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Ab initio calculation of nitrogen K-edges for use in the core-level spectroscopy of industrially

important group-III nitrides ~AlN, GaN, InN! has been carried out systematically including the

core-hole effect. The theoretical spectra for transition into final states with px ,y and pz symmetries

are in good agreement with the available anisotropic electron energy-loss measurements. Our

spectra can be used as ‘‘fingerprints’’ to characterize the group-III nitrides, for example, not only to

distinguish between different polymorphs of group-III nitrides, but also to identify the presence of

surface oxidation. We have also presented our simulated results in terms of an orientation-average

spectrum and a sample orientation-dependent dichroic spectrum for future reference. © 2004

American Institute of Physics. @DOI: 10.1063/1.1691498#

Group-III nitrides ~AlN, GaN, and InN! are important

semiconducting materials for optoelectronic as well as high-

temperature and high-power microelectronic device

applications.1 These nitrides can exist in a number of poly-

morphic forms with the anisotropic wurtzite ~w! structure

being the thermodynamically stable structure of bulk materi-

als under ambient conditions, hence most widely used.1 The

intimate connection between the unoccupied local densities

of states ~LDOS! and the core-level excitation spectrum al-

lows electron energy-loss spectroscopy ~EELS! or x-ray ab-

sorption spectroscopy ~XAS! to be used to study the elec-

tronic structure, hence crystal structure of the materials.2–12

For example, the electron energy-loss near-edge structure or

the x-ray absorption near-edge structure of nitrogen K-edges

has been used as a ‘‘fingerprint’’ to identify the chemical

environment of the nitrogen atom,5–10 the phase

composition,11,12 as well as phase orientations.11,12

In anisotropic wurtzite structures, because of the dipole

selection rule, the experimental K-edge spectra are normally

composed a mixture of pxy and pz components with a vary-

ing ratio determined by the experimental condition.13,14 This

complication means that great care should be exercised in the

direct use of fine structure of core-level spectroscopy as the

fingerprint method for characterizing the different nitrides.

On the other hand, the availability of the symmetry-resolved

nitrogen K-edges not only can help with the application of

the fingerprint method as reference standards, but they can

also be used directly to study the orientation as well as phase

abundance of the wurtzite nitride crystals.

Experimental determination of symmetry-resolved N

K-edge spectra has been carried out using XAS4,5,15,16 and

EELS9,17 methods, but with conflicting results. For example,

a significant discrepancy can be found from the reported

XAS15 and EELS17 result of the pz symmetry projected un-

occupied LDOS in AlN. Theoretical investigations have also

created some confusion: using the full potential linearized

augmented plane wave ~FPLAPW! method, a clear discrep-

ancy is reported between experimental EELS results and the

calculated pz symmetry final states, even with the inclusion

of core-hole effects for GaN9 in contrast to the good agree-

ment achieved in AlN.17 In view of the experimental diffi-

culties involved, we have carried out a systematic theoretical

simulation of symmetry-resolved K-edge spectra for aniso-

tropic wurtzite structure, using an ab initio pseudopotential

plane wave method with a proper treatment of the core-hole

effect. These spectra compare well with available EELS

measurements. Using these simulated spectra, we can ex-

plain the discrepancy of the EELS17 data with polarized

XAS4,15 data for AlN as due to a surface oxidation effect.

The calculation is performed using an ab initio pseudo-

potential plane wave method. Ultrasoft Vanderbilt pseudopo-

tentials were employed, using the gradient-corrected func-

tional exchange-correlation approximation. To include the

core-hole effect18–21 in our calculation, a pseudopotential

with an atomic configuration 1s12s22p4 was specially con-

structed to represent the nitrogen atom at which the deep

core hole is localized. To minimize the interaction between

the nearest excited centers in the periodic crystal structure,

we have experimented with supercells of different sizes, with

the final results employing a 23232 supercell ~32 atoms! in

the calculation. The wave functions were expanded in plane

waves with an energy cutoff of 380 eV and a 43434

equivalent Monkhorst–Pack k-point mesh was used. Nitro-

gen K-edge spectra corresponding to 1s to pxy or pz transi-

tions were simulated by the LDOS with pxy or pz symmetry

projected on the excited nitrogen atom, with the choice of

projection-sphere radius19 similar to the radial extension of

N 1s wave function. Tests indicate that the choice of the

cutoff radius is not a sensitive factor in the calculation when

it is small.

From our results with and without the core-hole correc-

tion, it is found that the core-hole influence on the nitrogen

K-edge spectra is not significant, especially for the energy

region 15 eV above the threshold. This means that a standard

ground-state calculation may be used to obtain an approxi-

mate nitrogen K-edge spectra,2,4 particularly with regard to

the number of peaks in the spectra. However, the inclusion of

the core-hole effect is essential in all three compounds to

predict the precise energy and relative intensities of the ex-

perimental spectra precisely. The theoretical spectra includ-

ing core-hole effects are shown in Fig. 1. The energy scale isa!Electronic mail: yuanjun@tsinghua.edu.cn
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relative to the Fermi level. The calculated spectra have been

convolved with a Lorentz function for lifetime broadening

and the experimental energy resolution with a fixed width of

1.0 eV, an easily achievable energy resolution for modern

EELS attachment in a ~scanning! transmission electron mi-

croscope. This means that our calculated spectra may have

overstated the fine structure at the energy region far above

the absorption threshold, an effect that can be easily ac-

counted for by additional spectral broadening there. In Fig.

1, all the spectra corresponding to the pxy final states have

been shifted upward by a constant value for easy visualiza-

tion. The main features were labeled as A, B, C, etc. for the

pxy-symmetry projected spectra, and a, b, g, for the

pz-symmetry projected spectra.

