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S U M M A R Y

We model the inner core by an alloy of iron and 8 per cent sulphur or silicon and the outer core

by the same mix with an additional 8 per cent oxygen. This composition matches the densities

of seismic model, Preliminary Reference Earth Model (PREM). When the liquid core freezes

S and Si remain with the Fe to form the solid and excess O is ejected into the liquid. Properties

of Fe, diffusion constants for S, Si, O and chemical potentials are calculated by first-principles

methods under the assumption that S, O, and Si react with the Fe and themselves, however,

not with each other. This gives the parameters required to calculate the power supply to the

geodynamo as the Earth’s core cools. Compositional convection, driven by light O released at

the inner-core boundary on freezing, accounts for half the entropy balance and 15 per cent of the

heat balance. This means the same magnetic field can be generated with approximately half

the heat throughput needed if the geodynamo were driven by heat alone. Chemical effects are

significant: heat absorbed by disassociation of Fe and O almost nullify the effect of latent heat of

freezing in driving the dynamo. Cooling rates below 69 K Gyr−1 are too low to maintain thermal

convection everywhere; when the cooling rate lies between 35 and 69 K Gyr−1 convection at

the top of the core is maintained compositionally against a stabilizing temperature gradient;

below 35 K Gyr−1 the dynamo fails completely. All cooling rates freeze the inner core in less

than 1.2 Gyr, in agreement with other recent calculations. The presence of radioactive heating

will extend the life of the inner core, however, it requires a high heat flux across the core–

mantle boundary. Heating is dominated by radioactivity when the inner core age is 3.5 Gyr.

We, also, give calculations for larger concentrations of O in the outer core suggested by a

recent estimation of the density jump at the inner-core boundary, which is larger than that of

PREM. Compositional convection is enhanced for the higher density jumps and overall heat

flux is reduced for the same dynamo dissipation, however, not by enough to alter the qualitative

conclusions based on PREM. Our preferred model has the core convecting near the limit of

thermal stability, an inner-core age of 3.5 Gyr and a core heat flux of 9 TW or 20 per cent of

the Earth’s surface heat flux, 80 per cent of which originates from radioactive heating.

Key words: Earth’s core, geodynamo, inner core, thermal history.

1 I N T RO D U C T I O N

The Earth has possessed a magnetic field for most of its history,

which means a geodynamo has operated in the liquid core through-

out that time (McElhinny 1973). The magnetic field is generated by

convection driven by a source of buoyancy. In Gubbins et al. (2003),

hereafter referred to as Paper I, we explored purely thermal convec-

tion. In this paper we consider compositional convection. The model

has been worked on many times before (Braginsky 1963; Gubbins

1977; Loper 1978b; Gubbins et al. 1979; Häge & Müller 1979;

Mollett 1984; Glatzmaier & Roberts 1995; Lister & Buffett 1995;

∗Corresponding author.

Buffett et al. 1996; Labrosse et al. 1997) and reviewed recently by

Buffett (2000). Here, we use a two-component model of the liquid

core based on first-principles calculations of an iron-oxygen alloy

(Alfè et al. 1999a,b, 2002a,b). Previous studies (e.g. Gubbins et al.

1979) used ideal-solution theory to predict changes in density and

chemical potential and laboratory measurements on liquid iron at

standard pressure for diffusion constants. The calculations in this

paper give the first opportunity to account for real chemistry in core

convection.

Seismologically-determined densities for the solid inner and liq-

uid outer cores have long been thought to be lighter than those for

pure iron at the same temperature and pressure. The inner core is too

light for solid iron (Poirier 2000) and the liquid outer core is lighter
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still, the density jump at the inner core boundary (ICB) being too

great to be explained by melting alone. Alfè et al. (2000) matched

the inner-core density with the density of alloys of Fe and 8 per cent

S. However, the chemical potential of the lighter element was found

to be the same in both liquid and solid phases: on freezing the S

or Si in the liquid would, therefore, go into the solid at roughly the

same composition. The S and Si atoms are comparable in size to Fe

atoms and, therefore, fit into the solid lattice relatively easily.

