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An extended density matrix model applied to silicon-based terahertz quantum

cascade lasers

T. V. Dinh, A. Valavanis,∗ L. J. M. Lever, Z. Ikonić, and R. W. Kelsall
Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering,

University of Leeds, Leeds LS2 9JT, United Kingdom

Silicon-based terahertz quantum cascade lasers (QCLs) offer potential advantages over existing
III–V devices. Although coherent electron transport effects are known to be important in QCLs,
they have never been considered in Si-based device designs. We describe a density matrix transport
model that is designed to be more general than those in previous studies and to require less a priori

knowlege of electronic bandstructure, allowing its use in semi-automated design procedures. The
basis of the model includes all states involved in interperiod transport, and our steady-state solution
extends beyond the rotating-wave approximation by including DC and counter-propagating terms.
We simulate the potential performance of bound-to-continuum Ge/SiGe QCLs and find that devices
with 4–5-nm-thick barriers give the highest simulated optical gain. We also examine the effects of
interdiffusion between Ge and SiGe layers; we show that if it is taken into account in the design,
interdiffusion lengths of up to 1.5 nm do not significantly affect the simulated device performance.

PACS numbers: 73.63.-b, 78.67.Pt, 05.60.Gg, 42.55.Px

I. INTRODUCTION

Terahertz quantum cascade lasers (THz QCLs) are
compact, coherent radiation sources in which electrons
are transported through a periodic semiconductor het-
erostructure, with a radiative transition in each period.1

Silicon-based THz QCLs may offer significant advan-
tages over the existing III–V devices including the ab-
sence of Reststrahlen absorption, which may allow emis-
sion at frequencies above the current limit of 4.9THz
in GaAs/AlGaAs QCLs.2 III–V devices require cryo-
genic cooling (currently to < 200K3) but the high ther-
mal conductivity of Si and the absence of polar LO-
phonon interactions could potentially overcome this lim-
itation. Additionally, there is the prospect of leveraging
the mature Si process technology, to create affordable
integrated electrically-driven semiconductor THz lasers.
Although mid-infrared4 and THz5 electroluminescence
from p-type SiGe/Si quantum cascade structures has
been achieved, lasing has not yet been demonstrated.
In recent years, attention has switched to n-type de-
vices owing to the simpler electron dispersion. We re-
cently showed theoretically6 that the low effective mass
and large usable conduction band offsets of the L-valleys
in Ge/GeSi heterostructures7,8 could allow significantly
higher gain, operating temperature and emission fre-
quency range than equivalent Si/SiGe devices.9–11

Several theoretical studies of Si-based QCLs
exist,6–8,10–13 but none have accounted for coherent
transport effects (i.e., quantum tunneling and inter-
actions with optical fields). Although semiclassical
scattering-transport models can give good agreement
with experimental results,1,14 they neglect tunneling
across barriers, and can predict unrealistically large
spikes in current density and gain when electrons scatter
between spatially-extended subbands.15 By contrast,
simplified density matrix (DM) models15–21 account

for tunneling, in addition to scattering, and include
the effect of the optical field on the electron dynamics.
Additionally, DM models are much faster and less com-
putationally demanding than full quantum mechanical
simulations based on Green’s functions.22–27 To our best
knowledge, all existing DM models of QCLs consider
coherence between a reduced set of basis states including
a single “injector” state (adjacent to a thick tunneling
barrier) and a number of states in the next period of the
QCL. This requires the manual selection of the injector
state prior to simulating the device, and omits tunneling
through the injection barrier from other states. This
approach is not well-suited to semi-automated design
procedures,6,28 and can be problematic in bound–to–
continuum (BTC) designs, in which multiple states
may contribute to the tunneling current. Furthermore,
these simplified models neglect coherences between the
injector state and other states in the same period. In
this work, we present a generalized DM model that
reduces the requirement for a priori knowledge of the
electronic bandstructure by including all states involved
in interperiod transport, and by including contributions
from both the optical field and the external DC bias in
all density terms in our steady-state solution.
Although the thickness of the injection barrier is of

great importance in III–V QCls,29 it has never been in-
vestigated in Ge/GeSi devices. We therefore use our
DM model in conjunction with a semi-automated de-
sign algorithm28 to investigate the influence of injec-
tion barrier thickness upon the simulated device perfor-
mance. Ge/GeSi interfaces also exhibit significantly more
elemental interdiffusion than the GaAs/AlGaAs epitaxy
used in existing QCLs. We use our DM model to as-
sess the effect of interdiffusion on the simulated popula-
tion inversion and gain and we compensate for the gain-
reduction through design optimization.
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II. THEORETICAL MODEL

