This is a repository copy of *Hardy inequality with three measures on monotone functions*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/47024/

Version: Published Version

Article:

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
HARDY INEQUALITY WITH THREE MEASURES ON MONOTONE FUNCTIONS

MARIA JOHANSSON, VLADIMIR D. STEPANOV AND ELENA P. USHAKOVA

(communicated by L.-E. Persson)

Abstract. Characterization of \(L^p_\nu[0,\infty) - L^q_\mu[0,\infty) \) boundedness of the general Hardy operator

\[
(H_s f)(x) = \left(\int_{[0,x]} f^s u d\lambda \right)^{\frac{1}{s}}
\]

restricted to monotone functions \(f \geq 0 \) for \(0 < p, q, s < \infty \) with positive Borel \(\sigma \)-finite measures \(\lambda, \mu \) and \(\nu \) is obtained.

1. Introduction

Let \(\mathcal{M}^+ \) be the class consisting of all Borel functions \(f: [0, \infty) \to [0, +\infty] \) and \(\mathcal{M} \downarrow (\mathcal{M} \uparrow) \) be a subclass of \(\mathcal{M}^+ \) which consists of all non-increasing (non-decreasing) functions \(f \in \mathcal{M}^+ \). Suppose that \(\lambda, \mu \) and \(\nu \) are positive Borel \(\sigma \)-finite measures on \([0, \infty) \) and \(u, v, w \in \mathcal{M}^+ \) are weight functions.

For \(0 < p, q, s < \infty \) we study the problem when the Hardy inequality of the form

\[
\left(\int_{[0,\infty)} (H_s f)^q v d\mu \right)^{\frac{1}{q}} \leq C \left(\int_{[0,\infty)} f^p w d\nu \right)^{\frac{1}{p}},
\]

(1.1)

holds for all \(f \in \mathcal{M} \downarrow \) or for all \(f \in \mathcal{M} \uparrow \), where

\[
(H_s f)(x) := \left(\int_{[0,x]} f^s u d\lambda \right)^{\frac{1}{s}}.
\]

(1.2)

Since by the substitution \(f^s \to f \) the inequality (1.1) can be reduced to the equivalent inequality with new parameters \(p \) and \(q \) of the form

\[
\left(\int_{[0,\infty)} (Hf)^q v d\mu \right)^{\frac{1}{q}} \leq C \left(\int_{[0,\infty)} f^p w d\nu \right)^{\frac{1}{p}},
\]

(1.3)

Key words and phrases: Integral inequalities, weights, Hardy operator, monotone functions, measures.

The research work of the authors was fulfilled in the frame of the INTAS project 05-1000008-8157. Swedish Institute is the grant-giving authority for research of the third author (Project 00105/2007 Visby Programme 382). The work of the second and third authors was also partially supported by the Russian Fund for Basic Research (Projects 05-01-00422, 06-01-00341, 06-01-04006 and 07-01-00054) and by the Far-Eastern Branch of the Russian Academy of Sciences (Projects 06-III-A-01-003 and 06-III-B-01-018).

c⃝/BW/Zagreb
Paper MIA-11-30

393
where

\[(Hf)(x) := (H_{\lambda}f)(x) = \int_{[0,x]} f \, u \, d\lambda\] \hspace{1cm} (1.4)

we may and shall restrict our studies to the inequality (1.3). All the characterizations of (1.1) can be easily reproduced from the results for (1.3).

The weighted inequality (1.3) for \(f \in \mathcal{M} \downarrow \), when \(\lambda = \mu = \nu \) is the Lebesgue measure, was essentially characterized in [9] and [13] with the complement for the case \(0 < q < 1 = p \) in [12] and recent contribution in [1] for the case \(0 < q < p < 1 \). In fact, [9], [13], [12] and [1] deal with the case \(u(x) = 1 \), but a weight \(u \) can be incorporated with no change in the arguments. A piece of historical remarks and the literature can be found in ([3] and [4], Chapter 6). We summarize these results in the following

Theorem 1.1. Let \(\lambda = \mu = \nu \) be the Lebesgue measure. Then the inequality (1.3) holds for all \(f \in \mathcal{M} \downarrow \) if and only if:

(a) \(1 < p \leq q < \infty \), \(\max (A_0, A_1) < \infty \), where

\[A_0 := \sup_{r>0} \left(\int_{r}^{\infty} \left(\int_{0}^{s} u \right)^{q} v(s) ds \right)^{\frac{1}{p'}} \left(\int_{0}^{r} w \right)^{-\frac{1}{p}} ,\]

and

\[A_1 := \sup_{r>0} \left(\int_{r}^{\infty} v \right)^{\frac{1}{p'}} \left(\int_{0}^{r} \left(\int_{0}^{s} u \right)^{p} v(s) ds \right)^{\frac{1}{p}} \left(\int_{0}^{r} w \right)^{-\frac{1}{p'}} w(s) ds \right)^{\frac{1}{p'}} \]

and \(C \approx A_0 + A_1 \).

(b) \(0 < q < p < \infty \), \(1 < p < \infty \), \(\frac{1}{r} := \frac{1}{q} - \frac{1}{p} \), \(\max (B_0, B_1) < \infty \), where

\[B_0 := \left(\int_{0}^{\infty} \left(\int_{0}^{t} w \right)^{-\frac{1}{p'}} \left(\int_{0}^{t} \left(\int_{0}^{s} u \right)^{q} v(s) ds \right)^{\frac{1}{p}} \left(\int_{0}^{t} u \right)^{q} v(t) dt \right)^{\frac{1}{r}} ,\]

and

\[B_1 := \left(\int_{0}^{\infty} \left(\int_{0}^{t} v \right)^{\frac{1}{p'}} \left(\int_{0}^{t} \left(\int_{0}^{s} u \right)^{p} w(s) ds \right)^{\frac{1}{p}} \left(\int_{0}^{t} u \right)^{q} w(t) dt \right)^{\frac{1}{r}} \]

and \(C \approx B_0 + B_1 \).

(c) \(0 < q < p \leq 1 \). \(\max (B_0, B_1) < \infty \), where

\[B_1 := \left(\int_{0}^{\infty} \left(\int_{0}^{t} v \right)^{\frac{1}{p'}} \left(\int_{0}^{t} \left(\int_{0}^{s} u \right)^{p} w(s) ds \right)^{\frac{1}{p}} \left(\int_{0}^{t} u \right)^{q} v(t) dt \right)^{\frac{1}{r}} \]

and \(C \approx B_0 + B_1 \).

(d) \(0 < p \leq q < \infty \), \(0 < p \leq 1 \), \(\max (A_0, A_1) < \infty \), where

\[A_1 := \sup_{r>0} \left(\int_{0}^{r} u \right) \left(\int_{0}^{\infty} v \right)^{\frac{1}{q}} \left(\int_{0}^{r} w \right)^{-\frac{1}{p'}} \]

and \(C \approx A_0 + A_1 \).
It is important to note, that the weighted case of (1.3) for $1 < p, q < \infty$ was solved in [9] by proving the principle of duality which allows to reduce an inequality with a positive operator on monotone functions to an inequality with modified operator on non-negative functions. The other cases, when $p,q \not\in (1, \infty)$ were studied by different methods.

Our aim is twofold. First we study the inequality (1.3) in the case $0 < p \leq 1$ proving a complete analog of the parts (c) and (d) of Theorem 1.1 (Section 3). In the case $0 < q < p \leq 1$ our method is based on the characterization of the Hardy inequality on nonnegative functions in the case $0 < q < 1 = p$, which we establish in Section 3 (Theorem 3.1). This approach is direct and different from discretization methods of [1] and [2].

Hardy inequality (1.3) on monotone functions with two different measures was recently investigated by G. Sinnamon [11]. Namely, for $1 < p < \infty$ and $0 < q < \infty$ the author established the equivalence of (1.3) with $u \equiv v \equiv w \equiv 1$ and $d\lambda = d\nu$ for $f \in \mathcal{M}^{+}$ to the same inequality restricted to $f \in \mathcal{M}^{-}$. Moreover, such equivalence takes place also for more general operator than (1.4), that is for the operator $(Kf)(x) = \int_{[0,x]} k(x,y)f(y)d\lambda(y)$ with a kernel $k(x,y) \geq 0$, which is monotone in the variable y (see [5, Theorem 2.3]). Moreover, G. Sinnamon [11] extended the Sawyer principle of duality for measures. We apply this extension to characterize (1.3) in case $1 < p, q < \infty$ (Section 4) combining with the recent results by D.V. Prokhorov [6] for the inequality (1.3) on $f \in \mathcal{M}^{+}$ with $1 < p < \infty$ and $0 < q < \infty$ extended by the same author for the Hardy operator with Oinarov kernel [7].