Oxygen does not have the same chemical potential between solid

and liquid phases (Alfè et al. 1999a,b, 2002a,b) because O atoms

are a different size at this temperature and pressure. An Fe-O alloy

on freezing would therefore leave the oxygen in the liquid phase.

8 per cent of O in the liquid outer core explains the density jump

across the ICB. This light element is available to drive convection

in the outer core.

So far, calculations have only been performed on mixtures of two

elements at a time: Fe and S, Fe and Si, Fe and O. In this paper, we

adopt an Fe-S(or Si)-O alloy; we assume there is no chemical reac-

tion between S (or Si) and O, and apply the properties determined

from the Fe-O calculation to the Fe-S(Si)-O mix.

We consider two heat sources: radioactivity and secular cooling

of the whole core (and, by implication, the whole Earth). Radioac-

tive heating was treated in Paper I; cooling introduces some new

chemical effects. Freezing at the ICB releases latent heat, however,

it also releases excess O, which is buoyant. This lighter fluid rises,

driving convection and becoming mixed uniformly throughout the

outer core.

Growth of the solid inner core, and the gradual dilution of the liq-

uid outer core, results in a change in the Earth’s gravitational energy,

which is the ultimate source of power for compositional convection.

The kinetic energy of motion is eventually dissipated by the main

frictional force in the core, magnetic resistance. Gravitational en-

ergy is, therefore, ultimately turned into heat via the magnetic field,

the heat itself being available to drive a little more convection and,

perhaps, help a little more with generating the magnetic field by

dynamo action.

All the gravitational energy released by compositional convection

becomes magnetic energy, making it a highly efficient way to power

the geodynamo, whereas most of the heat driving thermal convection

is convected away without generating any magnetic field. This is why

compositional convection is more efficient than thermal convection

at generating magnetic field.

Chemical effects arise in a two-component system. The heat of

solution is similar to latent heat, being released at the ICB on disso-

ciation and absorbed as the O recombines in the outer core. Unlike

latent heat, it can be of either sign, depending on whether the reaction

is endothermic or exothermic.

We assume that convection is sufficiently vigorous to mix the

constituents and the entropy throughout the core. This is likely to

be an excellent approximation outside thin boundary layers because

conduction of heat and solute (O) is very much slower than the

time it takes core fluid to move around the core. Molecular diffu-

sion acts against this mixing process. In the absence of convection it

would produce a state of constant chemical potential, just as diffu-

sion of heat would produce a state of constant temperature. Molecu-

lar diffusion produces an entropy gain and reduces the efficiency of

convection.

2 T H E O RY

The theoretical development follows that of Paper I. The entropy

balance is used first to determine the cooling rate and heat sources

Table 1. Density reductions from pure iron at ICB pressure and temperature

conditions. PREM densities are 12.76 and 12.17 on either side of the ICB.

ρ Per cent ρ �ρ

Solid iron 13.16

8 per cent S/Si 12.76 3.0 0.40

Melting 12.52 1.8 0.24

8 per cent O 12.17 2.8 0.37

required to balance a given dissipative gain, then conservation of

energy gives the total heat flux across the core–mantle boundary

(CMB). This paper focusses on additional entropy and energy con-

tributions arising from compositional convection: heat of solution,

redistribution of solute in a gradient of chemical potential and, most

importantly, gravitational energy loss that, unlike the contribution

from thermal contraction (Paper I), is available to drive the dynamo.

2.1 The core model

We adopt a slightly simplified form of the core model found by Alfè

et al. (2002a,b) to fit the seismological densities of the inner and

outer cores. The solid inner core contains 8 per cent molar volume

of sulphur or silicon and the liquid outer core an additional 8 per cent

oxygen. Densities are shown in Table 1. The density of pure solid

iron at ICB pressure and temperature was found to be 13.16 Mgm−3.

This value is reduced by mixing with S or Si to the Preliminary

Reference Earth Model (PREM) value, melting provides a further

1.8 per cent reduction, and oxygen reduces the density by 2.8 per

cent to meet the PREM value.

The outer-core mixture contains a heavy component, the Fe/S/Si

mix that comprises the inner core, and a light element, O. Oxygen

is assumed to react with the heavy component, however, not with

its individual elements, which do not react with each other. This is

undoubtedly an oversimplification, however, it is an essential first

step towards a more complex core chemistry.

