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ABSTRACT

Background. Public health interventions are increasingly being evaluated for

their cost-effectiveness. Such interventions act ‘upstream’ on the determinants of

ill health and therefore may reduce the incidence of several diseases. In this case

the risks of the separate diseases are likely to be correlated at the individual level,

and considerable comorbidity may be present. An economic evaluation should

take this comorbidity into account, but estimates of the risks and intervention

effects may only be available separately for each disease. This paper proposes a

method for combining marginal disease risks and treatment effects with correlation

information from a separate source in order to estimate comorbid disease risks and

treatment effects.

Method. A case study is presented based on a physical activity cost-effectiveness

model. The correlation between the risk of coronary heart disease, stroke and di-

abetes is estimated from cross sectional data using a Bayesian multivariate probit

model. This information is then combined with disease specific marginal baseline

risks and intervention effects to give comorbid disease state risks. The expected

numbers of QALYs gained through avoiding the comorbid states is estimated from

disease specific utility data under a range of assumptions. Finally, the incremen-

tal benefit of physical activity is calculated under these utility assumptions. The

difference in effectiveness of the intervention due to its impact on reducing or

increasing the disease risk correlations is explored in a sensitivity analysis.

Results. If comorbidity is not taken into account, total benefit is overestimated

compared with all scenarios in which the comorbidity is included in the model.

The overestimation is greatest when physical activity is assumed to reduce disease

state co-occurrence as well as overall disease incidence.
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INTRODUCTION

The motivation for this paper is the problem of estimating the risks of comorbid

disease states when only single disease risk estimates are available from empirical

studies. We initially recognised this difficulty in the context of parametrizing a

cost-effectiveness model for a ‘public health’ physical activity promoting interven-

tion that was expected to have an impact on the risk of several different diseases.

We expect though that the problem of finding comorbid disease state estimates,

and our proposed solution, will be applicable in many different health economic

modeling contexts, not just those classified as public health.

Public health interventions are generally directed ‘upstream’ at the determinants

of ill health, and as such are commonly expected to have an impact on more than

one disease.1 An example of an upstream determinant of ill health is an individ-

ual’s level of physical activity, with a sedentary lifestyle being associated with a

range of diseases, including stroke, diabetes and coronary heart disease (CHD). If

we wish to evaluate the cost-effectiveness of a physical activity promoting inter-

vention, we will therefore need to take account of the impact of the intervention

on the costs and benefits associated with more than one disease.

The UK National Institute of Health and Clinical Excellence (NICE) has eval-

uated the cost-effectiveness of physical activity promoting interventions as part

of its Public Health Guidance programme.2 In the economic model published in

support of the physical activity guidance,3 four diseases were considered: CHD,

stroke, diabetes and colon cancer, and a choice was made to evaluate the incre-

mental costs and benefits of physical activity promoting interventions separately

for each disease. The total incremental cost and total incremental benefit of the

intervention were then assumed to be the sums, respectively, of the four disease

specific incremental costs and benefits. This approach of summing incremental

costs and consequences calculated separately for a number of diseases is common

to a number of other NICE Public Health guidance economic evaluations,4–6 and

is attractive because evidence required to inform parameter values in the model

is often disease specific. There may be very little data available that relate to the
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effectiveness of the intervention in reducing the risk of the comorbid disease states

(e.g. CHD and diabetes), or on the costs and consequences of those states.

If we assume that the risks and treatment effects for the single disease states in the

above models are marginal risks and treatment effects, then summing the expected

population costs and consequences that relate to the impact of the intervention

on these marginal risks is equivalent to assuming that, where comorbidity exists,

the costs and consequences associated with the separate diseases are additive at

the individual level. To give an example, this means that the cost saved when

an individual person avoids both coronary heart disease (CHD) and a stroke is

assumed to be the same as the sum of the costs saved when one person avoids

CHD and another avoids a stroke. Likewise, the benefit gained by that individual

is assumed to be equal to the sum of the benefits gained when one person avoids

CHD, and another avoids a stroke.

To see why this additive assumption is unlikely to hold for benefits, consider a

simple example in which benefits are measured in life-years gained. Assume an

intervention has the effect of preventing two diseases, A and B. The average age

of death is 60 years for a person with disease A, and 65 years for a person with

disease B. Without disease, the average age of death is 75 years. The number of

life-years gained is 15 for a person avoiding A, and 10 for a person avoiding B. It

is difficult to justify why a person avoiding both A and B would gain 25 years of

life.