A. Bandstructure calculation

The optically-active region of a QCL consists of a pe-
riodic semiconductor heterostructure. In the DM model,
the “injection barrier” that separates periods of the struc-
ture is assumed to be sufficiently thick that interperiod
transport is limited to quantum tunneling only. QCL pe-
riods may be further subdivided into a number of mod-
ules that are separated by thick tunneling barriers.
We used a model-solid approximation to determine the

conduction band profiles for the QCL structures in our
simulations30 with the bandstructure parameters listed
in Ref. 6. A self-consistent one-dimensional Poisson–
Schrödinger solver was then used to locate the quasi-
bound states within each module of the device, giving
a total of N subbands within each period. Localized
wavefunctions ψi(z) with energies Ei were obtained, ac-
cording to a ‘tight-binding’ scheme, by embedding each
module of the structure between a pair of thick barriers,
such that the amplitude of the evanescent waves decays
to zero before reaching the edge of the simulation do-
main. Here, the subscript i ∈ [1 . . . N ] denotes the index
of each state in the period, in ascending order of energy.
Intervalley mixing has previously been shown to yield
negligibly small energy splitting for intersubband tran-
sitions in Si-based heterostructures longer than a few
nanometers,31,32 and we therefore omit the effect from
our model.
As the QCL is a periodic heterostructure in an electric

field, the states localized in other periods of the device
are obtained by simple translations of these solutions in
energy and space. The pth downstream period of the cas-

cade therefore has states with energy E
(p)
i = Ei − eFLp,

where F is the applied electric field, e is the unit charge,
and L is the length of a period. The corresponding wave-

functions are given by ψ
(p)
i (z) = ψi(z − Lp). The wave-

function for an electron in the system is expressed in this
basis as

Ψ(z) =

N
∑

i=1

P
∑

p=0

c
(p)
i ψ

(p)
i (z), (1)

where c
(p)
i is the weighting of each basis state and P is

the number of periods contained in the model.15

B. Density matrix formulation

Density matrix calculations rely on the selection of
suitable basis states for coherent transport through the
QCL. Conventional approaches use N basis states to
model transport across a single injection barrier. A sin-
gle “injector” subband is selected from the period up-
stream of the barrier. The remaining N − 1 states are
then selected from the period after the barrier, and the

coherences between these states and the injector describe
interperiod tunneling transport. Some approaches sim-
plify the calculation further by selecting only a subset of
the states from the period after the barrier. The man-
ual selection of an “injector” subband requires a priori

knowledge of the electronic bandstructure, and is there-
fore incompatible with semi-automated design optimiza-
tion techniques. Even with a priori knowledge, the selec-
tion of an injector state may not be obvious, particularly
when the QCL is biased well away from subband align-
ment; indeed, multiple channels for interperiod transport
may exist. Also, this limited set of basis states does not
include the injector subband in the second period. Al-
though the effect on relaxation rates is included implicitly
in the simulation, the calculation still does not account
for any coherent interactions with this subband. Its role
in intraperiod tunneling transport and its contribution
to resonant optical transitions are therefore omitted.
Here we describe a different DM model that uses all

the subbands localized in three adjacent periods of the
QCL as its basis. This method allows coherences to be
calculated between all pairs of states in the central pe-
riod, and allows interperiod tunneling (both in and out
of the central period) to be determined without the need
to select an injector subband manually. The resulting
3N × 3N density matrix may be expressed in block form
as

ρ =





ρCC ρCU ρCD

ρUC ρUU ρUD

ρDC ρDU ρDD



 , (2)

where the subscripts U , C and D denote the upstream,
center and downstream periods of the structure respec-
tively. Each of these N × N blocks consists of density
terms for pairs of states in the periods denoted by the
block subscripts, for example,

ρCC =







ρ1,1 . . . ρ1,N
...

. . .
...