The thermodynamic properties of a two-component mixture re-

quire three state variables rather than the usual two for a single

component: we shall use pressure P, temperature T and concentra-

tion or mass fraction c, the mass of the minor constituent (solute)

per unit mass of alloy. Chemical quantities are often given in terms

of the mole fraction c̄, the number of atoms or molecules of solute

divided by the total number of atoms. They are related through the

molecular weights

c̄ =
Ā

AL

c, (1)

where Ā and AL are the mean molecular weights of the mixture and

solute, respectively.

The chemical potential µ is conjugate to the concentration: their

product has dimensions of energy per unit mass. The exact differ-

ential of the internal energy becomes

de = T ds +
P

ρ2
dρ + µ dc, (2)

µ obeys a set of Maxwell relations, the relevant two being derived

from the exact differential for the Gibbs free energy:
(

∂µ

∂T

)

P,c

= −

(

∂s

∂c

)

P,T

, (3)

(

∂µ

∂ P

)

T,c

= −
1

ρ2

(

∂ρ

∂c

)

P,T

=
αc

ρ
, (4)

C© 2004 RAS, GJI, 157, 1407–1414



Gross thermodynamics of two-component core convection 1409

where we have introduced the compositional expansion coefficient

αc = −
1

ρ

(

∂ρ

∂c

)

P,T

. (5)

We assume, as in Paper I, a well-mixed basic state in which the

pressure is close to hydrostatic:

d P

dr
= −ρg. (6)

In this case, composition as well as entropy are well mixed: c is

uniform and T is adiabatic outside thin boundary layers. The mixing

is accomplished by vigorous core convection, which overturns in a

time much shorter than that taken by heat or solute to diffuse. The

convection, therefore, prevents the outer core from reaching a state

of chemical equilibrium in which µ is constant: µ depends on radius

because of the vertical variation of P and T .

2.2 Diffusion and the constitutive relations

The mass of solute passing per unit area per second is described by

the solute flux vector i. Conservation of mass of solute gives

ρ
∂c

∂t
+ ρv · ∇c + ∇ · i = 0, (7)

which applies in addition to the full conservation of mass eq. (2) of

Paper I (hereafter equations from Paper I will be referred to in the

form eq. I2).

Solute is released on freezing at the ICB and redistributed uni-

formly throughout the outer core by convection, which leads to a

gradual dilution of the outer-core liquid. The rate of release of light

material into the outer core is related to the rate of growth of the

inner core,

Dc

Dt
= Cc

dri

dt
, (8)

where

Cc =
4πr 2

i ρ(ri)c

Moc

, (9)

where M oc is the mass of the outer core. Ultimately, the cooling rate

at the core surface through (eq. I39) is

dri

dt
= Cr

dTc

dt
, (10)

where

Cr =
Ti

τTc

, (11)

where τ is the difference in melting and adiabatic temperature gra-

dients at the ICB:

τ = ρ(ri)g(ri)[dTm/d P − (∂T/∂ P)S,c]. (12)

In the inner core c does not change.

In Paper I we used Fourier’s law of heat conduction, however,

in a two-component system the heat flow also depends on compo-

sition. Both q and i, the heat and solute flux vectors, depend on

gradients of all three state variables P, T , c. The Onsager reciprocal

relations (Landau & Lifshitz 1959) take account of thermodynamic

interrelationships between the coefficients:

q − µi = −k∇T +
βT

αD

i, (13)

i = −αD∇µ − β∇T, (14)

where α D and β are material constants and k is the usual thermal

conductivity. Eq. (14) has the alternative form, a generalization of

Fick’s law, given by:

i = −ρD

(

∇c +
KT

T
∇T +

K P

P
∇ P

)

, (15)

where D is the molecular diffusivity and KT , KP are dimension-

less thermodiffusion and baro-diffusion coefficients (note KT is not

the bulk modulus). KT is usually neglected: it would be very diffi-

cult to calculate from first principles and is taken to be zero from

now on.