Secondly, consider an example in which an intervention has an effect on quality

of life, but not its length, through its effect on two diseases A and B. Health state

utility valuations are used as the measure of quality of life. Let’s imagine that

disease A is associated with a utility weight of 0.7 and disease B with a utility

weight of 0.6, while the state of absence of A and B is associated with a utility

weight of 0.9. Calculating the population expected benefit under the additive

assumption would be equivalent to assuming that a person who avoids both A

and B for one year gains (0.9 − 0.7) + (0.9 − 0.6) = 0.5 Quality Adjusted Life

Years (QALYs).

There is no inherent justification for these additive assumptions for length and
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quality of life. In the first case a better assumption may be that the number of

life-years gained when a comorbid state is avoided is the same as the number of

life-years gained when avoiding the component disease that has the earliest age of

death. In the second case there are again more compelling models for comorbid

health state utility weights, both for theoretical reasons,7 and based on empirical

data.8 A common assumption is that the utility weight for a joint health state

is the product of the utility weights for the individual component states. In the

same way, costs accruing due to the prevention of multiple diseases are unlikely

to be simply additive, and we may envisage a range of more plausible models.

If we do decide to base our analysis on a non-additive assumption regarding the

comorbid costs and consequences, we will need to quantify the risks of these co-

morbid disease states under both the intervention and the baseline comparator,

and as stated above it is this requirement that provides the motivation for our

paper. In order to estimate comorbid disease state risks we need to know some-

thing about the degree of co-occurrence (correlation) between the diseases at an

individual level, something that is not obtainable from the disease specific studies

that are usually used to inform baseline disease risks and treatment effects.

Given that we may not be able to find direct estimates for the comorbid dis-

ease state risks in the intervention and comparator groups, our paper proposes

a method for combining estimates of the marginal disease specific baseline risk

and treatment effects with information relating to the correlation between disease

risks derived from an external source. To illustrate our method we have created a

simplified version of the NICE physical activity model as a case study that runs

throughout the paper.

CASE STUDY

Our case study is loosely based on the economic model published as part of the

NICE physical activity guidance.3 For simplicity of illustration we restrict our-

selves to consider only the incremental benefits (in QALYs) of physical activity

(denoted the ‘intervention’) over a sedentary lifestyle (‘baseline’). We also restrict

6



ourselves to considering the effect of physical activity on three diseases: CHD,

stroke and diabetes.

The ‘marginal’ economic model

In this section we describe our simplified version of the NICE guidance economic

model and the evidence used to inform the parameter values. We call this the

‘marginal’ model since it is parametrized in terms of the marginal disease risks

and incremental benefits for the three diseases.

We are interested in the incremental health consequences (in QALYs) of the in-

tervention compared with baseline. The model assumes four disease states: well,

CHD, stroke and diabetes. Each state is associated with a population mean util-

ity in QALYs, shown in Table 1. Utilities were derived from data reported in the

NICE modeling document.3

Table 1. Utility values in QALYs for marginal disease states

Disease state Expected QALYs (95% CrI) Distribution

Well (u0) 23.10 (21.02, 25.18) Normal

CHD (u1) 16.11 (14.56, 17.66) Normal

Stroke (u2) 10.84 (10.05, 11.63) Normal

Diabetes (u3) 20.98 (18.93, 23.02) Normal

The (baseline) incident risks of CHD, stroke and diabetes in a sedentary popula-

tion, indexed j = 1, . . . , 3, are denoted bj, and the treatment effects (as relative

risks) are denoted RRj (see Table 2). Ideally these estimates would be derived

from studies conducted in populations that are similar to the population of inter-

est. Given bj and RRj it is then possible to derive estimates for the risks after the

intervention, tj = bj × RRj, and the absolute risk differences, tj − bj (see Table

3).
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Table 2. Baseline risks and treatment effects

Disease Baseline risk (95% CrI) Distribution Study

CHD (b1) 0.172 (0.139, 0.209) Normal Wannamethee21

Stroke (b2) 0.053 (0.046, 0.060) Normal Wolf22

Diabetes (b3) 0.094 (0.085, 0.104) Normal Kriska23

Disease Treatment effect (95% CrI) Distribution Study

CHD (RR1) 0.67 (0.52, 0.86) Lognormal Salonen24

Stroke (RR2) 0.72 (0.37, 1.42) Lognormal Herman25

Diabetes (RR3) 0.71 (0.56, 0.91) Lognormal Manson26

Table 3. Risk after intervention and risk difference

Disease Risk after intervention (95% CrI)