ρN,1 . . . ρN,N






. (3)

The density terms are unknown values to be solved,
which represent the ensemble average of the weightings
for the basis states ρi,j = c∗i cj .

The Hamiltonian for the three-period system is written
in block form as

H =





HCC ΩCU ΩCD

ΩUC HUU ΩUD

ΩDC ΩDU HDD



 . (4)

Here, the off-diagonal blocks contain the Rabi frequency
terms for coupling between states in different periods of
the QCL, which were calculated according to the scheme
in Ref. 33. The diagonal blocks such as HCC denote the
Hamiltonian matrix for a single period of the structure.
The elements of these single-period Hamiltonians are ei-
ther the basis state energies (for diagonal elements), the
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Rabi frequency terms (for pairs of states in different mod-
ules) or the optical-coupling terms Hi,j = zi,jAinc for ra-
diative transitions between states in response to incident
light with the electric field Ainc = A0 exp(iω0t). Here, the
dipole matrix element terms are given by zi,j = 〈ψi|z|ψj〉.
The time evolution of the density matrix is expressed

by the Liouville equation

∂ρ

∂t
= −

i

h̄
[H, ρ]−

(

∂ρ

∂t

)

relax

, (5)

where the last term is the matrix containing all relaxation
and dephasing times.
Although the Liouville equation for our three-period

model contains a total of 9N2 differential equations (com-
pared with N2 for a single-period model), the transla-
tional invariance of the system simplifies the calculation
considerably. Firstly, the density terms may be trans-
lated between blocks of the matrix, such that ρUU =
ρCC = ρDD, ρCD = ρUC, and ρDC = ρCU. Similar
translations may also be applied to the Rabi frequen-
cies, dipole matrix elements, and relaxation times. The
Liouville equation (5) can therefore be reduced to 3N2

independent differential equations, coming from the three
blocks in the upper left corner of Eq. (2) and (4). Sec-
ondly, we apply the nearest-neighbor approximation, so
that there is no coupling or scattering between states
spaced by more than by one period. Therefore, the cou-
pling constants between the first and third periods ΩDU

are set to zero in Eq. (4), and the same applies to the
coherence and relaxation terms. These simplifications
reduce the computational complexity of our model to a
level comparable with the single-period model.
The relaxation matrix can be written symbolically in

the form

τ−1 =





(

1/τCC, 1/τ‖CC

) (

1/τ‖CU

)

−
(

1/τ‖UC

)

− −
− − −



 (6)

where the dashes indicate that the corresponding N ×N
block is irrelevant owing to translational invariance. The
relaxation terms in Eq. (6) determine both the linewidths
of optical transitions and tunneling lifetimes. They con-
tain contributions from the state lifetimes τi,j , as well as
‘pure dephasing’ times τ‖ i,j for intraperiod transitions.15

The off-diagonal blocks in Eq. (6) (denoted τ‖UC, etc)
describe the pure dephasing for interperiod interactions.
In this work, subband relaxation rates and tunneling

dephasing rates were calculated by accounting for all rel-
evant scattering processes:6 acoustic and optical phonon
scattering, intervalley scattering, ionized impurity and
interface roughness scattering. The pure dephasing con-
tributions are not straightforward to calculate, and a
number of different schemes for their estimation have
been proposed.16,20,21 In the case of tunneling transitions,
the prescription from Refs. 20 and 21 was employed. In
case of optical transitions, however, we have simply set
the linewidths to 2meV (as is typical for GaAs THz QCL
structures).1

C. Steady-state solution

The harmonic balance method is a convenient ap-
proach for determining a steady-state solution of the Li-
ouville equation. Here, a simple steady-state functional
form is assumed for each element of the density matrix
depending on the states involved. Under the rotating-
wave approximation (RWA), each element is assumed to
contain only a single frequency harmonic. The diago-
nal elements of the density matrix ρi,i give the state
populations, and are assumed to be constant-valued.
The off-diagonal terms ρi,j describe coherences between
states. In the RWA approach, the steady-state forms
of these terms are selected depending on whether they
are optically-active or not. It is assumed that pairs of
states within the same period with an energy separation
Eij ∼ h̄ω0±Γ will interact strongly with the driving opti-
cal field (including a transition linewidth Γ). The density
matrix terms for optical transitions are assumed to be
proportional to exp(iω0t) for Ei < Ej or exp(−iω0t) for
Ei > Ej . All other off-diagonal elements, (i.e. for pairs of
states with small energy separations, or in different mod-
ules of the structure) are assumed to represent tunneling
transport and are assumed to be constant valued. With
the single dominant harmonic assumed for each ρi,j , the
Liouville equation becomes a system of 3N2 ordinary lin-
ear equations. One of the equations is then replaced by
the particle conservation law, Tr(ρ) = 1, and the system
becomes inhomogeneous, with a unique solution.
Although the RWA is useful for rapidly calculating the