Expressing µ in terms of gradients of P, T , c, substituting into

eq. (14), and comparing terms with eq. (15), gives relationships

between the various coefficients:

αD =
ρD

(∂µ/∂c)P,T

, (16)

K P = P
(∂µ/∂ P)T,c

(∂µ/∂c)P,T

= P
αcαD

ρ2 D
. (17)

These equations, together with the Maxwell eq. (4), give the param-

eters required for the constitutive relations.

2.3 Energy equation

Paper I gave the energy equation for a pure iron core (eq. I8). Oxy-

gen, the second component, enters the energy equation through the

gravitational energy, the internal energy (eq. 2), and the heat-flux

vector (eq. 13). The most important contribution is the gravitational

energy change arising when solute is removed from the ICB and re-

distributed throughout the outer core. Material has to be physically

moved by the convection, which results in friction. This energy is

available to drive convection and the dynamo. In Paper I, we showed

that gravitational energy change associated with pressure changes,

contraction and the volume change accompanying freezing are not

available to drive convection, except for a small amount of pressure

heating. The change in gravitational energy can be estimated from

eq. (I11) using only the density change caused by separation of light

material:

Qg = −

∫

ψ

(

∂ρ

∂t

)

P,T

dV =

∫

ρψαc

Dc

Dt
dV . (18)

The heat flux q depends on i according to eq. (13), however, it

yields a surface integral that remains unchanged provided solute

does not cross the boundary (i · d S = 0):

Q =

∮

q · d S

=

∮ [

−k∇T +

(

µ +
βT

αD

)

i

]

· d S

=

∮

−k∇T · d S. (19)

The internal energy depends on the chemical potential and com-

position as well as temperature and pressure. Eq. (2) gives

∫

ρ
De

Dt
dV =

∫

ρT
Ds

Dt
dV +

∫

P

ρ
dV +

∫

ρµ
Dc

Dt
dV . (20)

Two additional terms arise that were not present in the single-

component core studied in paper I: the last integral on the right
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hand side of eq. (20) and the dependence of s on concentration c.

These combine to give

Q H =

∫

ρµ
Dc

Dt
dV +

∫

ρT

(

∂S

∂c

)

P,T

Dc

Dt
dV

=

∫

ρ

[

µ − T

(

∂µ

∂T

)

P,c

]

Dc

Dt
dV, (21)

where the Maxwell relation (eq. 3) has been used to transform the

entropy derivative. The quantity in brackets is the heat of reaction,

RH :

RH = µ − T

(

∂µ

∂T

)

P,c

. (22)

This term represents heat absorbed or released by chemical reaction

of Fe and O; the reaction is exothermic and heat is absorbed in the

dissociation at the ICB and released throughout the liquid core as

the concentration of O increases. Note that the definition of the heat

of reaction given by Gubbins et al. (1979) is incorrect and as a result

their chemical change in internal energy should really be part of the

heat of reaction.

Adding new terms to the global energy eq. (I72) gives

Q = Q R + QS + QL + Q P + Qg + Q H (23)

(QPL has been absorbed into the latent heat). The heat flux out

through the CMB is the sum of energy sources within the core,

which now includes the gravitational energy of rearrangement of

oxygen in the outer core and change in internal energy from the

gradual dilution of core liquid.

2.4 Entropy equation

The entropy equation at a point (cf. eq. I24) now includes heat gen-

erated by diffusion of light material Landau & Lifshitz (1959)

ρ
Ds

Dt
= −

∇ · q

T
+

ρh

T
+

�

T
+

µ∇ · i

T
. (24)

Integrating over the core gives the same thermal terms as Paper I

plus two additional terms arising from the last term on the right

hand side, the dependence of q on i in eq. (13) and the dependence

of s on chemical composition. These are the dissipation entropy

associated with molecular diffusion and the entropy of the heat of

reaction. Q also contains the gravitational energy of rearrangement.