CHD (t1) 0.116 (0.082, 0.158)

Stroke (t2) 0.040 (0.019, 0.076)

Diabetes (t3) 0.067 (0.051, 0.086)

Disease Absolute risk difference (95% CrI)

CHD (t1 − b1) -0.057 (-0.088, -0.023)

Stroke (t2 − b2) -0.012 (-0.034, 0.022)

Diabetes (t3 − b3) -0.027 (-0.042, -0.009)

The marginal model assumes the overall incremental benefit in QALYs, denoted

∆E, is

∆E =
3∑

j=1

(tj − bj)(uj − u0), (1)

where uj is the population mean expected number of QALYs experienced by

someone with disease j. Those who are well have an expected number of QALYs

of u0 and uj−u0 is therefore the expected number of QALYs ‘lost’ by an individual

who has disease j.

Evaluating this model with the parameter values in Tables 1 to 3 leads to an
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estimated incremental benefit of 0.602 QALYs. This can be interpreted as an

additional 0.602 years of perfect health, or an additional n× 0.602 years of health

with a utility weight of n−1. Propagating parameter uncertainty through the

model using standard Monte Carlo based probabilistic sensitivity analysis with

10,000 samples leads to a 95% credible interval of 0.114 to 1.005 QALYs. For

the purposes of the uncertainty analysis we assumed normal distributions for the

baseline risks, bj, and benefits in QALYs, uj. For relative risks, RRj, we assumed

lognormal distributions since these are ratio measures bounded at zero.

Problems with the marginal model

The three disease states CHD, stroke and diabetes are clearly not mutually exclu-

sive since it is possible for an individual to have more than one of these diseases;

however, there are no parameters in the model that relate to the risks or utilities

of the comorbid states. By evaluating overall incremental benefit via Equation 1

we are implicitly making the assumption that the benefit of avoiding a comorbid

state (for example, the state of CHD and diabetes) is the sum of the benefits of

avoiding each of the component disease states. If we wish to avoid making this

additive assumption we need to estimate the risks and utilities for the complete

set of mutually exclusive joint disease states, rather than just the marginal risks

and single disease specific utilities.

Given three diseases there are 23 = 8 mutually exclusive joint disease states,

including the state of good health. In our example these states are: well, CHD

alone, stroke alone, diabetes alone, CHD and stroke, CHD and diabetes, stroke

and diabetes, and all three diseases. We refer to this set of eight mutually exclusive

disease states as the joint disease states and the parameters that relate to these

states are denoted by a superscript ‘∗’. We refer to the four disease states within

this set that comprise more than one disease as the comorbid states.

If we are able to estimate parameters for the joint states, our new model for

incremental benefit will be

∆E∗ =
7∑

k=0

(t∗k − b∗k)u∗k, (2)
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where k indexes the eight mutually exclusive joint disease states (well, CHD alone,

stroke alone, diabetes alone, CHD and stroke, CHD and diabetes, stroke and

diabetes, all three diseases), b∗k is the baseline risk of disease state k, t∗k is the

intervention risk of disease k, and u∗k is the expected number of QALYs for an

individual in disease state k. The disease free state is indexed k = 0.

Equation 2 can be written in the same form as Equation 1 by recognizing the

following. Because
∑7

k=0 t
∗
k = 1 and

∑7
k=0 b

∗
k = 1, this means that

∑7
k=0(t

∗
k−b∗k) =

0, and therefore that (t∗0 − b∗0) = −
∑7

k=1(t
∗
k − b∗k). As a result we can write

∆E∗ =
7∑

k=0

(t∗k − b∗k)u∗k,

=
7∑

k=1

(t∗k − b∗k)u∗k + (t∗0 − b∗0)u∗0,

=
7∑

k=1

(t∗k − b∗k)u∗k −
7∑

k=1

(t∗k − b∗k)u∗0,

=
7∑

k=1

(t∗k − b∗k)(u∗k − u∗0).

Estimating the utilities for the joint disease states (u∗k)

The utility, in QALYs, for a disease state is determined by both length and quality

of life. We assume that we do not have empirical evidence that relates to the mean

length of life for the comorbid states, and nor do we have quality of life data for

the comorbid states. We therefore must model these parameters based on the

length and quality of life data for the single diseases.