We use the following notations and conventions. $A \ll B$ means that $A \leq cB$ with c depending only on p and q, $A \approx B$ is equivalent to $A \ll B \ll A$. Uncertainties of the form $0 \cdot \infty$ are taken to be zero. We also use the notation := for introducing new quantities.

2. Preliminary remarks

Denote

$$\Lambda_f(x) := \int_{[0,x]} f \, d\lambda, \quad \text{and} \quad \bar{\Lambda}_f(x) := \int_{[x,\infty)} f \, d\lambda. \quad (2.1)$$

We need the following statements.

Lemma 2.1. ([6], Lemma 1) If $\gamma > 0$, then

$$\frac{\Lambda_f(\infty)^{\gamma+1}}{\max\{1,\gamma+1\}} \leq \int_{[0,\infty)} f(x) \Lambda_f(x)^{\gamma} \, d\lambda(x) \leq \frac{\Lambda_f(\infty)^{\gamma+1}}{\min\{1,\gamma+1\}} \quad (2.2)$$

holds. If $\gamma \in (-1,0)$ and $\Lambda_f(\infty) < +\infty$, then (2.2) holds.

Lemma 2.2. ([6], Lemma 2) If $\gamma > 0$, then

$$\frac{\bar{\Lambda}_f(0)^{\gamma+1}}{\max\{1,\gamma+1\}} \leq \int_{[0,\infty)} f(x) \bar{\Lambda}_f(x)^{\gamma} \, d\lambda(x) \leq \frac{\bar{\Lambda}_f(0)^{\gamma+1}}{\min\{1,\gamma+1\}} \quad (2.3)$$

holds. If $\gamma \in (-1,0)$ and $\bar{\Lambda}_f(0) < +\infty$, then (2.3) holds.
The following two statements can be obtained from [[10], Lemma 1.2] (see also [[11], Proposition 1.5]).

Lemma 2.3. Let \(f \in \mathcal{M} \uparrow \) with \(f(0) = 0 \) and let \(\eta \) be a Borel measure on \([0, \infty)\). Then there exist \(f_0 \in \mathcal{M} \uparrow \) and the sequence \(\{h_n\}_{n \geq 1} \subset \mathcal{M}^+ \) such that

1. \(f_0(x) \leq f(x) \) for all \(x \in [0, \infty) \).
2. \(f_0(x) = f(x) \) for \(\eta \)-a.e. \(x \in [0, \infty) \).
3. \(f_n(x) := \int_{[0,x]} h_n d\eta \leq f_0(x) \) for all \(x \in [0, \infty) \).
4. For all \(x \in [0, \infty) \) the sequence \(\{f_n(x)\}_{n \geq 1} \) is nondecreasing in \(n \) and
 \[f_0(x) = \lim_{n \to \infty} f_n(x) \] \(\eta \)-a.e. \(x \in [0, \infty) \).

Lemma 2.4. Let \(f \in \mathcal{M} \downarrow \) with \(f(+\infty) = 0 \) and let \(\eta \) be a Borel measure on \([0, \infty)\). Then there exist \(f_0 \in \mathcal{M} \downarrow \) and the sequence \(\{h_n\}_{n \geq 1} \subset \mathcal{M}^+ \) such that

1. \(f_0(x) \leq f(x) \) for all \(x \in [0, \infty) \).
2. \(f_0(x) = f(x) \) for \(\eta \)-a.e. \(x \in [0, \infty) \).
3. \(f_n(x) := \int_{[x,\infty)} h_n d\eta \leq f_0(x) \) for all \(x \in [0, \infty) \).
4. For all \(x \in [0, \infty) \) the sequence \(\{f_n(x)\}_{n \geq 1} \) is nondecreasing in \(n \) and
 \[f_0(x) = \lim_{n \to \infty} f_n(x) \] \(\eta \)-a.e. \(x \in [0, \infty) \).

Remark 2.5. Two similar lemmas are valid for the approximation from above.

The following statements are taken from [7] and concern the weighted \(L_p^\mu[0, \infty) - L_q^\mu[0, \infty) \) inequality with the operator of the form

\[
(K_{\alpha}f)(x) = \int_{[0,x]} k(x,y) u(y) f(y) d\lambda(y).
\]

Here the kernel \(k(x,y) \geq 0 \) is \(\mu \times \lambda \) - measurable on \([0, \infty) \times [0, \infty) \) and satisfies the following Oinarov condition. There is a constant \(D \geq 1 \) such that

\[
D^{-1}k(x,y) \leq k(x,z) + k(z,y) \leq D k(x,y), \quad 0 \leq y \leq z \leq x.
\]

\((2.4)\)

Theorem 2.6. Let \(1 < p \leq q < \infty \). Then the inequality

\[
\left(\int_{[0, \infty)} (K_{\alpha}f)^q v d\mu \right)^{\frac{1}{q}} \leq C \left(\int_{[0, \infty)} f^p d\lambda \right)^{\frac{1}{p}}
\]

holds for all \(f \in \mathcal{M}^+ \) if and only if

\[
\mathbb{A} := \max(\mathbb{A}_{0,1}, \mathbb{A}_{0,2}) < \infty,
\]

where

\[
\mathbb{A}_{0,1} := \sup_{r \in [0, \infty)} \left(\int_{[r, \infty)} v(x) k(x,t)^{\frac{q}{p}} d\mu(x) \right)^{\frac{1}{q}} \left(\int_{[0,r]} u^p d\lambda(x) \right)^{\frac{1}{p}},
\]

\[
\mathbb{A}_{0,2} := \sup_{r \in [0, \infty)} \left(\int_{[r, \infty)} v d\mu \right)^{\frac{1}{q}} \left(\int_{[0,r]} k(t,y)^{\frac{p}{q}} u(y)^p d\lambda(y) \right)^{\frac{1}{p}}.
\]
If $1 < q < p < \infty$ and $\frac{1}{r} = \frac{1}{q} - \frac{1}{p}$, then inequality (2.5) holds for all $f \in \mathcal{M}$ if and only if $B := \max (B_{0,1}, B_{0,2}) < \infty$, where

$$B_{0,1} := \left(\int_{[0,\infty)} \left(\int_{[t,\infty)} v(x) k(t,x)^q \, d\mu(x) \right)^{\frac{r}{q}} \right)^{\frac{1}{r}} \left(\int_{[0,\infty)} u^p \, \, d\lambda(t) \right)^{\frac{1}{p}},$$

$$B_{0,2} := \left(\int_{[0,\infty)} \left(\int_{[0,\infty)} v d\mu \right)^{\frac{r}{p}} \right)^{\frac{1}{p}} \left(\int_{[0,\infty)} k(t,y)^p u(y)^p \, d\lambda(y) \right)^{\frac{1}{p}}.$$

The next statement is an analog of the previous theorem for the operator K_u^* of the dual form

$$(K_u^* f)(x) = \int_{[x,\infty)} k(y,x) u(y)f(y) \, d\lambda (y)$$

with a kernel satisfying Oinarov’s condition (2.4).