density matrix for a known system, it is incompatible
with semi-automated design tools where the state ener-
gies are not known a priori. The RWA also potentially
omits multi-frequency effects on density matrix terms.
In this work, therefore, we use an enhanced “non-RWA”
solution method, that allows three harmonic terms to be
included in the density matrix elements such that

ρi,j = ρ+i,j exp(iω0t) + ρDC
i,j + ρ−i,j exp(−iω0t), (7)

where ρ±i,j , and ρDC
i,j are unknown amplitudes for each

of the harmonic components. As the Liouville equation
is linear, each harmonic term may be treated indepen-
dently, resulting in a system of up to 9N2 linear equations
(if every term contains all three harmonics), which still
presents relatively low computational complexity. Simi-
larly, in the light-field interaction terms in the Hamilto-
nian both the exp(±iω0t) components are retained.
Previous studies indicate that the counter-propagating

non-RWA terms may measurably affect the gain of lasers
or the intensity-induced shift of resonance frequency in
light-matter interactions, but are not very significant
in near-resonant laser operation.34–36 Indeed, in all the
cases considered in this work, we find that only one of
the three harmonic amplitudes is significant in our simu-
lations, which validates the use of the RWA when a priori

knowledge of the state energies exists.
The calculation can include thermal self-consistency

(energy balance) by allowing the electron temperature Te



4

to be variable and requiring the total energy exchange be-
tween the electron gas and the lattice to equal zero.14 In
this work we did not include thermal balance within the
density matrix equations, and have instead used the elec-
tron temperature (assumed common to all subbands) as
delivered by the rate equations model.6 This is expected
to be a reasonable approximation, since the tunneling
contribution37 is not the major heat generating process
in QCLs.

D. Output parameters

The current is calculated from the density matrix as
j = Tr(ρJ), where

J = e
i

h̄
[H, z] . (8)

The current has both a time-independent (DC) compo-
nent and a harmonic (AC) component that is induced by
the optical field. The latter is used to find the complex
permittivity ǫ̃ of the electron gas of the active medium,
from

jAC = ǫ̃
d

dt
Ainc, (9)

and then the gain from g ≈ ω0 · Imag(ǫ̃)/nrc, where nr is
the refractive index and c is the speed of light in vacuum.
Using very small values of Ainc gives the small signal
gain of the QCL active region (i.e. in the absence of gain
saturation).

III. SIMULATION RESULTS

We have recently reported the use of a semi-automated
design optimization process to show that THz QCLs in
the (001) Ge/GeSi material configuration yield substan-
tially higher simulated gain than equivalent (111) and
(001) Si/SiGe designs.6 This method affords a system-
atic comparison between different device design schemes
and/or materials systems. In this work, we have used
our optimization algorithm, in conjunction with the DM
model described above, to identify viable designs for
bound–to–continuum (BTC) Ge/SiGe QCLs, while ac-
counting for coherent transport effects. Previous DM
models of III–V BTC QCLs have reproduced experimen-
tal results by including only the upper laser level (ULL)
and a subset of miniband states in their basis set, of
which one is designated as the injector.16 However, in
practice multiple subbands may contribute significantly
to interperiod tunneling in BTC QCLs. Our extended
non-RWA DM model avoids the need for a priori selec-
tion of the optically-coupled transition and the injector
subband, allowing us to use the semi-automated design
approach described in Ref. 28. Furthermore, our model
explicitly includes all possible interperiod tunneling path-
ways.
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FIG. 1. Two periods of the bandstructure of the
six-well BTC QCL design which serves as a template
for our investigations. The thicknesses of the lay-
ers are as follows (starting from the injection bar-
rier): 4.3/5.0/1.2/14.3/1.3/12.9/1.6/7.9/1.8/7.1/2.5/7.8
where bold text denotes the Si0.15Ge0.85 barriers and regu-
lar text denotes Ge wells. The underlined layers are doped to
provide a sheet doping density of 8 × 1010 cm−2. The upper
and lower laser level in each period of the structure are shown
as bold, and dashed-bold lines respectively.