As regards length of life we assume that the age of death for an individual who

has more than one disease is the earliest of the ages of death for the single diseases

that make up the individual’s comorbid disease state. As regards quality of life

we explore three models, based on theoretical and empirical arguments in the

literature.7,8

Joint state QALY model 1 - multiplicative. The quality of life (as measured by an

EQ5D utility weight) for each comorbid state is the product of the utility weights
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for the single diseases that make up the comorbid state.

Joint state QALY model 2 - minimum. The quality of life weight for each comorbid

state is the minimum of the utility weights for the single diseases that make up

the comorbid state.

Joint state QALY model 3 - additive decrement. The reduction in quality of life

weight between the well state and each comorbid state is the sum of the utility

decrements (i.e. the difference in utility weight between well and disease) for the

individual diseases that make up the comorbid state.

Note that model 3 differs from the marginal model in that total benefits in QALYs

are assumed to be additive under the marginal model, whereas in model 3 the

additive decrement assumption applies only to quality of life weights. Length of

life decrements are not additive under any of the joint state QALY models.

Table 4 shows the estimated utility in QALYs for the eight joint states calculated

under these three models.

Table 4. Utility values in QALYs (95% CrI) for joint disease states under models 1-3

Comorbidity utility assumption

Multiplicative Minimal Additive

Well (u∗
0) 23.04 (21.09, 24.96) 23.01 (21.03, 24.89) 23.06 (21.18, 24.97)

CHD alone (u∗
1) 16.04 (14.52, 17.51) 16.07 (14.42, 17.54) 16.06 (14.49, 17.56)

Stroke alone (u∗
2) 10.82 (10.01, 11.56) 10.81 (10, 11.63) 10.82 (10.02, 11.6)

DM alone (u∗
3) 21.02 (19.13, 22.93) 20.95 (18.95, 22.83) 21.04 (19.06, 23.03)

CHD & stroke (u∗
4) 9.84 (9.07, 10.61) 10.13 (9.36, 10.93) 8.99 (7.98, 9.95)

CHD & DM (u∗
5) 13.63 (12.23, 15.09) 14.23 (12.9, 15.46) 12.14 (10.14, 14.1)

Stroke & DM (u∗
6) 10.07 (9.29, 10.8) 10.30 (9.54, 11.03) 9.40 (8.5, 10.39)

All 3 diseases (u∗
7) 9.40 (8.7, 10.09) 9.87 (9.1, 10.64) 7.58 (6.39, 8.76)

Estimating the joint disease risks, b∗k and t∗k

We assume that we have estimates of the baseline risks and treatment effects

for the three single (marginal) disease states, CHD, stroke and diabetes, that are
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relevant to our population (we call this dataset A). We do not have information on

the baseline risks and treatment effects for the comorbid disease states since the

studies we have found are disease specific. However, we do have information from

elsewhere that relates to the correlation between our three diseases in the form of

individual level data from a cross sectional study (we call this dataset B). If the

correlation information in dataset B can be combined with the estimates of the

marginal baseline risks and treatment effects in dataset A then we can estimate

the eight joint disease risks we require.

The presence or absence of the three diseases in dataset B represents correlated

binary data. However, describing correlation between binary variables is not

straightforward. The Pearson correlation coefficient will depend on the popu-

lation proportions of the three diseases, and instead of varying between −1 and

+1 as it does for continuous data, will lie on a narrowed interval that is not sym-

metric about 0, potentially making interpretation of the measure difficult. Ideally,

we would like a measure of correlation that is independent of the marginal popu-

lation proportions of the three diseases, and that lies between −1 and +1 for ease

of interpretation.

One solution to this problem is to link the correlated binary outcomes to a latent

variable with a multivariate normal distribution, therefore allowing the correla-

tion structure in the data to be expressed through the covariance matrix of the

multivariate normal distribution. If the covariance matrix is expressed in corre-

lation form, then we have a measure that fulfils both our criteria above. Linking

a binary outcome to an underlying multivariate normal latent variable is an ex-

ample of the use of a multivariate probit model, discussed in detail by Chib and

Greenberg (1998),9 and by Albert and Chib (1993).10

To illustrate the multivariate probit model we first assume that we have data, yij,

on i = 1, . . . , n individuals, relating to the presence or absence of j = 1, . . . , 3

diseases. The binary data yij are linked to the latent variable, denoted zij, via

yij = I(zij > 0), where I(·) is the indicator function, taking value 1 if zij > 0,

and 0 otherwise. The latent variable vector for each individual i is denoted zi =

(zi1, zi2, zi3), and these are assumed to have a tri-variate normal distribution, i.e.
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that they are realizations of a random variable, Zi, with Zi ∼ N3(µ,Σ). Here,

µ = (µ1, µ2, µ3) describes, on the latent continuous scale (i.e. −∞ to +∞), the

marginal disease risks in the cross-sectional study population, and the covariance

matrix Σ models the dependency between the binary disease states. The latent

variable Zi could be envisaged as quantifying an underlying degree of propensity

for each disease on a continuous scale. If the propensity for disease j exceeds some

threshold, then that disease occurs.