The divergence theorem may be used to show that

∫

[

−
∇ · q

T
+

µ∇ · i

T

]

dV = −
Q

Tc

+

∫

k

(

∇T

T

)2

dV

+

∫

i2

αD T
dV . (25)

The second term on the right hand side is the entropy of thermal

diffusion, defined as Ek in eq. (I70); the last term is the entropy of

molecular conduction, which we define as E α:

Eα =

∫

i2

αD T
dV . (26)

The heat of reaction gives the entropy

EH = −

∫

ρRH

T

Dc

Dt
dV . (27)

The gross entropy balance of Paper I (cf. eq. I73), after omitting

pressure effects, becomes

Ek + E� + Eα = ER + ES + EL + EP + EH +
Qg

Tc

. (28)

Compositional convection enters the calculation primarily through

Qg, the gravitational energy release. Its efficiency in driving the

dynamo is reflected in eq. (28): it is multiplied by 1/T c rather than

the small difference 1/T c − 1/T as is the case with other heat

terms.

3 C O R E C H E M I S T RY

3.1 First-principles calculations

The properties of Fe alloyed with O, S and Si have been studied

using first-principles (FP) simulations, the details of which have

already been described in Paper I. The techniques used to calculate

the chemical potentials of various impurities in liquid Fe have also

been reported previously (Alfè et al. 2000, 2002a,b): we summarize

them here.

The chemical potential µ̄X of a component X can be defined as

the change of Helmholtz free energy F when an atom of X is intro-

duced at constant volume and temperature. As the concentration of

the impurity goes to zero the chemical potential has a logarithmic

singularity as a result of the divergent number of different possible

arrangements of the atoms in the system. It is, therefore, convenient

to write it as µ̄X = kBT ln c̄X + µ̃X. The term µ̃X can be calculated

using thermodynamic integration. It is computationally convenient

to work with a fixed number of atoms, so we calculate the free en-

ergy difference �F = F(N Fe − 1, N X + 1) − F(N Fe, N X). This

gives the difference of chemical potentials µ̃X − µ̃Fe, which we

add to our previously computed chemical potential of pure Fe (Alfè

et al. 1999a,b). To compute �F we calculate the integral

∫ 1

0

dλ〈U1 − U0〉λ, (29)

where U 0 is the potential energy of the system with N Fe iron atoms

and N X impurity atoms, and U 1 the potential energy of the system

with one Fe transmuted into X. The thermal average 〈·〉λ is evaluated

as a time average using molecular dynamics for several values of λ

and the integral is calculated numerically. This demands an unusual

kind of simulation: for the atom positions r1 , . . . rN at each instant

of time, we have to perform two independent FP calculations, one

for each chemical composition. As well as U 0 and U 1 for the given

positions, we calculate two sets of FP forces, F0i ≡ −∇ i U 0 and

F1i ≡ −∇ i U 1, and the linear combinations Fλi ≡ (1 − λ) F0i + λF1i

are used to generate the time evolution. In practice, the statistical

accuracy is rather poor if one transmutes only a single Fe atom

into X and it is preferable to transmute several at the same time.

Instead of µ̃X − µ̃Fe for a given mole fraction c̄X, this then yields an

integral of µ̃X − µ̃Fe over a range of c̄X values. The results obtained

by transmuting different numbers of atoms can then be processed

to obtain µ̃X − µ̃Fe as a function of c̄X. For small concentrations,

c̄X ≤ 0.2, we find that the chemical potential can be accurately

represented in the following way:

µ̄X = kBT log c̄X + µ̄0X + λXc̄X. (30)

Properties for pure iron that are used in this paper were taken

from the first-principles calculations of Alfè & Gillan (1998) and

Alfè et al. (2000) (see also Paper 1). They are given in Table 2.

Thermal conductivity is not given by these calculations; we use a

value in common use in the literature.

Properties that depend on the Fe-O alloy were calculated with 64

atoms of Fe and O at different concentrations and two (P, T) condi-

tions: 370 GPa, 7000 K representing the ICB and 135 GPa, 4400 K

C© 2004 RAS, GJI, 157, 1407–1414
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Table 2. Properties of iron used for the calculations in this paper. More

details are given in Paper I. The range of α represents its variation in pressure

as calculated from the Grüneisen parameter. ICB gradient is the difference

between melting and adiabatic gradients at the ICB, which controls the rate

of growth of the inner core.

Units

Thermal expansion α K−1 1.02–1.95 × 10−5

Specific heat Cp J kg−1 K−1 715

Grüneissen parameter γ – 1.5

Latent heat L J kg−1 0.75 × 106

Thermal conductivity k W m−1 K−1 60

ICB temperature T i K 5500

CMB temperature T c K 4123

Melting gradient dT m/d P KG Pa−1 9.0

ICB gradient τ K km−1 0.14

Table 3. Properties of the alloys of Fe with O, S and Si needed to estimate

core energies.

