This is a repository copy of Cloning, preparation and preliminary crystallographic studies of penicillin V acylase autoproteolytic processing mutants.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/460/

Article:

https://doi.org/10.1107/S1744309104031227

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Cloning, preparation and preliminary crystallographic studies of penicillin V acylase autoproteolytic processing mutants

The crystallization of three catalytically inactive mutants of penicillin V acylase (PVA) from *Bacillus sphaericus* in precursor and processed forms is reported. The mutant proteins crystallize in different primitive monoclinic space groups that are distinct from the crystal forms for the native enzyme. Directed mutants and clone constructs were designed to study the post-translational autoproteolytic processing of PVA. The catalytically inactive mutants will provide three-dimensional structures of precursor PVA forms, plus open a route to the study of enzyme–substrate complexes for this industrially important enzyme.

1. Introduction

Penicillin V acylase (PVA) from *Bacillus sphaericus* (Pundle & SivaRaman, 1997) is a homotetrameric protein of 37.5 kDa subunits. It is industrially used in the hydrolysis of penicillin V to produce 6-amino penicillanic acid (6-APA), which is the precursor molecule for semi-synthetic β-lactam antibiotics (Shewale & Sudhakaran, 1997). The crystal structure of PVA (Suresh et al., 1999) placed this protein in the N-terminal nucleophile (Ntn) hydrolase superfamily (Brannigan et al., 1995). The structures of this family share a characteristic αββα fold, with the catalytic centre being the side chain of an amino-terminal residue (Cys, Ser or Thr) incorporated in the central β-sheet as the nucleophile for catalytic attack at the carbonyl C atom of the substrate. Currently known Ntn hydrolases (Pei & Grishin, 2003) include proteins that are active on a range of substrates and that display diverse quaternary organizations. However, all share the common feature that the active-site nucleophile must be unmasked by a post-translational processing event. In the crystal structure of PVA, which is a single chain, the active-site cysteine was found to be the N-terminal residue (Suresh et al., 1999), whereas the gene encoding PVA has an extra tripeptide (Met-Leu-Gly) as part of the reading frame preceding cysteine (Olsson & Uhlen, 1986). The presence of Cys at the N-terminus is explained by assuming that PVA has undergone post-translational modification to remove the pro-sequence, similar to that observed in other mechanistically related enzymes such as penicillin G acylase (PGA) from *Escherichia coli* (Duggleby et al., 1995) and cephalosporin acylase (CPA; Kim et al., 2000). However, this processing event is simpler in PVA compared with that in PGA and CPA, as in both of the latter systems a spacer peptide is removed from the middle of the peptide chain (Hewitt et al., 2000; Kim et al., 2002, 2003) whereby the polypeptide chain of the active enzyme splits into two.

We have designed clone constructs and site-directed mutants that were predicted to lead to PVA-processing defects by substitution of the active-site Cys in the presence of the tripeptide pro-sequence. Superposition of the PVA and PGA structures suggest a conserved topology for the ‘oxygen-hole’ residue that balances the negative charge on the tetrahedral reaction intermediate. Substitution of this residue in PVA (Asn175) with alanine was performed to mimic the study on PGA B-chain residue Asn241, which allowed processing to occur but yielded a catalytically inactive protein (McVey et al., 2001). Mutants were also prepared that lacked the PVA pro-sequence. It was presumed that the initiator formylmethionine residue could be removed by a methionine aminopeptidase, thus unmasking the nucleophile in a manner similar to glutamine 5-phosphoribosyl-1-pyrophosphate amidotransferase from *B. subtilis* (Smith et al.,...
1994) and so bypass normal PVA processing. These designed mutants were overexpressed in E. coli, purified, crystallized and characterized using X-ray crystallographic techniques to probe the mechanism of autoproteolytic post-translational processing of PVA.