Estimating Σ for our case study

We have cross sectional data on 18,553 individuals that relate to the presence or

absence of CHD, stroke and diabetes. These data come from the Health Survey for

England (HSE) 2003.11 The HSE is a large, annually conducted survey of a rep-

resentative sample of the population of England that aims to provide information

on the health status of the population.

We took a Bayesian approach and estimated the correlation between the risks of

CHD, stroke and diabetes from the HSE data using Chib and Greenberg’s mul-

tivariate probit model (see Appendix A). Appendix B shows annotated BUGS

code that we ran in OpenBUGS 3.0.8.12 We placed the following weak priors

on the mean and correlation parameters: µ ∼ N3(0, 106I3) and Σ ∼ IW (I3, 3),

where I3 is the three dimensional identity matrix and IW is the inverse Wishart

distribution, parametrized in terms of an inverse scale matrix and a number of

degrees of freedom.13 We ran three Markov chains, each with a different set of ini-

tial parameter values. The Brooks-Gelman-Rubin diagnostic suggested adequate

convergence after a burn in of 50,000 samples.14,15

The samples from the posterior distribution of the parameters of the correlation

matrix, Σ, were highly autocorrelated. The presence of positive autocorrelation

in an MCMC chain increases the number of samples required to achieve some

pre-specified level of accuracy in the estimates of the mean and variance of the

posterior distribution.16 This is because each successive iteration in an autocor-

related chain provides a smaller amount of independent information than each
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iteration in an uncorrelated chain.

Thinning the chain is sometimes employed to reduce autocorrelation and is ap-

propriate if the size of the sample that can be processed is fixed at some level,

usually due to limited computer memory storage. Given a chain of length N , and

a thinned sample set of length n from that chain (i.e. thinning the chain keeping

every kth sample where k = N
n

) it is better to base inference on the thinned sample

set of size n, than on n consecutive samples from the un-thinned chain. However,

inferences based on a thinned sample set of size n will always be less accurate

than inferences based on the full un-thinned chain of length N .17

We generated a total of 250,000 samples from the three MCMC chains after burn-

in and estimated means and variances for the parameters of the correlation matrix,

Σ, using the whole sample set. We then selected every 25th sample (i.e. 10,000

samples in total) for use within the economic model, given that propagating all

250,000 samples through the economic model in a probabilistic sensitivity analysis

(described below) would have taken a prohibitively long time. Thinning the chain

in this way, rather than simply selecting the first 10,000 samples, reduced the

autocorrelation in the sample set used within the economic model and therefore

increased the accuracy of the probabilistic sensitivity analysis.

The marginal risks calculated from the HSE dataset were 46 per 1000 for CHD,

20 per 1000 for stroke and 33 per 1000 for diabetes, and the correlations between

the disease risks on the latent scale were 0.509 (95% CrI 0.459 to 0.558) for CHD

and stroke, 0.441 (95% CrI 0.391 to 0.490) for CHD and diabetes, and 0.400 (95%

CrI 0.338 to 0.460) for stroke and diabetes.

Combining Σ with marginal risks to calculate joint disease state risks

Once we have estimated Σ we must then combine this correlation information

with the marginal disease risks bj and tj to give the baseline and treated risks

b∗k and t∗k for the k = 0, . . . , 7 joint states. There is no closed form analytical

solution to this problem, but the simulation based solution described below is

straightforward.
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The marginal risks bj and tj are first transformed onto the latent scale via the

inverse normal cumulative distribution function, Φ−1(·),

µbj = Φ−1(bj),

µtj = Φ−1(tj).

To obtain the joint disease risks for baseline we draw a large number (i = 1, . . . ,m)

of samples, zi = (zi1, zi2, zi3), from the tri-variate N3(µb,Σ) distribution, where

µb = (µb1 , µb2 , µb3). These samples are transformed onto the binary scale via

the indicator function yij = I(zij > 0) giving a correlated binary dataset with

marginal disease risks bj, and a correlation structure that reflects the individual

level disease dependence that we require. The joint risks b∗k are obtained from

the yij via the expressions in Table 5. The eight joint absolute risks for the

intervention group t∗k are calculated in the same manner. This is done using the

same correlation matrix, Σ, as for the baseline risks, or using a different correlation

matrix if there is evidence to support a different dependence structure after the

intervention.

