

effect of dimensions at the least severe level. The coefficients on the main effects dummies 

are slightly reduced as expected but are robust to the inclusion of the interaction effects.  

These models show little improvement in predictive ability above models (2) and (3).  

brazierje10.doc 21



 22

Models (9) and (10) are the equivalent with the intercept forced to unity; here only the MOST 

dummy is significant at t0.05 . Again these results are very similar to those of models (5) and 

(6) with little or no improvement in predictive ability.  

The alternative functional forms do not perform well in terms of predictive ability. They all 

give biased predictions (t-test) and in general they result in larger errors than the 

untransformed models5.  

 

7. Discussion and conclusion 

The results of this study offer a method for analysing existing SF-36 data from trials and other 

sources of evidence where there is no other means of estimating the preference-based health 

values for generating QALYs.  It also provides an alternative to existing preference-based 

measures of health for use in cost utility analysis.  Two of the leading preference-based 

measures are the EQ-5D (Brooks, 1996) and the Health Utility Index (Torrance et al, 1995).  

Whether or not the SF-6D offers an improvement on these existing measures depends on 

one’s view of the appropriate definition of health, the valuation techniques and the best 

method for modelling health state values (Brazier et al, 1999). There is insufficient space in 

this paper to go into these issues.  However, one of the advantages of the SF-6D over the EQ-

5D could come from the much larger size of its descriptive system and hence a possibly 

greater degree of sensitivity.  This must be weighed against the inconsistencies between the 

coefficients at the upper levels of some SF-6D dimensions.  The sensitivity of the new index 

needs to be compared to other preference-basecd measures before drawing any conclusion on 

this point. Any greater sensitivity would be most likely in groups experiencing mild to 

                                                 
5 Predicted values have been retransformed using the smearing estimator (Rutten-van Mölken et al, 1994) 
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moderate health problems and in those expected to experience comparatively small changes 

or where small differences are expected between interventions.  

An important question is whether the derivation of the SF-6D health state classification has 

compromised the descriptive richness and sensitivity of the original SF-36. The selection of 

items was intended to minimise the potential loss of information but the loss may offset the 

advantages of the SF-36.  This is an empirical question to be addressed in future research.  

The models have produced significant coefficients for levels of the SF-6D with the expected 

negative sign. These main effects are robust across model specification and in most cases they 

are consistent with ordinal levels of the SF-6D. However, there are concerns with the 

individual level models low explanatory power.  At the individual level explanatory power 

reached 0.2 compared with 0.45 for the York MVH models for the EQ-5D (Dolan, 1997). The 

size of the mean absolute error was correspondingly smaller.  Comparisons between these two 

pieces of work is difficult since the valuation of the SF-6D is much larger undertaking 

describing nearly 75 times more states.  More relevant for CUA is the ability of the model to 

predict mean health state values and the best mean model achieved an adjusted R-squared of 

0.58. 

Another concern is the existence of inconsistencies between coefficients on the SF-6D levels. 

In many cases the estimated coefficients on lowest levels of each dimension are not 

statistically significant (e.g. the coefficients on PF2 and PF3 in the recommended model 10), 

hence the fact that PF3 attracts a point estimate lower than PF2 is not an inconsistency, since 

they are both interpreted as zero.  Therefore we interpret an inconsistency as only occurring 

between  significant coefficients and the number of these is quite low compared to the number 

of consistent coefficients.   Those inconsistencies that occur in more than one of the four 

models reported in Table 6 are as follows: PF4 vs PF5, RL3 vs RL4, VIT2 vs VIT3 and 
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PAIN2 vs PAIN 3. There is no clear ordinal relationship between PF4 and PF5 and hence this 

may not be an inconsistency at all.  RL3 vs RL4 have similar coefficients across all models 

and this indicates that most respondents did not distinguish between them.  For VIT2 vs VIT3 

one possible explanation is that this dimension is worded in the positive rather than the 

negative and this may have caused some confusion for respondents.  Finally, PAIN2 and 

PAIN3 are not significant in models (7) and (8) and similar in models (9).  In model (10) 

PAIN3 attracts an insignificant coefficient estimate, whereas PAIN2 is significant suggesting 

an inconsistency.  But like the remaining 3 inconsistencies it occurs only once across the four 

specifications.  We do not believe these inconsistencies have any serious implication for the 

performance of the model as whole except for a reduction in sensitivity at the upper end for 

some dimensions.  Of course, a larger sample size and the valuation of additional health state 

may have overcome some of these problems. 