Figure 1 shows two periods of the bandstructure of a
4THz six-well BTC QCL design which serves as a tem-
plate for our investigation of device performance. For our
DM simulations, each period of the active-region struc-
ture was modeled as a single module. All the devices
simulated in this work were derived from this template
by systematically adjusting a single element of the struc-
ture (i.e. either the injection barrier thickness or the in-
terdiffusion length). In all cases, a lattice temperature of
4K was used. The electron temperature was fixed at a
value of 100K, which was obtained from a semiclassical
simulation of the design template.
As Si and Ge are not lattice matched, the proposed

QCL structures must be grown on a relaxed buffer or
“virtual substrate”. Such substrates can be achieved ei-
ther by growth of a linearly graded alloy layer, from pure
silicon up to the desired buffer composition,38,39 or by
growth of a Ge seed layer directly on a silicon wafer, fol-
lowed by reverse linear grading from pure Ge down to the
buffer composition.40,41 The relaxed buffer composition
is calculated to achieve “strain symmetrization” through-
out the QCL structure,42 whereby the compressive stress
in the Ge wells is balanced by the tensile stress in the bar-
riers, yielding zero net stress over each period. For all the
cases presented below, the optimum buffer composition
was found to be Ge0.97Si0.03.
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FIG. 2. (a) Simulated current density and (b) gain spectra of optimized BTC QCLs for different injection barrier thicknesses.
An indicative figure for the lasing threshold is included for reference, based on calculations of the waveguide losses in Ref. 43.

A. Injection barrier thickness

The thickness of the injection barrier is known to be
an important parameter in III–V THz QCLs as it can
significantly affect the performance of devices.29 If the
injection barrier is too thin, selectivity of injection into
the upper laser level is poor; if it is too thick, the tunnel-
ing rate through the barrier is small and efficient injection
cannot be achieved. Semiclassical rate-equation models
of charge injection in THz QCLs lack sensitivity to the
injection barrier thickness, and a model that accounts for
coherent effects is therefore required.15 Here, we system-
atically vary the thickness of the injection barrier in the
design template, and use our DM simulation to deter-
mine the gain and current density. We use the genetic
algorithm described in Ref. 28 to maximize the simulated
gain of the device at 4THz by varying the thickness of
each of the other layers in the structure, and the applied
electric field.
In all the cases considered here, the optimized layer

widths (excluding the injection barrier) were found to
be identical (to ångström precision) to those of the tem-
plate. This can be understood by recalling that the de-
coupled wavefunctions in the DM model are found by em-
bedding the active-region module between thick barriers.
Therefore, the layer-width optimization procedure only
directly affects the single-period Hamiltonian, and has a
very much weaker influence on the interperiod coupling
(by slightly adjusting the Rabi frequencies). As such, the
results below can be seen to solely represent the effect of
the injection barrier thickness upon the device perfor-
mance without including any contribution from changes
in the bandstructure within the period.
Figure 2a shows the simulated current density as a

function of applied electric field for optimized devices
with 2, 3, 4, 5, and 6-nm-thick injection barriers. Interpe-
riod scattering between spatially-extended wavefunctions

is avoided in the DM model, and the simulated current
density is therefore a smoothly-varying function of bias
in all cases. The alignment bias for the device is ap-
proximately 4 kV/cm for all five structures, and we see
that the current density at this bias decreases monoton-
ically as the thickness of the injection barrier increases.
The gain spectrum for each structure at the alignment
bias is shown in Fig. 2b. The variation in the magnitude
of the peak gain with injection barrier thickness is not
monotonic, and there is an optimum thickness at around
4–5 nm, at which a gain of around 90 cm−1 is predicted.
The difference in gain spectrum between the device with
2-nm-thick injection barriers and the other structures is
caused principally by the reduction of injection selectiv-
ity into the ULL. It is important to note, however, that
the “injection barrier” in this structure is thinner than
the 2.5-nm-thick barrier at the end of the module, and
the chosen subdivision of modules for tunneling transport
in the DM model is likely to be unrealistic.