O S Si

αc – – −1.10 −0.64 −0.87

D 10−9 m2 s−1 10 5 5

RH 106 J kg−1 −27.7 – –

λ – ev atom−1 3.25 6.2 3.5

α D 10−12 kg m−3 s 0.70 1.06 1.04

KP – – 0.17 0.34 0.45

ı 10−12 kg m−2 s−1 3.4 3.0 4.0

E α MW/K 0.51 0.26 0.47

for the CMB (Alfè et al. 2002a,b). Separate calculations were per-

formed for S and Si at inner-core conditions only. No calculations

have been performed with more than two components. The compo-

sitional expansion coefficient is estimated from the density gradient

simply by fitting splines to the densities and differentiating. Results

are shown in Table 3. The diffusion coefficient D was calculated

for each species. The heat of reaction is very difficult to estimate

accurately. The value for O is given in Table 3; values for S and Si

are not required because they do not separate on freezing.

The chemical potential is computed from its definition as the

partial derivative of the Gibbs free energy. The chemical potential

per atom is expanded as

µ̄ = µ̄0 + kT log c̄ + λc̄ +O(c̄2). (31)

The values of λ are given in Table 3. The convection equations

need the derivative of the chemical potential with respect to mass

concentration c:

∂µ

∂c
=

∂µ̄

∂ c̄

Ā

AL

EV NA

1000

AL

J kg−1, (32)

where AL is the atomic weight of solute O, S, or Si; EV is the electron

volt; and NA is Avogradro’s number.

The diffusion coefficients α D and KP are estimated from eqs (16)

and (17), and the flux of light material in a hydrostatic pressure

gradient is approximated using only the pressure term in eq. (15):

ı = −
K P

P
ρ2 Dg = −αcαD g. (33)

3.2 Comparison with ideal-solution theory

Ideal-solution theory (see e.g. Nordstrom & Munoz 1986) was used

by Gubbins et al. (1979) to estimate outer-core chemical proper-

ties and densities. It only requires knowledge of the mean atomic

weight; everything else is then determined in terms of fundamental

constants and the densities of solid and liquid at the ICB. Nothing

depends on the chemistry of the constituents of the outer core. The

first-principles calculations give an opportunity, for the first time, to

assess the importance of chemistry in core convection. The chem-

istry is still severely restricted because we have ignored chemical

reactions between the different solutes, however, it is still worth

examining the relevant departures from ideal-solution theory.

An ideal solution suffers no change in volume on mixing. The

approximation should be accurate for small concentrations and the

first-principles calculations confirm this. Results for the densities

at molar concentrations up to 10 per cent agree with ideal-solution

theory to less than 0.2 per cent in the density. An ideal solution of

two liquids with densities given by ρ 1, ρ 2, ρ 1 < ρ 2 has density

given by

ρ =
ρ1ρ2

ρ1(1 − c) + ρ2c
. (34)

The densities ρ 1, ρ 2 may be found from this formula and the

seismologically-determined densities on both sides of the inner-core

boundary and the calculated change in density of iron on freezing.

This gives ρ 1 = 5.56 and ρ 2 = 12.52 Mg m−3. Eq. (34) may then

be used to compute the density and its gradients, including αc.

The chemical potential expressed per mole of solute is

µ̄ = µ̄0 + RT ln c̄ (35)

(Nordstrom & Munoz 1986). The derivative is required to estimate

the diffusion of solute in a pressure gradient:

∂µ̄

∂ c̄
=

kT

c̄
= 5.9. (36)

Departures from ideal-solution theory are, therefore, found by com-

paring λ in Table 3 with 5.9 ev atom−1. The differences are quite

large.