Table 5. Expressions for calculating joint disease risks

Disease state Expression for b∗k

Well b∗0 = 1
n

∑n
i=1[(1− yi1)(1− yi2)(1− yi3)]

CHD alone b∗1 = 1
n

∑n
i=1[yi1(1− yi2)(1− yi3)]

Stroke alone b∗2 = 1
n

∑n
i=1[(1− yi1)yi2(1− yi3)]

DM alone b∗3 = 1
n

∑n
i=1[(1− yi1)(1− yi2)yi3]

CHD and stroke b∗4 = 1
n

∑n
i=1[yi1yi2(1− yi3)]

CHD and DM b∗5 = 1
n

∑n
i=1[yi1(1− yi2)yi3]

Stroke and DM b∗6 = 1
n

∑n
i=1[(1− yi1)yi2yi3]

All 3 diseases b∗7 = 1
n

∑n
i=1[yi1yi2yi3]

Table 6 shows the estimated absolute risk for each joint disease state at baseline

(no physical activity) and with physical activity (expressed as numbers of cases per

1000 population) under two assumptions: firstly that disease risks are independent

(i.e. that Σ = I3), and secondly that the correlation is the same as that in the

HSE population.
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Table 6. Estimated numbers of cases (per 1000 pop) by joint disease outcome

Comorbidity utility assumption

At baseline After intervention

Disease state Independent Correlated Difference Independent Correlated Difference

Well 710.8 755.2 44.4 792.0 826.2 34.2

CHD alone 147.8 114.1 -33.7 103.6 77.4 -26.2

Stroke alone 39.4 19.4 -20.1 33.0 16.7 -16.3

DM alone 73.5 48.5 -25.0 56.9 37.7 -19.1

CHD and stroke 8.2 17.7 9.5 4.3 12.6 8.3

CHD and DM 15.3 29.6 14.3 7.4 18.6 11.1

Stroke and DM 4.1 4.8 0.7 2.4 3.6 1.2

All 3 diseases 0.8 10.7 9.8 0.3 7.2 6.9

The risk of being in either a comorbid state, or in the no disease state, is greater un-

der the correlated risks assumption than under the independence assumption, re-

flecting the positive correlations in risks between all three marginal disease states.

Calculating incremental benefit under a range of scenarios

We explored a range of scenarios in which we combined different assumptions

about disease risk correlation structure with different models for the comorbid

disease states utilities.

In the first three scenarios we considered disease risks to be independent, both

at baseline and after the intervention. In the second set of three scenarios we

considered both baseline and treated risks to be correlated, with the degree of

correlation estimated from the HSE data. Because there may be good reasons for

assuming different correlation structures in the baseline disease risks and treated

risks we wanted to explore two further scenarios. Baseline risks were assumed to

have the same correlation structure as that estimated from the HSE data, but

treated risks were assumed firstly, to have a higher degree of correlation (by a

factor of 10%), and secondly, to have a lesser degree of correlation (by a factor of

10%).
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For each of the four sets of scenarios we assumed the three models described above

for comorbid disease state utilities: multiplicative, minimal and additive. In each

of the resulting 12 scenarios we calculated the incremental benefit via Equation

2.

Probabilistic sensitivity analysis

In order to conduct a probabilistic sensitivity analysis, uncertainty in the esti-

mates for the baseline risk and treatment effect parameters, as well as for the

correlation matrix, Σ, must be propagated through the model. Because the joint

risk parameters b∗k and t∗k are calculated via simulation, two levels of simulation

are required to determine the uncertainty in the model output. See Halpern et al

for a discussion of such nested models.18 Samples are drawn from the posterior

distributions of the parameters uj, bj, RRj and Σ in an outer loop, and for each

run of the outer loop, the joint risk parameters b∗k and t∗k are estimated through a

large number of runs of an inner, nested, loop. For the purposes of our case study

we drew 10,000 samples from the outer loop parameters, and based each estimate

of b∗k and t∗k on 2,000 inner loop samples.