Of more concern is the existence of systematic prediction errors resulting from all the models. 

Introducing interaction terms leads to little improvement in predictive ability and we still 

have a problem of under predicting the value of good health states and over predicting the 

value of poor states in the models with an estimated intercept terms. Restricting the intercept 

to unity eliminated the former problem, whilst the latter remains.  We have attempted 

numerous other alternative specifications for interactions not reported in this paper, but these 

did not produce significant results.  

A number of models have been presented for predicting preference-based health state values 

from SF-36 data.  Whilst we have shown the RE model to be better than OLS at the individual 

level, we do not believe the RE offers any clear advantages over the mean level models.  

Indeed, the mean model is marginally better across the different tests of fit.  Given the task is 

to predict mean health state values there is no reason to favour the individual level models 
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and therefore we recommend using one of the mean level models.  The interaction terms lead 

to very modest improvements in the model and should therefore be used. As argued earlier in 

this paper, we also favour restricting the intercept to unity for the purposes of generating 

models for use in CUA.  The preferred model for use in CUA is therefore (10) in Table 66.   

 

This paper has presented a study to estimate a preference-based single index from one of the 

larger generic profile measures of health related quality of life. It is only the second time this 

has been done, the first being essentially a pilot to this study (Brazier et al, 1998).  This 

research demonstrates that it is possible to estimate preference weights for measures of health 

related quality.  The paper presents the key methodological issues involved in undertaking 

such a task, including the derivation of a health state classification, the valuation survey and 

modelling.    The results can be applied to any SF-36 data set and hence considerably expand 

the available evidence base for conducting economic evaluation of health care interventions. 

                                                 
6 A computer algorithm for deriving a preference-based index from SF-36 data via the SF-6D is available from 
the corresponding author.  The algorithm is copyrighted, though it is free of charge for non-commercial uses. 
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Figure 1: Histogram and Descriptive Statistics for Adjusted Health State Valuations 

(SGADJ) 
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Figure 2:  Actual and Predicted Health State Valuations for the Random Effects Model 

(2) 
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Figure 3:  Actual and Predicted Health State Valuations for the Random Effects Model 

(5) 
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Table 1: The Short Form 6D 
 
Level Physical Functioning Level Pain 
1 Your health does not limit you in vigorous activities 1 You have no pain 

2 Your health limits you a little in vigorous activities 2 You have pain but it does not interfere with your normal work (both 
outside the home and housework) 

3 Your health limits you a little in moderate activities  3 You have pain that interferes with your normal work (both outside 
the home and housework) a little bit

4 Your health limits you a lot in moderate activities  4 You have pain that interferes with your normal work (both outside 
the home and housework) moderately

5 Your health limits you a little in bathing and dressing  5 You have pain that interferes with your normal work (both outside 
the home and housework) quite a bit

6 Your health limits you a lot in bathing and dressing 6 You have pain that interferes with your normal work (both outside 
the home and housework) extremely

 
 

 
Role limitations 

 
 

 
Mental health 

1 You have no problems with your work or other regular daily activities as a result 
of your physical health or any emotional problems 

1 You feel tense or downhearted and low none of the time

2 You are limited in the kind of work or other activities as a result of your physical 
health 

2 You feel tense or downhearted and low a little of the time

3 You accomplish less than you would like as a result of emotional problems 3 You feel tense or downhearted and low some of the time

4 You are limited in the kind of work or other activities as a result of your physical 
health and accomplish less than you would like as a result of emotional problems 

4 You feel tense or downhearted and low most of the time

  
 