2. Materials and methods

2.1. Cloning

The PVA gene and flanking DNA sequence from B. sphaericus NCIMB 9370 was amplified from chromosomal DNA by PCR using oligonucleotide primers that incorporated the restriction-endonuclease sites BamHI and EcoRI at the termini of the 1164 bp PCR fragment. Digestion PCR product was cloned into the phagemid pBluescript SK such that the gene encoding PVA was placed downstream of the lac promoter. The DNA sequence was confirmed with that reported (Olsson & Uhlen, 1986) except for a G to T transversion that alters the coding sequence at position 98 of the mature protein and leads to an amino-acid substitution (ACA Thr to AGA Arg). This construct was used as a template to prepare the precursor mutants Pre-Asn175Ala (Pre-N175A), Pre-Cys1Ser (Pre-C15S) and Pre-Cys1Ala (Pre-C1A) using the QuikChange site-directed mutagenesis kit (Stratagene). Mutants lacking the three-amino-acid pre-sequence were cloned into pET vectors and expressed in E. coli BL21(DE3) cells. The mutants N175A and C15S were produced with a C-terminal histidine tag to aid purification.

2.2. Expression and purification

Protein expression was performed by growing the transformed E. coli cells at a temperature of 310 K in Luria–Bertani medium containing kanamycin (30 μg ml⁻¹) for pET-based plasmids and ampicillin (100 μg ml⁻¹) for the pBS phagemids. When the OD₆₀₀ of the culture reached about 0.6, IPTG was added to a final concentration of 1 mM. The cells were harvested 4 h post-induction and disrupted using sonication. After centrifugation, the supernatant was mixed with streptomycin sulfate to remove nucleic acids and 56%(w/v) ammonium sulfate (AS) was added. Precipitated protein was dissolved in a minimum volume of buffer (0.05 M sodium phosphate pH 6.5, 10 mM EDTA) and dialyzed overnight. AS was added to the dialyzed protein to a final concentration of 24%(w/v) before loading onto an Octyl-Sepharose column (Pharmacia) pre-equilibrated with 24%(w/v) AS. This column was used for the purification of C1A, Pre-N175A, Pre-C15S and Pre-C1A mutants. Since both N175A and C15S mutants have a His tag at their C-termini, purification was carried out using Ni²⁺-bound chelating resin (Pharmacia). The purity of the final protein preparations was confirmed using SDS–PAGE, in which each preparation showed a single band.

The yield of the mutant proteins was 20 mg per litre of culture. Penicillin V acylase activity was measured by reacting the 6-amino group of the product 6-APA with p-dimethylaminobenzaldehyde to yield a chromogenic Schiff base (Shewale et al., 1987).

2.3. Crystallization and data collection

Crystals used in data collection were grown using the hanging-drop vapour-diffusion method, mixing an equal amount (1 μl) of protein at a concentration of 20–25 mg ml⁻¹ with the well solutions. Crystallization studies were performed with a number of commercial screens, including Crystal Screens (Hampton) and Clear Strategy Screens (Molecular Dynamics Ltd). Beautiful crystals were obtained in CSS-I condition 8 [0.2 M lithium sulfate and 15% (w/v) PEG 4K], but had poor diffraction properties. The crystals of mutant PVA proteins were successfully grown from conditions based on those used for native PVA. The well solution contained ~700 μl 0.2 M sodium phosphate buffer pH 6.4 with ~300 μl saturated AS and 100 μl 15%(w/v) sucrose solution. In some cases, the use of additional additives gave rise to improved quality crystals (Table 1). The crystallization temperature was 292 K. Diffraction data were collected using synchrotron radiation at the European Synchrotron Radiation Source (ESRF, Grenoble, France) or Synchrotron Radiation Source (SRS, Daresbury, Warrington, UK) using CCD detectors. All data were collected at 100 K under liquid nitrogen from crystals flash-cooled in the presence of 30%(v/v) glycerol or 1,2,6-hexanetriol (Table 1). The diffraction data were processed and scaled using the DENZO and SCALEPACK modules of the HKL package (Otwinski & Minor, 1997).

3. Results and discussion

The two residues targeted for mutation were Cys1 and Asn175. Information based on studies of other Ntn hydrolases allowed us to identify cysteine as acting as the nucleophile in PVA and thus it was assumed that its mutation would affect the catalytic properties of the enzyme. Structural comparison with other members of the family helped to identify Asn175 in PVA as the oxynion-hole residue stabilizing the transition-state complex during catalysis. Mutating these two functional residues to alanine resulted in loss of activity towards penicillin V. Inclusion of the N-terminal tripeptide of the precursor in each mutant was intended to assess the individual roles of the mutated amino acids in the post-translational processing of PVA. As stated in §1, some Ntn hydrolases are functional with a Ser or Thr in the place of Cys as their catalytic centre. To test whether a serine residue can functionally replace the cysteine in PVA, we prepared a third pair of mutants by mutating Cys1 to Ser. Surpris-
Table 3
Data-collection statistics.