Theorem 2.7. Let $1 < p \leq q < \infty$. Then the inequality

$$\left(\int_{[0,\infty)} (K_u^* f)^q \, v \, d\mu \right)^{\frac{1}{q}} \leq C \left(\int_{[0,\infty)} f^p \, d\lambda \right)^{\frac{1}{p}}$$

(2.6)

holds for all $f \in \mathcal{M}$ if and only if $A := \max (A_{0,1}, A_{0,2}) < \infty$, where

$$A_{0,1} := \sup_{x \in [0,\infty)} \left(\int_{[0,x)} v(x) k(t,x)^q \, d\mu(x) \right)^{\frac{1}{q}} \left(\int_{[0,\infty)} u^p \, \, d\lambda(t) \right)^{\frac{1}{p}},$$

$$A_{0,2} := \sup_{x \in [0,\infty)} \left(\int_{[0,x]} v \, d\mu \right)^{\frac{1}{p}} \left(\int_{[0,\infty)} k(t,y)^p u(y)^p \, d\lambda(y) \right)^{\frac{1}{p}}.$$

If $1 < q < p < \infty$ and $\frac{1}{r} = \frac{1}{q} - \frac{1}{p}$, then inequality (2.6) holds for all $f \in \mathcal{M}$ if and only if $B := \max (B_{0,1}, B_{0,2}) < \infty$, where

$$B_{0,1} := \left(\int_{[0,\infty)} \left(\int_{[0,x)} v(x) k(t,x)^q \, d\mu(x) \right)^{\frac{r}{q}} \right)^{\frac{1}{r}} \left(\int_{[0,\infty)} u^p \, \, d\lambda(t) \right)^{\frac{1}{p}},$$

$$B_{0,2} := \left(\int_{[0,\infty)} \left(\int_{[0,x]} v \, d\mu \right)^{\frac{r}{p}} \right)^{\frac{1}{p}} \left(\int_{[0,\infty)} k(t,y)^p u(y)^p \, d\lambda(y) \right)^{\frac{1}{p}}.$$

In the following theorems we collect weight versions of the results obtained by G. Sinnamon in [11] for embeddings the cones of monotone functions. Put

$$W(t) := \int_{[0,t]} wdv, \quad \text{and} \quad W(x) := \int_{[x,\infty)} wdv.$$
THEOREM 2.8. If $0 < p \leq q < \infty$, then
\[
\sup_{F \in \mathfrak{M}} \left(\int_{[0,\infty)} F^q v d\mu \right)^{\frac{1}{q}} \leq \sup_{x \in [0,\infty)} \left(\int_{[0,x]} v d\mu \right)^{\frac{1}{q}}.
\] (2.8)

THEOREM 2.9. If $0 < q < p < \infty$, and $\frac{1}{r} = \frac{1}{q} - \frac{1}{p}$ then
\[
\sup_{F \in \mathfrak{M}} \left(\int_{[0,\infty)} F^q v d\mu \right)^{\frac{1}{q}} \approx \left(\int_{[0,\infty)} w(y) \left(\int_{[y,\infty)} W^{-1} v d\mu \right)^{\frac{q}{p'}} dv(y) \right)^{\frac{1}{q}}.
\] (2.9)

Analogous results take place for $F \in \mathfrak{M} \uparrow$.

THEOREM 2.10. If $0 < p \leq q < \infty$, then
\[
\sup_{F \in \mathfrak{M}} \left(\int_{[0,\infty)} F^q v d\mu \right)^{\frac{1}{q}} = \sup_{x \in [0,\infty)} \left(\int_{[x,\infty)} v d\mu \right)^{\frac{1}{q}}.
\] (2.10)

THEOREM 2.11. If $0 < q < p < \infty$ and $\frac{1}{r} = \frac{1}{q} - \frac{1}{p}$, then
\[
\sup_{F \in \mathfrak{M}} \left(\int_{[0,\infty)} F^q v d\mu \right)^{\frac{1}{q}} \approx \left(\int_{[0,\infty)} w(y) \left(\int_{[0,y]} \tilde{W}^{-1} v d\mu \right)^{\frac{q}{p'}} dv(y) \right)^{\frac{1}{q}}.
\] (2.11)

Note that Theorems 2.9 and 2.11 with $q = 1$ give analogs of Sawyer’s principle of duality with general Borel measures.

3. The case $0 < p \leq 1$

We need the following extension of ([12], Theorem 3.3) from the weighted case to the case of measures.

THEOREM 3.1. Let $0 < q < 1$, $v = v_a + v_s$, where $d\nu_a = \frac{d\nu_a}{d\lambda} d\lambda$ and $v_s \perp \lambda$.

Then
\[
\left(\int_{[0,\infty)} \left(\int_{[0,x]} f u d\lambda \right)^q v(x) d\mu(x) \right)^{\frac{1}{q}} \leq C \int_{[0,\infty)} f w d\nu
\] (3.1)

holds for all $f \in \mathfrak{M}^+$ if and only if
\[
\mathcal{B} := \left(\int_{[0,\infty)} \left(\int_{[0,y]} \frac{v(z) d\mu(z)}{\tilde{W}(z)} \right)^{\frac{q}{1-q}} v(y) d\mu(y) \right)^{\frac{1-q}{q}} < \infty,
\]
where
\[\tilde{w} := \frac{w}{u} \, d\nu_a \quad \text{and} \quad \tilde{w}(x) := \inf_{t \in [0, x]} \tilde{w}(t). \] (3.2)

Moreover, \(C \approx \mathcal{B} \).

Proof. Let us start with proving that (3.1) is equivalent to the following inequality
\[
\left(\int_{[0, \infty)} \left(\int_{[0, x]} f \, ud\lambda \right)^q \, v(x) \, d\mu(x) \right)^{\frac{1}{q}} \leq C \int_{[0, \infty)} f \frac{d\nu_a}{d\lambda}. \tag{3.3}
\]

Obviously, (3.3) implies (3.1). Let (3.1) hold and \(f \in \mathcal{M}^+ \). If \(\nu_s \perp \lambda \), then there exists \(A \subset [0, \infty) \) such that \(\lambda(A) = 0 \), \(\text{supp} \nu_s = A \) and \(\text{supp} \nu_a = [0, \infty) \setminus A \). Let \(\tilde{f} = f \chi_{[0, \infty) \setminus A} \). Then
\[
\left(\int_{[0, \infty)} \left(\int_{[0, x]} f \, ud\lambda \right)^q \, v(x) \, d\mu(x) \right)^{\frac{1}{q}} = \left(\int_{[0, \infty)} \left(\int_{[0, x]} \tilde{f} \, ud\lambda \right)^q \, v(x) \, d\mu(x) \right)^{\frac{1}{q}} \leq C \int_{[0, \infty)} \tilde{f} \, w \, d\nu = C \left(\int_{[0, \infty)} \tilde{f} \, w \, d\nu_a + \int_{[0, \infty)} \tilde{f} \, w \, d\nu_s \right) = C \int_{[0, \infty)} \tilde{f} \, w \, d\nu_a.
\]

Now if we use (3.2), then (3.3) is equivalent to
\[
\left(\int_{[0, \infty)} \left(\int_{[0, x]} f \, ud\lambda \right)^q \, v(x) \, d\mu(x) \right)^{\frac{1}{q}} \leq C \int_{[0, \infty)} f \, \tilde{w} \, d\lambda. \tag{3.4}
\]

Then, by [10, Theorem 3.1] and changing \(f u \) to \(f \), we get that (3.4) is equivalent to
\[
\left(\int_{[0, \infty)} \left(\int_{[0, x]} f \, d\lambda \right)^q \, v(x) \, d\mu(x) \right)^{\frac{1}{q}} \leq C \int_{[0, \infty)} f \, \tilde{w} \, d\lambda. \tag{3.5}
\]