Social functioning 

5 You feel tense or downhearted and low all of the time 
 
Vitality  

1 Your health limits your social activities none of the time 1 You have a lot of energy all of the time

2 Your health limits your social activities a little of the time 2 You have a lot of energy most of the time

3 Your health limits your social activities some of the time 3 You have a lot of energy some of the time

4 Your health limits your social activities most of the time 4 You have a lot of energy a little of the time

5 Your health limits your social activities all of the time 5 You have a lot of energy none of the time

 
Footnote: The SF-36 items used to construct the SF-6D are as follows: physical functioning items1, 2 and 10; role limitation due to physical problems item 3; 
role limitation due to emotional problems item 2; social functioning item 2; both bodily pain items; mental health items 1 (alternate version) and 4; and vitality 
item 2.  
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Table 2:  A sample of health states defined by the SF-6D 
 

Health state 111111 
 
Your health does not limit you in vigorous activities 
(e.g. running, lifting heavy objects, participating in 
strenuous sports). 
 
You have no problems with your work or other 
regular daily activities as a result of your physical 
health or any emotional problems. 
 
Your health limits your social activities (like 
visiting friends or close relatives) a little or none of 
the time 
 
You have no pain 
 
You feel tense or downhearted and low a little or 
none of the time. 
 
You have a lot of energy all of the time

 Health state  223222 
 
Your health limits you a little in vigorous activities 
(such as running, lifting heavy objects, participating 
in strenuous sport) 
 
You are limited in the kind of work or other activities 
as a result of your physical health  
 
Your health limits you in your social activities some 
of the times
 
You have pain but it does not interfere with your 
normal work (both work outside the home and 
housework)  
 
You feel tense or downhearted and low a little of 
the time. 
 
You have a lot of energy most of the time. 
 
 

   
Health state 424334 

 
Your health limits you a lot in moderate activities 
(such as moving a table, pushing a vaccum cleaner, 
bowling or playing golf) 
 
You are limited in the kind of work or other 
activities as a result of your physical health  
 
Your health limits you in your social activities most 
of the time 
 
You have pain that interferes with your normal work 
(both outside the home and housework) a little bit. 
 
You feel tense or downhearted and low some of 
the time. 
 
You have a lot of energy a little of the time.
 
 

 Health state 645655 (‘pits’) 
 
Your health limits you a lot in bathing and dressing 
yourself. 
 
You are limited in the kind of work or other activities 
as a result of your physical health and you 
accomplished less than you would like as a result of 
emotional problems  
 
Your health limits your social activities all of the 
time 
 
You have pain that interferes with your normal work 
(both outside the home and housework) extremely.
 
You feel tense or downhearted and low all of the 
time. 
 
You have a lot of energy none of the time. 
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Table 3: Characteristics of included and excluded respondents 

 Included Excluded 

 n = 611 n = 225 

Age: mean (s.d) 46 (18.1) 51 (19.6) 

%    

female 61 56 

married 53 48 

with children < 16 28 21 

renting property 28 34 

in FT employment  37 32 

Highest qualification 

 degree 

 

16 

 

13 

 A levels 21 18 

No qualifications 30 37 

   

Found valuation task difficult1  4 5 

Poor understanding of valuation task2 4 9 
1 judged by respondent 
2 judged by interviewer 
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Table 4: Descriptive Statistics for 50 SF-6D health state valuations 