The three nitrogen K-edges have similar general enve-

lopes, as expected for the similar bonding environments of

the excited nitrogen atom, ~i.e., bonding to group-III cations

in the wurtzite structures!, but they can still be used as fin-

gerprints because significant differences still exist in the fine

structure symmetry-resolved spectra, particularly among the

pz-projected spectra. For example, the first three intense fea-

tures ~a, b, and g! form fine structures that change from

being ‘‘hollow-like’’ in AlN and ‘‘down-hillside-like’’ in

GaN, to being ‘‘mountain-like’’ in InN. In comparison, sys-

tematic changes in the fine structure composed of A, B, and

C in the pxy-projected spectra is also visible, but at high

energy resolution. For example, compared with the most

prominent peak B, the relative intensities of the peak C de-

crease systematically from AlN and GaN to InN. At high

energy, a common feature of the spectra of the three com-

pounds is the significant difference in the peak energy be-

tween the pxy- and pz-projected spectra, reflecting the aniso-

tropic atomic structure.

Experimentally, anisotropic spectra can be probed by ei-

ther x-ray- or electron-induced core-level excitation. When

the electric field ~E! of the absorbed light in XAS or the

momentum transfer vector ~q! in EELS is perpendicular to

the c axis of the crystals (E'c or q'c), the transition from

N 1s level to the pxy-symmetry projected states is probed. If

the electric field of the absorbed light or the momentum

transfer is parallel to the c axis (Eic or qic), spectra corre-

sponding to pz-symmetry-projected final states can be ac-

quired. In transmission EELS, all atoms along the electron-

beam path contribute equally to the resulting spectra, making

the surface effect almost negligible. The crystal structure of

the thin foil used for EELS study can also be confirmed by

independent electron diffraction analysis, so that the EELS

data should be more representative of the bulk materials. The

anisotropy in EELS arises because the direction of the mo-

mentum transfer vector is controlled by scattering angle as

well as the direction of the incident electron beam.13,14,22

Pure symmetry projected spectra are obtained by either

adopting special scattering and collection condition23 or by

data processing.13,14 Our theoretical spectra agree well with

both the reconstructed q'c and qic EELS spectra of AlN17

and GaN.9 An example of such comparison for AlN can be

found in Fig. 2. It is interesting to note that a sufficiently

FIG. 1. The theoretical nitrogen K-edges of wurtzite crystals of AlN, GaN,

and InN; the spectra with pxy ~a! and pz ~b! final states are plotted

separately.

FIG. 2. The comparison of our simulated spectra for nitrogen K-edge in AlN

with spectra measured using XAS from Ref. 15 and EELS from Ref. 17.

The panel ~a! shows the spectra corresponding to pxy

final states and panel ~b! for the p z final states. EELS data of a partial

oxidized AlN foil from Ref. 10 has also been included in the panel ~b! for

comparison.
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large supercell is essential to obtain this agreement. When

we use the smaller 23231 supercell size for GaN as Ref. 9,

the result is different, indicating that mutual interaction be-

tween nearest excited centers is still not sufficiently sup-

pressed.

With x-ray excitation, the direction of the electric field is

transverse to the beam direction, so that anisotropic measure-

ments can be performed if x-ray absorption or reflectivity

experiments can be carried out for both normal- and

glancing-angle incidence. Lawniczak-Jablonska et al. have

carried out such a systematic measurement of nitrogen

K-edge spectra for AlN, GaN, and InN.4,15 Figure 2 shows

the comparison of our theoretical spectra in AlN with the

XAS data. While the agreement in the E'c spectra is good,

a glaring difference is observed in the Eic spectra. Since our

data are in good agreement with the EELS spectra and a

comparable calculation using a FPLAPW method,17 we be-

lieved that the XAS data in glancing angle (Eic), being

more surface sensitive, may be sampling a microstructure

different from that probed by XAS done at normal incidence

(E'c) where the x ray can penetrate deep into the material.

As shown also in Fig. 2, a sharp feature at the onset of the

nitrogen K-edge can also be detected in partially oxidized

AlN using EELS.10 A reasonable explanation for the discrep-

ancy between the Eic XAS spectrum and our calculated

spectra is the surface oxidation of the AlN crystal used.

Angular resolved x-ray absorption measurement has

been used to find the abundance of the wurtzite structure

over cubic structure of GaN, as well as finding the relative

orientation of w-GaN thin film on the surface.11,12 The ex-

ample just presented illustrates the importance of character-

izing the surface quality of thin films and the importance of

having reliable reference spectra in this regard. This also

applies to EELS measurement near defects in the crystals.

One advantage of the nitride semiconductors is the abil-

ity for them to form alloy compound semiconductors so that

the physical properties can be turned continuously. Our sys-

tematic calculation of anisotropic spectra for the three impor-

tant nitrides provides the theoretical basis for extending the

anisotropic measurement to alloy materials. In such materi-

als, one wishes to separate the chemical alloying effect from

the anisotropic effect. This can be achieved easily by work-

ing in terms of the rotationally averaged and the correspond-

ing dichroic spectra,24 respectively ~see Fig. 3!. The rotation-

ally averaged spectra can be acquired at the magic-angle

condition13 for both XAS and EELS. The average spectra

can also be easily compared with other polymorphs of nitride

without considering the effect of specimen orientation, and

for studying doping induced effect, for example. On the

other hand, the fine structure in the dichroic spectra may be

more sensitive to the strain effect in the materials.

In summary, we have provided reliable spectra of the

nitrogen K-edges in wurtzite AlN, GaN, and InN, including

the core-hole effects. Our calculation is in good agreement

with the reported anisotropic EELS measurement of AlN and

GaN. Using our calculation as a fingerprint, the possible oxi-

dation influence to the reported Eic XAS spectra in AlN is

identified.
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