Now we follow the proof of [12, Theorem 3.3]. First let \(\tilde{w}(x) = \int_{[x, \infty)} b \, d\lambda \) for \(\lambda \)-a.e. \(x \in [0, \infty) \), \(\int_{[0, \infty)} b \, d\lambda = \infty \) and \(\int_{[x, \infty)} b \, d\lambda < \infty \). Then by changing order of integration the right hand side of (3.5) is equal to
\[
C \int_{[0, \infty)} \left(\int_{[0, x]} f \, d\lambda \right) b(x) \, d\lambda(x)
\]
and so (3.5) is equivalent to
\[
\left(\int_{[0, \infty)} \left(\int_{[0, x]} f \, d\lambda \right)^q \, v(x) \, d\mu(x) \right)^{\frac{1}{q}} \leq C \int_{[0, \infty)} \left(\int_{[0, x]} f \, d\lambda \right) b(x) \, d\lambda(x). \tag{3.6}
\]
Since \(\int_{[0, x]} f \, d\lambda \) is increasing we can replace it with \(F \) and so (3.6) is equivalent to
\[
\left(\int_{[0, \infty)} F^q \, v \, d\mu \right)^{\frac{1}{q}} \leq C \int_{[0, \infty)} F \, b \, d\lambda \text{ with } F \in \mathcal{M} \uparrow \tag{3.7}.\]
By [11, Theorem 2.5] and using Lemma 2.2 we get

\[
C \approx \left(\int_{[0, \infty)} \left(\int_{[0, x]} \frac{v(y) d\mu(y)}{\tilde{w}_1(y)} \right)^{\frac{1}{1-q}} b(x) d\lambda(x) \right)^{\frac{q}{1-q}}
\]

\[
\approx \left(\int_{[0, \infty)} \int_{[0, x]} \frac{v(y) d\mu(y)}{\tilde{w}_1(y)} \left(\int_{[0, y]} \frac{v(z) d\mu(z)}{\tilde{w}_1(z)} \right)^{\frac{q}{1-q}} b(x) d\lambda(x) \right)^{\frac{1-q}{q}}
\]

\[
= \left(\int_{[0, \infty)} \left(\int_{[0, y]} \frac{v(z) d\mu(z)}{\tilde{w}_1(z)} \right)^{\frac{q}{1-q}} v(y) d\mu(y) \right)^{\frac{1-q}{q}}.
\]

For a general \(\tilde{w}_1 \) we may and shall suppose that \(\tilde{w}_1(x) < \infty \) for all \(x > 0 \). Let \(N \in \mathbb{N} \) and

\[
w_N(x) := \chi_{[0,N]}(x) \tilde{w}_1(x).
\]

Then \(w_N(+\infty) = 0 \) and similar to Lemma 2.4 we find \(w_N^{(0)} \in M_- \) and \(h_n \in M_+ (n \in \mathbb{N}) \) such that

1. \(w_N(x) \leq w_N^{(0)}(x) \) for all \(x \in [0, \infty) \).
2. \(w_N(x) = w_N^{(0)}(x) \) for \(\lambda \)-a.e. \(x \in [0, \infty) \).
3. \(w_{N,k}(x) := \int_{[x, \infty)} h_d\lambda \geq w_N^{(0)}(x) \) for all \(x \in [0, \infty) \).
4. The sequence \(\{w_{N,k}(x)\}_{k \geq 1} \) is nonincreasing in \(k \) for all \(x \in [0, \infty) \) and \(w_N^{(0)}(x) = \lim_{k \to \infty} w_{N,k}(x) \) \(\lambda \)-a.e. \(x \in [0, \infty) \). Then by the previous part of the proof for any \(f \in M_+ \) we have

\[
\left(\int_{[0, \infty)} \left(\int_{[0, x]} f d\lambda \right)^{\frac{q}{1-q}} v(x) d\mu(x) \right)^{\frac{1}{q}} \leq \left(\int_{[0, \infty)} \left(\int_{[0, x]} \frac{v(z) d\mu(z)}{w_{N,k}(z)} \right)^{\frac{q}{1-q}} v(x) d\mu(x) \right)^{\frac{1}{q}} \int_{[0, \infty)} f w_{N,k} d\lambda.
\]

By [6, Lemma 5] this is equivalent to

\[
\left(\int_{[0, \infty)} \left(\int_{[0, x]} \frac{f}{w_{N,k}} d\lambda \right)^{\frac{q}{1-q}} v(x) d\mu(x) \right)^{\frac{1}{q}} \leq \left(\int_{[0, \infty)} \left(\int_{[0, x]} \frac{v(z) d\mu(z)}{w_{N,k}(z)} \right)^{\frac{q}{1-q}} v(x) d\mu(x) \right)^{\frac{1}{q}} \int_{[0, \infty)} f d\lambda.
\]

By (3) and (1) we have \(\frac{1}{w_{N,k}(x)} \leq \frac{1}{w_N(x)} \) and by (4), (2) and Monotone Convergence Theorem

\[
\lim_{k \to \infty} \int_{[0, x]} \frac{f}{w_{N,k}} d\lambda = \int_{[0, x]} \frac{f}{w_N^{(0)}} d\lambda = \int_{[0, x]} \frac{f}{w_N} d\lambda.
\]
Making the reverse change \(\frac{f}{w_N} \rightarrow f \) we find
\[
\left(\int_{[0,N]} \left(\int_{[0,x]} f \, d\lambda \right)^q v(x) \, d\mu(x) \right)^{\frac{1}{q}}
\ll \left(\int_{[0,N]} \left(\int_{[0,x]} \frac{v(z) \, d\mu(z)}{w_N(z)} \right)^{\frac{1-q}{q}} v(x) \, d\mu(x) \right)^{\frac{1}{1-q}} \int_{[0,N]} f \, w_N \, d\lambda
\]
\[
= \left(\int_{[0,N]} \left(\int_{[0,x]} \frac{v(z) \, d\mu(z)}{\tilde{w}_1(z)} \right)^{\frac{1-q}{q}} v(x) \, d\mu(x) \right)^{\frac{1}{1-q}} \int_{[0,N]} f \, \tilde{w}_1 \, d\lambda
\]
\[
\leq \mathcal{B} \int_{[0,\infty)} f \, \tilde{w}_1 \, d\lambda.
\]
Letting \(N \rightarrow \infty \) we arrive at \(C \ll \mathcal{B} \). To show the reverse inequality we again approximate \(\tilde{w}_1 \) from above by a monotone sequence of functions \(w_k(x) := \int_{[x,\infty)} b_k \, d\lambda \downarrow \tilde{w}_1 \). Then applying (3.6), (3.7) and [11, Theorem 2.5] we find
\[
\left(\int_{[0,\infty)} \left(\int_{[0,x]} v(z) \, d\mu(z) \right)^{\frac{1-q}{q}} v(y) \, d\mu(y) \right)^{\frac{1}{1-q}} \ll C
\]
and since \(w_k^{-1} \uparrow \tilde{w}_1^{-1} \) the result follows. \(\square \)

Definition 3.2. Let \(w \in \mathcal{M} \downarrow \) and be continuous on the left. It is known ([8, Chapter 12, §3]), that there exists a Borel measure, say \(\eta_w \), such that \(w(x) = \int_{[x,\infty)} d\eta_w + w(+) \). We say that \(w \in \mathcal{S}_2(0) \) if there exist a constant \(C \geq 1 \) such that
\[
\frac{1}{w(x)} - \frac{1}{w(0)} \leq C \int_{[0,x]} \frac{d\eta_w}{w^2}, \quad x > 0.
\]

Corollary 3.3. Let \(0 < q < 1 \), \(w \in \mathcal{M} \downarrow \) and \(w \in \mathcal{S}_2(0) \). Then
\[
\left(\int_{[0,\infty)} \left(\int_{[0,x]} h \, d\lambda \right)^q v(x) \, d\mu(x) \right)^{\frac{1}{q}} \leq C \int_{[0,\infty)} h \, w \, d\lambda
\]
holds for all \(h \in \mathcal{M}^+ \) if and only if
\[
\mathcal{B} := \left(\int_{[0,\infty)} \left(\int_{[0,x]} \frac{v \, d\mu}{w} \right)^{\frac{q}{1-q}} v(x) \, d\mu(x) \right)^{\frac{1-q}{q}} < \infty.
\]
Moreover, \(C \approx \mathcal{B} \approx \mathcal{B}_0 + \mathcal{B}_1 \), where
\[
\mathcal{B}_0 := \left(\int_{[0,\infty)} v \, d\mu \right)^{\frac{1}{q}} w(0)^{-\frac{1}{p}},
\]
$$\mathbb{B}_1 := \left(\int_{[0, \infty)} w(x)^{-\frac{q}{1-q}} \left(\int_{[x, \infty)} v d\mu(x) \right)^\frac{q}{1-q} v(x) d\mu(x) \right)^\frac{1-q}{q}. $$

Proof. It follows from Theorem 3.1, Lemma 2.2 and [11, Theorem 2.6]. □

Denote

$$\Lambda(t) := \Lambda_u(t) = \int_{[0,t]} u d\lambda$$

and observe that by the change $f^p \to f$ in the inequality (1.3) we get the following equivalent inequality

$$\left(\int_{[0, \infty)} \left(Hf^p \right)^q v d\mu \right)^\frac{q}{p} \leq C^p \left(\int_{[0, \infty)} f w d\nu \right), \quad f \in \mathcal{M}.$$ (3.9)

Theorem 3.4. (a) Let $0 < p \leq q < \infty$ and $0 < p \leq 1$. Then (1.3) holds for all $f \in \mathcal{M}$ if and only if

$$A_0 := \sup_{t \in [0, \infty)} \left(\int_{[0, t]} w d\nu \right)^{-\frac{1}{p}} \left(\int_{[0, t]} \Lambda^q v d\mu \right)^\frac{1}{q} < \infty,$$

$$\mathcal{A}_1 := \sup_{t \in [0, \infty)} \Lambda(t) \left(\int_{[0, t]} w d\nu \right)^{-\frac{1}{p}} \left(\int_{[t, \infty)} v d\mu \right)^\frac{1}{q} < \infty$$

and $C \approx A_0 + \mathcal{A}_1$.