Values in parentheses are for the highest resolution shell.

<table>
<thead>
<tr>
<th>Mutant</th>
<th>Asn175Ala</th>
<th>Cys1Ala</th>
<th>Cys1Ser</th>
<th>Pre-N175A</th>
<th>Pre-C1S</th>
<th>Pre-C1A</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray source</td>
<td>ESRF ID14.3</td>
<td>ESRF ID14.3</td>
<td>ESRF ID14.3</td>
<td>Daresbury 9.6</td>
<td>Daresbury 14.2</td>
<td>ESRF ID14.3</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.3 × 0.2 × 0.1</td>
<td>0.3 × 0.2 × 0.1</td>
<td>0.1 × 0.1 × 0.1</td>
<td>0.3 × 0.2 × 0.1</td>
<td>0.3 × 0.3 × 0.1</td>
<td>0.3 × 0.3 × 0.1</td>
</tr>
<tr>
<td>Space group</td>
<td>P2₁ (form I)</td>
<td>P2₁ (form I)</td>
<td>P2₁;2₁;2₁</td>
<td>P2₁ (form II)</td>
<td>P2₁ (form II)</td>
<td>P2₁ (form II)</td>
</tr>
<tr>
<td>Unit-cell parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a (Å)</td>
<td>47.28</td>
<td>47.86</td>
<td>90.93</td>
<td>103.66</td>
<td>102.64</td>
<td>103.30</td>
</tr>
<tr>
<td>b (Å)</td>
<td>379.38</td>
<td>381.89</td>
<td>129.42</td>
<td>92.52</td>
<td>90.09</td>
<td>89.88</td>
</tr>
<tr>
<td>c (Å)</td>
<td>102.01</td>
<td>102.89</td>
<td>158.78</td>
<td>103.84</td>
<td>102.30</td>
<td>103.60</td>
</tr>
<tr>
<td>Max. resolution (Å)</td>
<td>1.7</td>
<td>2.1</td>
<td>1.9</td>
<td>2.4</td>
<td>2.5</td>
<td>10.4</td>
</tr>
<tr>
<td>Total No. reflections</td>
<td>1293548</td>
<td>216635</td>
<td>670208</td>
<td>1130879</td>
<td>236110</td>
<td>150271</td>
</tr>
<tr>
<td>Completeness</td>
<td>94.6 (64.7)</td>
<td>97.1 (86.4)</td>
<td>96.7 (97.9)</td>
<td>99.0 (94.7)</td>
<td>99.9 (99.4)</td>
<td>93.3 (79.8)</td>
</tr>
<tr>
<td>(I/\sigma(I))</td>
<td>19.6 (2.2)</td>
<td>13.1 (6.3)</td>
<td>10.3 (1.4)</td>
<td>11.0 (1.8)</td>
<td>16.5 (4.4)</td>
<td>10.4 (1.7)</td>
</tr>
<tr>
<td>(R_{	ext{merge}}) (%)</td>
<td>6.9 (48.6)</td>
<td>9.0 (16.0)</td>
<td>11.8 (72.8)</td>
<td>9.2 (46.4)</td>
<td>8.6 (29.2)</td>
<td>7.8 (48)</td>
</tr>
<tr>
<td>Unit-cell volume (Å³)</td>
<td>1825765</td>
<td>1873652</td>
<td>1867113</td>
<td>909270</td>
<td>931873</td>
<td>945673</td>
</tr>
<tr>
<td>Matthews coefficient (Å³ Da⁻¹)</td>
<td>3.0</td>
<td>3.1</td>
<td>3.1</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Solvent content</td>
<td>59.6</td>
<td>60.6</td>
<td>60.5</td>
<td>61.6</td>
<td>61.7</td>
<td>61.0</td>
</tr>
<tr>
<td>No. tetramers per asymmetric unit</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

† \(R_{	ext{merge}} = 100 \times \sum_{hkl} \sum_{i=1}^{N} |f_i(hkl) - \langle f(hkl) \rangle|/\sum_{hkl} \sum_{i=1}^{N} f_i(hkl) \).