Results

If the benefits of the intervention are calculated separately for each disease and

then summed (the marginal approach as taken in the NICE models identified in

the introduction,2,4–6) then the overall incremental benefit calculated via Equation

1 is estimated to be 0.602 (95% CrI 0.114 to 1.005). This marginal approach

overestimates the benefit of the intervention compared with that predicted in all

our twelve scenarios (Table 7). The overestimation is largest when the marginal

approach is compared with the scenario in which the minimal model was used to

estimate utilities of the comorbid states, the baseline risks were correlated, and the

correlation in the risks was reduced after the intervention. The overestimation is

least in the case where the additive decrement assumption was used for comorbid

state utilities, and the disease risks were considered to be independent.
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Table 7. Incremental benefits in QALYs (SE)

Comorbidity utility assumption

Additive

decrement

Minimal Multiplicative

Baseline

risks

Treated

risks

Independent Independent 0.590 (0.220) 0.568 (0.218) 0.573 (0.217)

HSE HSE 0.565 (0.229) 0.519 (0.216) 0.533 (0.220)

HSE HSE+10% 0.573 (0.228) 0.533 (0.215) 0.546 (0.219)

HSE HSE−10% 0.558 (0.229) 0.506 (0.216) 0.522 (0.221)

HSE. Correlation structure estimated from the Health Survey for England data.

In general, the overestimation of the marginal approach will be worst when there

is a high degree of positive correlation between disease risks at baseline which

then weakens after the intervention. To see why, consider the following. A large

positive correlation between diseases at baseline implies that many individuals

who are ill will have more than one disease. If, in the intervention group, the

correlation in disease risk is smaller than in the baseline group, then this implies

that the intervention is protective against the comorbid states, and that many

instances of a comorbid disease state would be avoided if the intervention were

to be implemented. Under the marginal model the value of avoiding a comorbid

state is overvalued, primarily due to the unrealistic assumption of additivity of

life years gained, and it is this overvaluation that leads to the overestimation of

incremental benefit.

DISCUSSION

Our analysis suggests that the marginal approach to modeling the impact of an

intervention on multiple diseases is likely to overestimate the overall benefit, unless

benefits really are additive at an individual level. Even if diseases are assumed to

be independent, the marginal approach will still lead to overestimation of benefit

because the marginal approach assumes an additive decrement of length of life as

well as quality of life for comorbid states. Overestimation by the marginal model

18



will only be avoided if the diseases are mutually exclusive.

The differences between the results of the marginal model and the twelve alter-

native scenarios we present in our case study are modest. However, even small

differences in costs and benefits may be important if the overall cost-effectiveness

is close to the decision threshold. This holds even when credible intervals overlap

since it is the mean incremental costs and benefits that are of primary importance

to the decision maker.19

The ideal approach to modeling cost-effectiveness in the presence of multiple dis-

eases would be to explicitly include parameters that relate to all the possible joint

disease states, and obtain values for these parameters directly from the litera-

ture. It would then be entirely correct to sum costs and benefits over these states

since they would be mutually exclusive. The difficulty is finding estimates of the

baseline risks and treatment effects for the joint states in the literature.

Limitations

Our approach has a number of limitations. Fundamental to the latent variable

formulation is the belief that the correlation structure in a multivariate normal

continuous variable can, for our purposes, meaningfully model the correlation

structure in the multivariate binary disease outcome. Multivariate normality im-

plies that the correlation is independent of the mean marginal disease risks on the

latent scale, but this is not true for the binary disease outcomes, where variances

and covariances are functions of the mean.

If the latent variable Zi is considered to have a physical meaning, in that evidence

suggests that each disease state arises when some underlying continuous process

exceeds a threshold, then our approach would seem reasonable on these grounds.

However, if no such physical interpretation for the latent variable exists, then the

variable might be considered instead an artefact, included in order to introduce

into the cost-effectiveness model information about the correlation structure in an

external data set. In this case it may be necessary to consider carefully whether the

marginal risks in the population from which the correlation structure is estimated
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are similar enough to those in the studies used to derive the risk estimates in the

model, given the dependence between the correlation and mean in multivariate

binary data.

In our case study the marginal risks of CHD, stroke and diabetes were estimated

as 172 per 1000, 53 per 1000 and 94 per 1000 at baseline (no physical activity),

and as 115 per 1000, 38 per 1000 and 67 per 1000 in those who took exercise.

Both baseline (no physical activity) and intervention (active) disease risks are

somewhat higher in magnitude than the marginal disease risks estimated from

the HSE data, which were 46 per 1000 for CHD, 20 per 1000 for stroke and 33 per

1000 for diabetes. Ideally we would estimate the baseline disease risk correlation

using data from a sedentary population whose marginal disease risks are as close

as possible to the baseline risk estimates we are using to parametrize the economic

model. Likewise, intervention disease risk correlations would ideally be estimated

using data from an active population with marginal disease risks similar to the

intervention group risks used in the economic model.