(b) Let $0 < q < 1 = p$. Then (1.3) holds for all $f \in \mathcal{M}$ if and only if

$$\mathbb{B}_0 := \left(\int_{[0, \infty)} w(y) \left(\int_{[y, \infty)} W^{-1} \Lambda^q v d\mu \right) dv(y) \right)^\frac{1-q}{p} \leq \infty,$$

$$\mathbb{B}_1 := \left(\int_{[0, \infty)} \left(\int_{[0, x]} \text{ess sup}_{s \in [0, x]} \frac{\Lambda(s)}{W(s)} v(t) d\mu(t) \right)^\frac{q}{1-q} v(x) d\mu(x) \right)^\frac{1-q}{q} < \infty$$

and $C \approx \mathbb{B}_0 + \mathbb{B}_1$.

(c) Let $0 < q < p < 1$, $\mathcal{V}_p(t) := \text{ess sup}_{s \in [0, t]} \frac{\Lambda^p(s)}{W(s)}$. Then (1.3) holds for all $f \in \mathcal{M}$ if

$$\mathcal{B}_0 := \left(\int_{[0, \infty)} w(y) \left(\int_{[y, \infty)} W^{-1} \Lambda^q v d\mu \right)^\frac{p}{p-q} \right)^\frac{p-q}{pq} < \infty,$$
\[B_1 := \left(\int_{[0, \infty)} \left(\int_{[0, x]} \mathcal{V}_p(t) v(x) d\mu(x) \right)^{\frac{q}{p-q}} v(t) d\mu(t) \right)^{\frac{p-q}{pq}} < \infty \]

and only if \(B_0 + B_1 < \infty \), provided \(\mathcal{V}_p(t) \) is continuous on \((0, \infty)\) and \(\frac{1}{\mathcal{F}(t)} \in \mathcal{I}_2(0) \). Then \(C \approx B_0 + B_1 \).

Proof. (a) Since \(f \in \mathcal{M} \downarrow \), then \((H_{uf})(x) \geq f(x) \Lambda(x)\) and (1.3) implies

\[
\left(\int_{[0, \infty)} f^q \Lambda^q v d\mu \right)^{\frac{1}{q}} \leq C \left(\int_{[0, \infty)} f^p v d\mu \right)^{\frac{1}{p}}, \quad f \in \mathcal{M} \downarrow.
\]

It is known (see Theorem 2.8) that \(C = A_0 \) for \(0 < p \leq q < \infty \).

Now, if \(f_t = \chi_{[0, t]} \) in (1.3) then

\[
C \left(\int_{[0, t]} v d\mu \right)^{\frac{1}{q}} \geq \left(\int_{[t, \infty)} (H_{uf_t})^q v d\mu \right)^{\frac{1}{q}} = \Lambda(t) \left(\int_{[t, \infty)} v d\mu \right)^{\frac{1}{q}},
\]

which implies that \(C \geq A_1 \). Consequently, \(A_0 + A_1 \leq 2C \).

For the sufficiency we suppose first that \(f \in \mathcal{M} \downarrow, f(x) = \int_{[x, \infty)} hud\lambda \) for \(\lambda \)-a.e. \(x \in [0, \infty) \), where \(h \in \mathcal{M}^+ \) and \(f(x) \geq \int_{[x, \infty)} hud\lambda \), for all \(x \in [0, \infty) \). Let \(0 < p < 1 \). We have by Lemma 2.2

\[
\int_{[0, x]} \left(\int_{[s, \infty)} hud\lambda \right) u(s) d\lambda(s)
\]

\[
\approx \int_{[0, x]} \left(\int_{[s, \infty)} \left(\int_{[s, \infty)} hud\lambda \right)^{p-1} h(y)u(y)d\lambda(y) \right)^{\frac{1}{p}} u(s) d\lambda(s)
\]

\[
\leq \int_{[0, x]} \left(\int_{[s, \infty)} \left(\int_{[s, \infty)} hud\lambda \right)^{p-1} h(y)u(y)d\lambda(y) \right)^{\frac{1}{p}} u(s) d\lambda(s) + \Lambda(x)f(x)
\]

[by Minkowski inequality]

\[
\leq \left(\int_{[0, x]} \left(\int_{[s, \infty)} hud\lambda \right)^{p-1} h(y)u(y)\Lambda(y)^p d\lambda(y) \right)^{\frac{1}{p}} + \Lambda(x)f(x).
\]

Applying (3.10) we obtain

\[
\left(\int_{[0, \infty)} (Hf)^q v d\mu \right)^{\frac{1}{q}} \ll \left(\int_{[0, \infty)} f^q \Lambda^q v d\mu \right)^{\frac{1}{q}} + J,
\]

(3.11)
where

\[J := \left(\int_{[0, \infty)} \left(\int_{[0, x]} \left(\int_{[y, \infty)} hud\lambda \right)^{p-1} h(y)u(y)\Lambda(y) d\lambda(y) \right)^{\frac{q}{p}} v(x) d\mu(x) \right)^{\frac{1}{q}}. \]

For the first term on the right hand side of (3.11) by Theorem 2.8 we have

\[\left(\int_{[0, \infty)} f^q \Lambda^q v d\mu \right)^{\frac{1}{q}} \leq A_0 \left(\int_{[0, \infty)} f^p w d\nu \right)^{\frac{1}{p}}. \quad (3.12) \]

For the second term on the right hand side of (3.11) by Minkowski inequality with \(\frac{q}{p} \geq 1 \) and Lemma 2.2 we find

\[
J \leq \left(\int_{[0, \infty)} \left(\int_{[y, \infty)} hud\lambda \right)^{p-1} h(y)u(y)\Lambda(y) \left(\int_{[y, \infty)} v d\mu \right)^{\frac{p}{q}} d\lambda(y) \right)^{\frac{1}{p}}
\]

\[
\leq \mathcal{A}_1 \left(\int_{[0, \infty)} \left(\int_{[y, \infty)} hud\lambda \right)^{p-1} h(y)u(y) \left(\int_{[0, y]} w d\nu \right)^{\frac{1}{p}} d\lambda(y) \right)^{\frac{1}{p}}
\]

\[
\approx \mathcal{A}_1 \left(\int_{[0, \infty)} \left(\int_{[y, \infty)} hud\lambda \right)^{p} w(s) d\nu(s) \right)^{\frac{1}{p}} \leq \mathcal{A}_1 \left(\int_{[0, \infty)} f^p d\nu \right)^{\frac{1}{p}}
\]

and the inequality

\[
\left(\int_{[0, \infty)} (Hf)^q v d\mu \right)^{\frac{1}{q}} \ll (A_0 + \mathcal{A}_1) \left(\int_{[0, \infty)} f^p w d\nu \right)^{\frac{1}{p}} \quad (3.13)
\]

in this case follows. For an arbitrary \(f \in \mathcal{M} \downarrow \) without loss of generality we may suppose that \(f(\infty) = 0 \) and find by Lemma 2.4 that \(f_0 \in \mathcal{M} \downarrow \) and a sequence \(\{h_n\}_{n \geq 1} \subset \mathcal{M}^+ \) such that