3.3 Changing the density jump at the inner-core boundary

A recent study of normal-mode eigenfrequencies gives a best es-

timate of the inner-core density jump of �ρ = 0.82 ± 0.18 gm

cc−1 (Masters & Gubbins 2003) significantly higher than the PREM

value of 0.59. This density jump determines the relative importance

of compositional and thermal convection in the core and we have,

therefore, studied models with �ρ = 0.82 and 1.00 in addition to

the PREM value, which is very close to 0.82 minus one standard

deviation. The largest value we have taken, 1.00, is probably an up-

per limit because higher density jumps would lead to more body

wave reflections PKiKP than are actually observed.

The composition of the outer core is determined by the observed

density jump minus the part resulting from melting, which we have

taken to be 0.24 gm cc−1. Performing the subtraction leaves 0.35,

0.58 and 0.76 gm cc−1 for that part resulting from additional oxygen

in the outer core. The highest value, therefore, represents more than a

doubling of the importance of compositional convection over that in

the PREM model. A new first-principles study into the implications

of this higher density jump is underway; here we use ideal-solution

theory to incorporate the new density jumps into our calculations.

This is likely to be a very good approximation for present purposes.

The densities were calculated using eq. (34) with ρ 1 = 5.56,

ρ 2 = 12.52. This gives mass concentrations c = 0.0252, 0.0426

and 0.0567 for the three density jumps, respectively. The composi-

tional expansion coefficient αc remains unchanged and we ignore

any small changes in the properties of the outer-core mix associated

with the small changes in composition. Concentration only enters
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the equations through the parameter Cc [defined in eq. (9)], and this

affects only the gravitational energy and heat of reaction. Chang-

ing the density jump with these approximations is, therefore, very

simple.

4 E S T I M AT I N G I N D I V I D UA L T E R M S

All quantities except radioactive heat and entropy are proportional

to the cooling rate at the CMB. Cr in eq. (10) controls the growth

rate of the inner core and Cc in eq. (8) controls the rate of increase

of composition of oxygen throughout the outer core. Cr = −9.56 m

K−1 for all models. Cc depends on c and, therefore, the density jump

at the inner-core boundary: Cc = −3.12, −5.28, −7.22 × 10−9 for

�ρ = 0.59, 0.82, 1.00, respectively.

Each energy integral that depends on the rate of change of con-

centration contains two parts: one over the outer core involving the

gradual dilution of the liquid and a singular contribution at the ICB

from the removal of oxygen in the solid. For example, the heat of

solution is, from eqs (21), (22) and (9), (11)

∫

ρRH (r )
Dc

Dt
dV

=

(∫

oc

RH ρ dV Cc − RH (ri)ρ(ri)4πr 2
i c

)

dri

dt

=

(∫

oc

RH (ri)ρ dV − RH (r )Moc

)

CcCr
dTc

dt
.

(37)

4.1 Gravitational energy

Eq. (18) gives the change in gravitational energy associated with the

separation of the light component. The integral has contributions

from the outer core (Dc/Dt = 0 in the inner core) and the shell of

freezing material at the inner core surface. The latter contribution

is, from the first form of the integral in eq. (18) and the definition

of Cc in eq. (9),

−ψ(ri)4πr 2
i ρ(ri)αcc

dri

dt
= −ψ(ri)αcCc Moc

dri

dt
. (38)

The outer-core integral, using eq. (8), is
∫

ρψ dV αcCc

dri

dt
.

Combining and using eq. (10) for dr i/dt gives

Qg =

[∫

oc

ρψ dV − Mocψ(ri)

]

αcCcCr

dTc

dt
= Q̃g

dTc

dt
, (39)

where ψ is the gravitational potential referred to zero at the CMB: it

was found from PREM by integrating g downwards from the CMB.

The entropy Eg is simply Qg/T c.

4.2 Entropy of heat of solution

RH is assumed to be independent of radius. The total heat of reaction

is then zero for constant RH , however, the entropy is not because of

the vertical variation in temperature. Eq. (27) gives

EH = −RH

∫

ρ

T

Dc

Dt
dV = −RH

[∫

oc

ρ

T
dV −

Moc

Ti

]

CcCr

dTc

dt
.

(40)

There is an efficiency factor entering here: it differs from the one

applying to cooling because heat is absorbed (or possibly released,

depending on the sign of RH ) at the ICB rather than through the

CMB. This explains the presence of the temperature T i here in

place of T c in ES (eq. I36).