state n Min Max Mean Median s.d. 
111111 13 0.92 1.00 0.99 1.00 0.02 
111215 13 0.53 1.00 0.90 0.97 0.14 
321221 11 0.57 0.98 0.84 0.89 0.13 
122233 15 0.14 1.00 0.83 0.91 0.23 
112221 11 0.51 0.98 0.82 0.89 0.17 
221432 10 0.53 0.98 0.81 0.84 0.15 
224223 14 0.53 1.00 0.80 0.85 0.17 
532124 12 0.29 1.00 0.79 0.84 0.21 
211111 12 0.19 1.00 0.78 0.90 0.27 
221211 10 0.42 0.98 0.77 0.85 0.19 
341123 11 0.10 0.99 0.76 0.92 0.31 
241531 17 0.28 0.99 0.75 0.88 0.24 
213323 13 0.12 0.98 0.74 0.79 0.25 
222113 17 0.10 0.99 0.73 0.80 0.17 
221212 15 0.05 0.98 0.72 0.85 0.33 
112521 10 0.19 0.94 0.71 0.73 0.21 
124314 10 0.06 0.99 0.70 0.94 0.35 
541432 13 0.10 1.00 0.69 0.75 0.29 
323333 9 0.05 0.98 0.68 0.76 0.32 
443215 12 -0.06 1.00 0.67 0.81 0.35 
342353 10 0.29 0.98 0.66 0.79 0.23 
222121 11 0.05 1.00 0.65 0.75 0.34 
345122 15 0.29 1.00 0.64 0.67 0.25 
214535 12 0.00 0.99 0.63 0.78 0.37 
413511 15 -0.24 0.99 0.62 0.75 0.39 
523634 12 0.05 0.99 0.61 0.57 0.33 
321455 10 0.10 0.99 0.60 0.65 0.33 
424421 16 0.05 0.98 0.59 0.64 0.30 
334254 13 -0.66 0.98 0.58 0.80 0.46 
423433 10 -0.15 1.00 0.58 0.60 0.36 
134322 17 0.10 1.00 0.57 0.59 0.27 
315515 16 0.19 0.97 0.56 0.55 0.25 
545122 13 0.10 0.98 0.55 0.61 0.31 
432623 14 0.07 1.00 0.55 0.56 0.30 
241635 17 -0.09 0.99 0.54 0.57 0.37 
312552 14 0.10 0.95 0.53 0.64 0.35 
344145 11 -0.57 0.98 0.51 0.63 0.48 
412152 11 0.10 0.93 0.50 0.59 0.29 
323443 12 -0.66 1.00 0.49 0.61 0.45 
432255 12 0.00 1.00 0.48 0.48 0.42 
325455 14 -0.19 0.91 0.47 0.54 0.36 
431623 15 -0.88 0.99 0.45 0.67 0.47 
423343 15 0.00 1.00 0.44 0.38 0.31 
544352 11 -0.57 0.98 0.43 0.47 0.48 
131542 19 -0.66 0.96 0.42 0.45 0.41 
323644 10 0.10 0.99 0.40 0.29 0.31 
141653 12 0.00 0.91 0.39 0.36 0.34 
434654 16 -0.85 1.00 0.38 0.55 0.61 
534644 11 -0.28 0.98 0.35 0.32 0.32 
535645 8 -0.56 0.76 0.10 0.10 0.39 
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TABLE 5: Models with main effects 
  
  Constant forced to unity 

 (1) (2) (3) (4) (5) (6)

 OLS RE Mean Median RE Mean
c 0.826 0.833 0.827 0.945 1.000 1.000
PF2 -0.009 -0.021 -0.014 -0.011 -0.058 -0.060
PF3 0.008 -0.026 0.008 0.026 -0.051 -0.020
PF4 -0.036 -0.065 -0.027 0.001 -0.088 -0.060
PF5 -0.032 -0.044 -0.043 -0.064 -0.061 -0.063
PF6 -0.115 -0.135 -0.096 -0.097 -0.160 -0.131
RL2 -0.023 -0.027 -0.019 -0.026 -0.056 -0.057
RL3 -0.035 -0.055 -0.043 -0.035 -0.076 -0.068
RL4 -0.034 -0.055 -0.036 -0.026 -0.078 -0.066
SF2 -0.015 -0.034 -0.027 -0.029 -0.066 -0.071
SF3 -0.041 -0.022 -0.049 -0.079 -0.048 -0.084
SF4 -0.047 -0.041 -0.057 -0.053 -0.066 -0.093
SF5 -0.085 -0.089 -0.073 -0.113 -0.109 -0.105
PAIN2 0.011 -0.001 0.008 0.003 -0.042 -0.048
PAIN3 0.006 -0.018 -0.001 0.002 -0.046 -0.034
PAIN4 -0.034 -0.026 -0.032 -0.018 -0.055 -0.070
PAIN5 -0.065 -0.068 -0.062 -0.102 -0.103 -0.107
PAIN6 -0.159 -0.155 -0.149 -0.191 -0.178 -0.181
MH2 -0.033 -0.019 -0.026 -0.058 -0.043 -0.057
MH3 -0.025 -0.032 -0.022 -0.043 -0.055 -0.051
MH4 -0.098 -0.093 -0.095 -0.133 -0.115 -0.121
MH5 -0.131 -0.106 -0.114 -0.165 -0.125 -0.140
VIT2 -0.043 -0.006 -0.044 -0.051 -0.040 -0.094
VIT3 -0.036 -0.008 -0.037 -0.034 -0.030 -0.069
VIT4 -0.033 -0.011 -0.029 -0.048 -0.040 -0.069
VIT5 -0.077 -0.068 -0.076 -0.090 -0.087 -0.106
N 3518 3518 249 249 3518 249
adj R2 0.204 0.200 0.583 0.577 # 0.508
inconsistencies 2 2 2 3 4 5
MAE 0.072 0.073 0.071 0.097 0.078 0.074