1. \(f_0(x) \leq f(x) \) for all \(x \in [0, \infty) \).
2. \(f_0(x) = f(x) \) for \(\lambda \)-a.e. \(x \in [0, \infty) \).
3. \(f_n(x) := \int_{[x, \infty)} h_n u d\lambda \leq f_0(x) \) for all \(x \in [0, \infty) \).
4. For all \(x \in [0, \infty) \) the sequence \(\{f_n(x)\}_{n \geq 1} \) is nondecreasing in \(n \) and \(f_0(x) = \lim_{n \to \infty} f_n(x) \) \(\lambda \)-a.e. \(x \in [0, \infty) \). Then by the Monotone Convergence
Theorem and (3.13), it yields that
\[
\left(\int_{[0,\infty)} (Hf)^q \mathrm{d}\mu \right)^{\frac{1}{q}} \overset{(2)}{=} \left(\int_{[0,\infty)} (Hf_0)^q \mathrm{d}\mu \right)^{\frac{1}{q}}
\]
\[
\overset{(4)}{=} \lim_{n \to \infty} \left(\int_{[0,\infty)} (Hf_n)^q \mathrm{d}\mu \right)^{\frac{1}{q}} \overset{(3.13)}{\leq} (A_0 + \mathcal{A}_1) \lim_{n \to \infty} \left(\int_{[0,\infty)} f_n^p \nu \mathrm{d}v \right)^{\frac{1}{p}}
\]
\[
\leq (A_0 + \mathcal{A}_1) \left(\int_{[0,\infty)} f_0^p \nu \mathrm{d}v \right)^{\frac{1}{p}} \overset{(1)}{\leq} (A_0 + \mathcal{A}_1) \left(\int_{[0,\infty)} f^p \nu \mathrm{d}v \right)^{\frac{1}{p}}
\]
and the upper bound \(C \ll A_0 + \mathcal{A}_1 \) is proved. The case \(p = 1 \) is treated by the same method, but even simpler.

(b) Necessity. It follows from the inequality
\[
\left(\int_{[0,\infty)} (Hf)^q \mathrm{d}\mu \right)^{\frac{1}{q}} \leq C \int_{[0,\infty)} f \nu \mathrm{d}v, \quad f \in \mathcal{M}^-, \quad (3.14)
\]
that
\[
\left(\int_{[0,\infty)} f^q \Lambda^q \mathrm{d}\mu \right)^{\frac{1}{q}} \leq C \int_{[0,\infty)} f \nu \mathrm{d}v, \quad f \in \mathcal{M}^- . \quad (3.15)
\]
The last inequality is characterized by \(\mathbb{B}_0 \) (see Theorem 2.9 with \(p = 1 \).) Hence, \(\mathbb{B}_0 \leq C \). Now, suppose \(h \in \mathcal{M}^+ \) and \(f(x) = \int_{[x,\infty)} hu \nu \mathrm{d}\lambda \). Then \(f \in \mathcal{M}^- \) and (3.14) gives
\[
\left(\int_{[0,\infty)} \left(\int_{[0,x]} \left(\int_{[x,\infty)} hu \nu \mathrm{d}\lambda \right) \mathrm{d}\mu(x) \right)^q \right)^{\frac{1}{q}} \leq C \int_{[0,\infty)} \left(\int_{[0,x]} hu \nu \mathrm{d}\lambda \right) w(s) \nu \mathrm{d}s .
\]
This implies
\[
\left(\int_{[0,\infty)} \left(\int_{[0,x]} h\Lambda \nu \mathrm{d}\lambda \right)^q \nu \mathrm{d}\mu(x) \right)^{\frac{1}{q}} \leq C \int_{[0,\infty)} hWud\lambda.
\]
Changing the variable \(h\Lambda u \to h \) we obtain
\[
\left(\int_{[0,\infty)} \left(\int_{[0,x]} h\nu \mathrm{d}\lambda \right)^q \nu \mathrm{d}\mu(x) \right)^{\frac{1}{q}} \leq C \int_{[0,\infty)} hWd\lambda .
\]
The last inequality is characterized by Theorem 3.1. Consequently, \(\mathbb{B}_1 \ll C \).
Sufficiency. Again, suppose first, that \(f \in \mathcal{M} \downarrow \), \(f(x) = \int_{[x,\infty)} h ud\lambda \) for \(\lambda \) -a.e. \(x \in [0,\infty) \), where \(h \in \mathcal{M} \) and \(f(x) = \int_{[x,\infty)} h ud\lambda \) for all \(x \in [0,\infty) \). Then we have

\[
\left(\int_{[0,\infty)} (Hf)^q vd\mu \right)^{\frac{1}{q}} = \left(\int_{[0,\infty)} \left(\int_{[0,x]} \left(\int_{[x,\infty)} h ud\lambda \right) u(s)d\lambda(s) \right)^q vd\mu \right)^{\frac{1}{q}}
\]

\[
\ll \left(\int_{[0,\infty)} \left(\int_{[0,x]} \left(\int_{[x,\infty)} h ud\lambda \right) u(s)d\lambda(s) \right)^q vd\mu \right)^{\frac{1}{q}}
+ \left(\int_{[0,\infty)} \left(\int_{[x,\infty)} h ud\lambda \right)^q \Lambda^q(x) v(x)d\mu(x) \right)^{\frac{1}{q}}
\]

\[
\leq \left(\int_{[0,\infty)} \left(\int_{[0,x]} h ud\lambda \right)^q v(x)d\mu(x) \right)^{\frac{1}{q}} + \left(\int_{[0,\infty)} f^q \Lambda^q vd\mu \right)^{\frac{1}{q}}
\]

[applying Theorem 3.1 and Theorem 2.9]

\[
\ll \mathbb{B}_1 \left(\int_{[0,\infty)} \left(\int_{[x,\infty]} h ud\lambda \right) w(x)d\nu(x) \right) + \mathbb{B}_0 \left(\int_{[0,\infty)} f wd\nu \right)
\]

\[
\leq (\mathbb{B}_0 + \mathbb{B}_1) \int_{[0,\infty)} f wd\nu.
\]

For an arbitrary \(f \in \mathcal{M} \downarrow \) we use the arguments from the end of the part (a).

(c) Sufficiency. To prove (3.9) we again, suppose first that \(f \in \mathcal{M} \downarrow \), \(f(x) = \int_{[x,\infty)} h ud\lambda \) for \(\lambda \) -a.e. \(x \in [0,\infty) \), where \(h \in \mathcal{M}^+ \) and \(f(x) = \int_{[x,\infty)} h ud\lambda \) for all \(x \in [0,\infty) \). Then, arguing as before and applying Minkowski’s inequality, we find

\[
\left(\int_{[0,\infty)} (Hf^\frac{1}{p})^q vd\mu \right)^{\frac{p}{q}}
\]

\[
= \left(\int_{[0,\infty)} \left(\int_{[0,x]} \left(\int_{[x,\infty)} h ud\lambda \right)^\frac{1}{p} u(s)d\lambda(s) \right)^q v(x)d\mu(x) \right)^{\frac{p}{q}}
\]

\[
\ll \left(\int_{[0,\infty)} \left(\int_{[0,x]} \left(\int_{[x,\infty)} h ud\lambda \right)^\frac{1}{p} u(s)d\lambda(s) \right)^q v(x)d\mu(x) \right)^{\frac{p}{q}}
+ \left(\int_{[0,\infty)} \left(\int_{[x,\infty)} h ud\lambda \right)^{\frac{q}{p}} \Lambda^q(x) v(x)d\mu(x) \right)^{\frac{p}{q}}
\]

\[
\leq \left(\int_{[0,\infty)} \left(\int_{[0,x]} h \Lambda^{p} ud\lambda \right)^{\frac{q}{p}} v(x)d\mu(x) \right)^{\frac{p}{q}} + \left(\int_{[0,\infty)} f^{\frac{q}{p}} \Lambda^q vd\mu \right)^{\frac{p}{q}}
\]
applying Theorem 3.1 and Theorem 2.9
\[
\leq B_1^p \left(\int_{[0,\infty)} \left(\int_{[x,\infty)} hu d\lambda \right) w(x) d\nu(x) \right) + B_0^p \int_{[0,\infty)} f w d\nu.
\]
For an arbitrary \(f \in \mathcal{M} \) we again use the arguments from the end of the part (a).