B. Interdiffusion compensation

Epitaxial Ge/SiGe heterostructures have been re-
ported to show significant interdiffusion between the pure
and alloy semiconductor layers, with typical characteris-
tic interdiffusion lengths estimated to be of the order of
1–2 nm.44,45 This leads to significant changes in the band-
structure and scattering lifetimes,46,47 and can therefore
degrade the performance of devices. In this section, we
investigate the impact of interdiffusion on the QCL gain
and we attempt to recover the lost performance through
design optimization.
We account for the effects of interdiffusion by apply-

ing a Gaussian annealing model to the alloy composition
profile,48 such that the alloy fraction across the interface
is described by a Gauss error function with the interdif-
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FIG. 3. Bandstructure of the six-well BTC QCLs with interdiffusion lengths of (a) Ld = 1nm and (b) Ld = 2nm.

fusion length Ld as a size parameter. Figure 3 shows the
bandstructure of the QCL design template with 1 and
2 nm interdiffusion included. The interdiffusion causes
the barriers to become reduced in height and the shape
of the quantum wells becomes distorted, with the tops
being widened and the bottoms being narrowed. For in-
terdiffusion lengths of 2 nm, the thinner barriers near the
optically active wells are significantly reduced in height
and the ULL is poorly confined.
Fig. 4a shows the simulated gain spectra for structures

with Ld in the range 0–2 nm at the respective operat-
ing bias for each device. Here, the interdiffusion has
been included without subsequently optimizing the de-
sign. There is no significant drop in the peak gain when
1 nm interdiffusion length is included. However, for larger
interdiffusion lengths the simulated peak gain is reduced
considerably, and there is no simulated gain at all for the
structure with Ld = 2nm.
We applied the design optimization algorithm to each

of the diffuse QCL structures, and the resulting gain spec-
tra are shown in Fig. 4b. It can be seen that the gain
has been fully recovered for structures with interdiffusion
lengths up to 1.5 nm. This highlights the importance
of being able to characterize the interdiffusion length in
these system: so long as this is known, and so long as it
is 1.5 nm or less, our results indicate that it can be taken
into account in the design process.
For interdiffusion lengths of 2 nm or more, the gain

cannot be recovered. There are two reasons for this:
first, the ULL is no longer confined by the thin barriers
in the structure, which leads to a large spatial overlap
with the miniband states, and hence a loss of population
inversion. Second, the interdiffusion introduces Si into
the nominally pure Ge well regions, leading to a large
increase in alloy disorder scattering rates.46 As such, ad-
ditional rapid scattering pathways are introduced to the
system, leading to rapid depopulation of the ULL. By

way of comparison, we have previously shown that the
total scattering rate within a Si/Ge/Si quantum well in-
creases by 50% at an interdiffusion length of 1.21 nm.47

IV. CONCLUSION

We have investigated coherent transport effects in a Si-
based THz QCL through the use of an extended density
matrix model that includes in its basis all subbands that
are involved in interperiod transport. Our use of the
non-rotating wave approximation allows a steady-state
solution to the Liouville equation without a priori knowl-
edge of the bandstructure of the device. In all cases, the
non-RWA solution yielded a single strongly-dominant fre-
quency component in each density term, indicating that
it would be in good agreement with an equivalent RWA
model. Although we have used our generalised non-RWA
model to analyze coherent effects in Si-based QCLs, it is
equally applicable to III–V QCL structures.
We have coupled our model with a semi-automated

QCL design algorithm, and have shown that the optimum
injection barrier thickness for Si-based BTC THz QCL
structures is in the range 4–5 nm, and we predict peak
gain values of ∼ 90 cm−1 at a lattice temperature of 4K.
We have also studied the effect of interdiffusion between
the Ge and GeSi layers, and found that it is possible
to compensate for interdiffusion effects through design
optimization up to a limit of Ld ≈ 1.5 nm.
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FIG. 4. Simulated gain of the QCL for interdiffusion lengths of 1, 1.5 and 2 nm; (a) without optimization and (b) where the
device structure was optimized. In each case, the legend of the plot indicates the interdiffusion length.
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