Lastly, we have been able to estimate the correlation between the disease states

in our model from primary data. These data may not always be available, and

in this case expert elicitation may be considered as an option for learning about

the correlations between disease states. The correlation parameters in our model

essentially represent the correlations in underlying risks of disease, each expressed

on a continuous scale, and their meaning, at least in a qualitative sense, could be

expected to be fairly well understood intuitively. However, eliciting values for the

correlation parameters is likely to be difficult, particularly for cases where there

are more than two disease states.20

Conclusion

This paper presents one approach to synthesizing information relating to disease

risk correlation with marginal risks and treatment effects in order to estimate

joint risks and treatment effects in the absence of direct empirical data. The

method allows for the determination of the sensitivity of a model output to dif-
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ferent assumptions about the correlation between disease risks, and as such has

the potential to strengthen the robustness of a prioritization decision.
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Appendix A - Chib and Greenberg’s method for estimating

the correlation matrix, Σ

We have binary data yij relating to the presence or absence of j = 1, . . . , J diseases

on i = 1, . . . , I individuals. We introduce a latent variable zij that relates to yij via

yij = I(zij > 0) where I(·) is the indicator function. We assume zi = (zi1, . . . , ziJ)

are realizations of the random variable Zi ∼ NJ(µ,Σ).

The matrix, Σ, which must be in correlation form to ensure identifiability,9 can

be estimated from data using Bayesian methods. Under the multivariate probit

model, proposed by Chib and Greenberg,9 the likelihood for the data is

P (Yi = yi|µ,Σ) =

∫
BiJ

· · ·
∫
Bi1

1√
(2π)J |Σ|

e−
1
2
(Zi−µ)T Σ−1(Zi−µ)dZi,

with

Bij =

 (−∞, 0) if yij = 0,

[0,∞) if yij = 1.

If our prior beliefs concerning µ and Σ are represented by f(µ,Σ) then the

posterior density is

f(µ,Σ|y) ∝ f(µ,Σ)
I∏

i=1

P (Yi = yi|µ,Σ),

where y = (y1, . . . ,yI). This posterior is not only analytically intractable, due

to the form the likelihood takes, but it is also very computationally intensive to

sample from. Including Zi in the posterior as a nuisance parameter allows us to

write

f(µ,Σ,Z|y) ∝ f(µ,Σ)
I∏

i=1

f(Zi|µ,Σ)P (Yi = yi|Zi,µ,Σ)

= f(µ,Σ)
I∏

i=1

[
f(Zi|µ,Σ)

J∏
j=1

{I(Zij ≤ 0)I(yij = 0) + I(Zij > 0)I(yij = 1)}

]
,

where Z = (Z1, . . . ,ZI). This posterior, though still analytically intractable,

is now much easier to sample from.9 The natural choice of distribution for

prior knowledge concerning µ is the multivariate normal, and for Σ the inverse

Wishart.13 See appendix B for annotated BUGS code.12,27
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Appendix B - BUGS code for implementing multivariate

probit model

model{

# i=1,...,n indexes the number of individuals in the dataset

# j=1,...,p indexes the number of diseases

# likelihood

for(i in 1:n){

z[i,1:p]~dmnorm(mean[1:p],prec[1:p,1:p]) # z is MVN latent variable

for(j in 1:p){

likelihood.j[i,j]<-(step(z[i,j])*y[i,j]+(1-step(z[i,j]))*(1-y[i,j]))

}

likelihood[i]<-prod(likelihood.j[i,])

# WinBUGS trick for evaluating non-standard likelihood

ones[i] <- 1

ones[i] ~ dbern(likelihood[i])

}

# priors: MVN prior on the mean vector; Wishart prior on the precision matrix

mean[1:p]~dmnorm(hyper.prior.mean[1:p],hyper.prior.prec[1:p,1:p])

prec[1:p,1:p]~dwish(inv.scale[1:p,1:p],df)

# convert precision matrix to covariance matrix

cov[1:p,1:p]<-inverse(prec[1:p,1:p])

# convert covariance matrix to correlation matrix for identifiability

for(row in 1:p){

for(col in 1:p){

Sigma[row,col]<-cov[row,col]/(sqrt(cov[row,row])*sqrt(cov[col,col]))

}

}

} # end model
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