Necessity. The inequality \(B_0 \leq C \) follows by using similar arguments as in the proof of \(A_0 \leq C \) and \(B_0 \leq C \) in the parts (a) and (b).

For the rest it is sufficient to show that (3.9) implies the inequality \(C \gg B_1 \).

Suppose for simplicity, that \(V_p(0) = 0 \). Let
\[
g(t) := \max \left\{ 2^m, m \in \mathbb{Z}; 2^m \leq \mathcal{V}_p^\rho(t) \right\}
\]
and
\[
\tau_m := \inf \left\{ y \in [0, \infty) : 2^m \leq \mathcal{V}_p^\rho(y) \right\}.
\]
Since \(\mathcal{V}_p^\rho(t) \) is continuous, then \(\tau_m \) exists for all \(m \in \mathbb{Z}, \tau_m \uparrow \) and
\[
\frac{\Lambda(\tau_m)^r}{W(\tau_m)^p} = 2^m = \mathcal{V}_p^\rho(\tau_m) \leq \mathcal{V}_p^\rho(t) \leq 2^{m+1}, \quad t \in [\tau_m, \tau_{m+1}].
\]
\[
g(\tau_m) = 2^m, \quad g(s) \leq 2^{m-1} \text{ for all } s \in [0, \tau_m).
\]

We note that
\[
g(t) = \sum_{m \in \mathbb{Z}} 2^m I_{[\tau_m, \tau_{m+1})}(t) \leq \mathcal{V}_p^\rho(t)
\]
and define
\[
f(t) := \int_{[t, \infty)} \left(\int_{[x, \infty)} v d\mu \right)^\frac{r}{q} dg(x).
\]
Then \(f \in \mathcal{M} \) and by Lemma 2.2
\[
\int_{[0,\infty)} f w d\nu = \int_{[0,\infty)} \left(\int_{[x,\infty)} v d\mu \right)^\frac{r}{q} dg(x)
\]
\[
\approx \int_{[0,\infty)} g(x) \left(\int_{[x,\infty)} v d\mu \right)^\frac{r}{q} v(x) d\mu(x)
\]
\[
\leq \int_{[0,\infty)} \mathcal{V}_p^\rho(x) \left(\int_{[x,\infty)} v d\mu \right)^\frac{r}{q} v(x) d\mu(x) := B_{2,1}^p.
\]
On the other hand
\[
\left(\int_{[0, \infty)} \left(\int_{[0, \infty)} f \right)^q (y) d\Lambda (y) \right)^{\frac{1}{q}} v (x) d\mu (x)
\]
\[
\geq \left(\sum_m \int_{[\tau_m, \tau_{m+1}]} v (x) \left(\int_{[0, \tau_m]} \int_{[y, \tau_m]} \left(\frac{f_{[y, \infty)}}{W (s)} d\mu (s) \right)^{\frac{p}{q}} d\Lambda (y) \right) d\mu (x) \right)^{\frac{1}{q}}
\]
\[
\geq \left(\sum_m \int_{[\tau_m, \tau_{m+1}]} v d\mu \left(\int_{[\tau_m, \tau_{m+1}]} v d\mu \right)^{\frac{p}{q}} \times \left(W (\tau_m)^{-\frac{1}{p}} \int_{[0, \tau_m]} (g (\tau_m) - g (y))^\frac{p}{q} d\Lambda (y) \right)^{\frac{1}{q}} \right)^{\frac{1}{q}}
\]
\[
\geq \left(\sum_m \int_{[\tau_m, \tau_{m+1}]} v d\mu \left(\int_{[\tau_m, \tau_{m+1}]} v d\mu \right)^{\frac{p}{q}} \left(\frac{2^{\frac{m}{p}} \Lambda (\tau_m)}{W (\tau_m)^{\frac{p}{q}}} \right)^{\frac{q}{p}} \right)^{\frac{1}{q}}
\]
\[
\geq \left(\sum_m \frac{2^m}{\int_{[\tau_m, \tau_{m+1}]} \left(\int_{[\tau_m, \tau_{m+1}]} v d\mu \right)^{\frac{p}{q}} v (s) d\mu (s) \right)^{\frac{1}{q}} =: B_{2, 1}^q
\]

With such \(f (x) \) the inequality (3.9) implies \(C^p B_{2, 1}^q \gg B_{2, 0}^q \Rightarrow C \gg B_{2, 1}. \) Now, if we put \(f = \chi_{[0]} \) in (3.9), we find that
\[
C \geq \left(\int_{[0, \infty)} v d\mu \right)^{\frac{p}{q}} \left(\frac{W (0)}{\Lambda^p (0)} \right)^{-\frac{1}{p}} = \left(\int_{[0, \infty)} v d\mu \right)^{\frac{p}{q}} \left(\frac{1}{\Lambda^p (0)} \right)^{-\frac{1}{p}} =: B_{2, 0}. \]

It follows from Corollary 3.3, that \(B_{2, 1} + B_{2, 0} \gg B_1. \) Hence, \(C \gg B_1 \) and the proof is complete.

In conclusion of this section we give an analog of part (a) of the previous theorem for non-decreasing functions.

Theorem 3.5. Let \(0 < p \leq q < \infty \) and \(0 < p \leq 1. \) Then, (1.3) holds for all \(f \in \mathfrak{M} \uparrow \) if and only if
\[
\tilde{A}_1 := \sup_{t \in [0, \infty)} \left(\int_{[t, \infty)} \Lambda^q (x, t) v (x) d\mu (x) \right)^{\frac{1}{q}} W^{-\frac{1}{p}} (t) < \infty,
\]
where

\[\Lambda (x, t) := \int_{[t,x]} ud\lambda, \]

and \(C \approx \tilde{\Lambda}_1. \)

Proof. Replacing \(f \) in (1.3) by \(f_t := \chi_{[t,\infty]} \) we find \(\tilde{\Lambda}_1 \leq C. \) For sufficiency we suppose that

\[f (x) = \int_{[0,x]} hud\lambda, \quad h \in \mathcal{M}^+ \]

and let \(0 < p < 1. \) Then, by Minkowski inequality and Lemma 2.1, we find

\[
\begin{align*}
\int_{[0,x]} \left(\int_{[0,s]} hud\lambda \right) u(s) d\lambda (s) &
\approx \int_{[0,x]} \left(\int_{[0,s]} \left(\int_{[0,y]} hud\lambda \right)^{p-1} h(y) u(y) d\lambda (y) \right)^{\frac{q}{p}} u(s) d\lambda (s)
\leq \left(\int_{[0,x]} \left(\int_{[0,y]} hud\lambda \right)^{p-1} h(y) u(y) \Lambda^p (x, y) d\lambda (y) \right)^\frac{1}{p}.
\end{align*}
\]

Thus, again by Minkowski inequality

\[
\left(\int_{[0,\infty)} (Hf)^q vd\mu \right)^\frac{1}{pq} \leq \left(\int_{[0,\infty)} \left(\int_{[0,y]} hud\lambda \right)^{p-1} h(y) u(y) \Lambda^p (x, y) d\lambda (y) \right)^\frac{q}{pq} v(x) d\mu (x)
\leq \left(\int_{[0,\infty)} \left(\int_{[0,y]} hud\lambda \right)^{p-1} h(y) u(y) \left(\int_{[y,\infty)} \Lambda^q (x, y) v(x) d\mu (x) \right)^\frac{q}{pq} d\lambda (y) \right)^\frac{1}{pq}
\leq \tilde{\Lambda}_1 \left(\int_{[0,\infty)} \left(\int_{[0,y]} hud\lambda \right)^{p-1} h(y) u(y) \left(\int_{[y,\infty)} wd\nu \right) d\lambda (y) \right)^\frac{1}{pq}
\approx \tilde{\Lambda}_1 \left(\int_{[0,\infty)} f^p wd\nu \right)^\frac{1}{pq}.
\]

\(\square \)

A general case \(f \in \mathcal{M} \uparrow \) follows by Lemma 2.3 similar to the proof of Theorem 3.4.
4. The case $1 < p, q < \infty$

The result of this section is based on the following statement, which follows from Theorems 2.9 and 2.11 with $q = 1$.