No > |0.05| 120 122 117 136 122 118

No > |0.10| 49 53 52 78 59 52

t(mean=0) 0.544 0.250 † † -6.717 †

JBPRED 0.376 1.178 0.737 1.725 2.461 0.681

LB 333.01 386.63 520.71 560.88 185.3 169.57

All models are estimated with White's heteroscedasticity consistent standard errors.  
Estimates shown in bold are significant at t0.10 

# no R
2
 statistics (GEE estimation)  

† Mean error is zero by definition.  
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TABLE 6:  Models with interaction effects  
 
  Constant forced to unity 

 (7) (8) (9) (10)

 RE Mean RE mean
c 0.799 0.788 1.000 1.000
PF2 -0.023 -0.015 -0.050 -0.053
PF3 -0.021 0.011 -0.038 -0.011
PF4 -0.054 -0.018 -0.069 -0.040
PF5 -0.035 -0.034 -0.046 -0.054
PF6 -0.119 -0.084 -0.145 -0.111
RL2 -0.030 -0.021 -0.051 -0.053
RL3 -0.042 -0.030 -0.058 -0.055
RL4 -0.041 -0.024 -0.063 -0.050
SF2 -0.030 -0.023 -0.054 -0.055
SF3 -0.012 -0.040 -0.032 -0.067
SF4 -0.025 -0.042 -0.044 -0.070
SF5 -0.071 -0.058 -0.096 -0.087
PAIN2 -0.005 0.005 -0.037 -0.047
PAIN3 -0.013 0.004 -0.034 -0.025
PAIN4 -0.020 -0.025 -0.040 -0.056
PAIN5 -0.055 -0.049 -0.081 -0.091
PAIN6 -0.141 -0.136 -0.167 -0.167
MH2 -0.022 -0.030 -0.036 -0.049
MH3 -0.028 -0.019 -0.045 -0.042
MH4 -0.085 -0.089 -0.099 -0.109
MH5 -0.098 -0.109 -0.115 -0.128
VIT2 -0.006 -0.044 -0.032 -0.086
VIT3 -0.002 -0.031 -0.019 -0.061
VIT4 -0.001 -0.019 -0.022 -0.054
VIT5 -0.054 -0.064 -0.073 -0.091
Most -0.052 -0.041 -0.084 -0.070
Least 0.049 0.048 
  
n 3518 249 3518 249
adj R2 0.201 0.591 # 0.526
inconsistencies 2 1 6 5
MAE 0.073 0.070 0.076 0.073

No > |0.05| 121 115 119 120

No > |0.10| 57 52 59 51

t(mean=0) 0.293 † -5.110 -1.146

JBPRED 1.336 1.017 1.038 0.173

LB 388.30 524.64 164.18 189.87

All models are estimated with White's heteroscedasticity consistent standard errors.  
Estimates shown in bold are significant at t0.10 

# no R
2
 statistics (GEE estimation)  

† Mean error is zero by definition.  
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