Corollary 4.1. Let $(Tf)(x) = \int_{[0,\infty)} k(x,y)f(y)d\lambda(y)$, where $k(x,y)$ is a defined on $[0,\infty) \times [0,\infty)$, non-negative, $\mu \times \lambda$-measurable kernel.

(a) The inequality

$$\left(\int_{[0,\infty)} (Tf)^q d\mu \right)^{\frac{1}{q}} \leq C \left(\int_{[0,\infty)} f^p d\nu \right)^{\frac{1}{p}}$$

for $f \in \mathcal{M} \downarrow$, holds if and only if the inequality

$$\left(\int_{[0,\infty)} w(y) \left(\int_{[y,\infty)} W^{-1}(T^*g) d\lambda \right)^{p'} d\nu(y) \right)^{\frac{1}{p'}} \leq C \left(\int_{[0,\infty)} q^q d\mu \right)^{\frac{1}{q}}, \quad g \in \mathcal{M}^+,$n

holds with $(T^*g)(z) = \int_{[0,\infty)} k(z,x)g(z)v(z)d\mu(z)$.

(b) The inequality (4.1) for $f \in \mathcal{M} \uparrow$ holds if and only if the following inequality holds:

$$\left(\int_{[0,\infty)} w(y) \left(\int_{[0,y]} W^{-1}(T^*g) d\lambda \right)^{p'} d\nu(y) \right)^{\frac{1}{p'}} \leq C \left(\int_{[0,\infty)} q^q d\mu \right)^{\frac{1}{q}}, \quad g \in \mathcal{M}^+.$$

Now let us present our result for the case $1 < p, q < \infty$.

Theorem 4.2. Let $k(x,y) = \int_{[y,\infty]} W^{-1} u d\lambda$ and $f \in \mathcal{M} \downarrow$. The inequality (1.3) holds for $1 < p \leq q < \infty$ if and only if $\mathcal{A} = \max \{ \mathcal{A}_{0,1} + \mathcal{A}_{0,2} \} < \infty$, where

$$\mathcal{A}_{0,1} = \sup_{r \in [0,\infty)} \left(\int_{[0,r]} w(y)k(t,y)^p d\nu(y) \right)^{\frac{1}{p}} \left(\int_{[r,\infty)} v^q d\mu \right)^{\frac{1}{q}},$$

$$\mathcal{A}_{0,2} = \sup_{r \in [0,\infty)} \left(\int_{[0,r]} w d\nu \right)^{\frac{1}{p'}} \left(\int_{[r,\infty)} v(x)k(x,t)^q d\mu(x) \right)^{\frac{1}{q}}.$$n

Moreover, if C is the best constant in (1.3), then $C = \mathcal{A}$.

In the case $1 < q < p < \infty$ the inequality (1.3) holds if and only if $\mathcal{B} = \max \{ \mathcal{B}_{0,1} + \mathcal{B}_{0,2} \} < \infty$, where

$$\mathcal{B}_{0,1} = \sup_{r \in [0,\infty)} \left(\int_{[0,r]} w(y)k(t,y)^p d\nu(y) \right)^{\frac{1}{p}} \left(\int_{[r,\infty)} v^q d\mu \right)^{\frac{1}{q}},$$

$$\mathcal{B}_{0,2} = \sup_{r \in [0,\infty)} \left(\int_{[0,r]} w d\nu \right)^{\frac{1}{p'}} \left(\int_{[r,\infty)} v(x)k(x,t)^q d\mu(x) \right)^{\frac{1}{q}}.$$
\[B_{0,1} = \left(\int_{[0,\infty)} \left(\int_{[0,1]} w(y)k(t, y)^p \, dv(y) \right)^{\frac{\nu}{p'}} \left(\int_{[1,\infty)} v(t) \, d\mu(t) \right)^{\frac{\nu}{p}} \right)^{\frac{1}{\nu}} \]

\[B_{0,2} = \left(\int_{[0,\infty)} \left(\int_{[0,1]} w \, dv \right)^{\frac{\nu}{q'}} \left(\int_{[1,\infty)} v(x)k(x, t)^q \, d\mu(x) \right)^{\frac{\nu}{q}} w(t) \, dv(t) \right)^{\frac{1}{\nu}} \]

and \(\frac{1}{r} = \frac{1}{q} - \frac{1}{p} \). Moreover, if \(C \) is the best constant in (1.3), then \(C = B \).

Proof. Because of Corollary 4.1 (a) the inequality (1.3) is equivalent to

\[
\left(\int_{[0,\infty)} w(y) \left(\int_{[y,\infty)} W(x)^{-1} \left(\int_{[x,\infty)} g \, dv \right) u(x) \right) \, d\lambda(x) \right)^{\frac{\nu}{p'}} \left(\int_{[0,\infty)} v(y) \, d\mu(y) \right)^{\frac{1}{p'}} \leq C \left(\int_{[0,\infty)} q^q \, dv \right)^{\frac{1}{q'}}.
\]

By changing the order of integration in the left hand side of (4.3) we obtain the Hardy inequality with Oinarov kernel of the form

\[
\left(\int_{[0,\infty)} w(y) \left(\int_{[y,\infty)} g(z)k(z, y)v(z) \, d\mu(z) \right) \, dv(y) \right)^{\frac{1}{p'}} \leq C \left(\int_{[0,\infty)} q^q \, dv \right)^{\frac{1}{q'}}.
\]

By substitution \(f = g^q \) and according to Lemma 7 from [7] the last inequality is equivalent to

\[
\left(\int_{[0,\infty)} w(y) \left(\int_{[y,\infty)} f(z)k(z, y)v(z)^{1/q} \, d\mu(z) \right) \, dv(y) \right)^{\frac{1}{p'}} \leq C \left(\int_{[0,\infty)} f^q \, d\mu \right)^{\frac{1}{q'}}.
\]

Thus the proof follows by applying Theorem 2.7. \(\square \)

Similarly we can obtain the result for non-decreasing functions as follows.

THEOREM 4.3. Let \(\bar{k}(y, x) = \int_{[y,\infty]} \bar{W}^{-1} \, ud\lambda \) and \(f \in \mathcal{M}^{\uparrow} \). The inequality (1.3) holds for \(1 < p \leq q < \infty \) if and only if \(\mathcal{A} = \max \{ \mathcal{A}_{0,1} + \mathcal{A}_{0,2} \} < \infty \), where

\[
\mathcal{A}_{0,1} = \sup_{t \in [0,\infty)} \left(\int_{[1,\infty)} w(y)k(y, t)^p \, dv(y) \right)^{\frac{1}{p'}} \left(\int_{[0,1]} \, dv \right)^{\frac{1}{q'}}.
\]
Moreover, if C is the best constant in (1.3), then $C = \tilde{A}$. In the case $1 < q < p < \infty$ the inequality (1.3) holds if and only if

$$\mathcal{B}_{0,1} := \left(\int_{0,\infty} \left(\int_{t,\infty} w(y) \bar{K}(y, t)^p dv(y) \right)^{\frac{\tau}{p}} \left(\int_{0,\infty} v(x) \bar{K}(x, t)q d\mu(x) \right)^{\frac{\tau}{q}} \right)^{\frac{1}{\tau}}$$

and $\frac{1}{r} = \frac{1}{q} - \frac{1}{p}$. Moreover, if C is the best constant in (1.3), then $C = \mathcal{B}^\ast$.

Acknowledgement. The authors express their deep gratitude to Professor Lars-Erik Persson for fruitful discussions and the referee of the paper for valuable remarks.

REFERENCES

(Received April 25, 2007)

Maria Johansson
Department of Mathematics
Luleå University of Technology
SE-97187 Luleå
SWEDEN

Vladimir D. Stepanov
Department of Mathematical Analysis and Function Theory
Peoples Friendship University
117198 Moscow
RUSSIA

Elena P. Ushakova
Computing Centre of Far Eastern Branch of Russian Academy of Sciences
680000 Khabarovsk
RUSSIA

Current address:
Department of Mathematics
Uppsala University
SE-751 06 Uppsala
SWEDEN

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com