4.3 Entropy of molecular diffusion

Entropy gain as a result of diffusion of light material is given by

eq. (26) and the flux ı by eq. (33). Assuming constant αc and α D ,

which should be a reasonable approximation,

Eα = α2
c αD

∫

g2

T
dV . (41)

The integral was performed numerically using the adiabatic temper-

ature of the model CORE and PREM values. Separate calculations

are required for oxygen, sulphur and silicon because all three com-

ponents diffuse in the outer core, even though only oxygen separates

at the ICB. Results are given in the last line of Table 3; the total is

E α = 4.8 MW K−1. This value is more than an order of magni-

tude smaller than Ek : molecular diffusion, therefore, appears to be

negligible.

5 R E S U LT S

Table 4 gives numerical values for all entropies and heats. Quantities

with a tilde must be multiplied by the cooling rate (or by the heat

source h in the case of Q̃ R and Ẽ R) to give actual model values in

W and WK−1. The heat and entropy equations are then

Q = Q̃ Rh + Q̃c

dTc

dt
, (42)

E = Ẽ Rh + Ẽ c

dTc

dt
, (43)

where

Q̃c = Q̃S + Q̃L + Q̃ P + Q̃g, (44)

Ẽ c = Ẽ S + Ẽ L + Ẽ P + Ẽ g + Ẽ H . (45)

Setting E = 109 W K−1 as in Paper I gives a cooling rate of 123

K Gyr−1, total heat flux Q = 15 TW and projected inner core age

345 Myr. This cooling rate has been used to compute the individual

terms in Table 4. The relevant columns show the relative contribu-

tions of each effect to the overall heat and energy budgets. Eg makes

the largest contribution to the entropy, 57 per cent, reflecting its high

efficiency in driving convection and the dynamo. It only contributes

15 per cent of the heat flux.

The results in Table 4 show a rapid cooling rate and very young

inner core for the rather arbitrarily chosen dissipation entropy of

109 W K−1. The young inner core poses very serious problems for

maintaining the Earth’s magnetic field in early times because of

the inefficiency of thermal convection in driving the dynamo, as

discussed in Paper I. We, therefore, consider the following range of

models and a combination of cooling and radioactive heating. The

calculations are a simple application of eqs (42) and (45); the results

are summarized in Table 5 for three values of the density jump: 0.59

(PREM), 0.82 (Masters & Gubbins 2003) and 1.00 (one standard

deviation above the preferred value of Masters & Gubbins 2003).

(i) E = 109 W K−1. As detailed in Table 4.

(ii) Q = Qk . This choice of heat flux means convection continues

to be driven thermally throughout the core. In paper I, which did

not consider compositional convection, this condition required the

top of the core to become subadiabatic. In this case, compositional

convection can continue to drive convection against an unfavourable

temperature gradient: heat is convected downwards at the top of the

core. Heat is still conducted upwards by conduction down the steep

adiabatic gradient and the net heat flux remains outwards into the

mantle.
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Table 4. Numerical values of the Q̃ and Ẽ and corresponding values of Q and E for a total entropy production of 109 W K−1 for the three chosen values of

the inner-core density jump. Of the tilde quantities, only Q̃g, Ẽg and Ẽ H depend on the density jump. The first column denotes the subscript in eqs (42–45).

The last line gives the total heat and entropy budgets for cooling. Pressure effects resulting from compositional rearrangement have been ignored.

Q̃(1025) Q TW Ẽ(1021) E MW K−1

�ρ 0.59 0.82 1.00 0.59 0.82 1.00

s 161 6.3 4.97 4.24 54 211 167 142

L 164 6.4 5.05 4.31 99 388 306 262

P 6 0.2 0.18 0.16 3 13 10 8

g (60,102,135) 2.3 3.13 3.55 (145, 245, 326) 569 758 862

H 0 0 0 0 (−46, −78, −104) −181 −241 −274

c 15.3 13.3 12.3 1000 1000 1000

(iii) E = Ek + E α = 283 MW K−1. Nothing is left for magnetic

dissipation and the dynamo fails. This gives the lower bound for

cooling or radioactive heating.

(iv) A model containing enough radioactive heating to give an

inner-core age of 3.5 Gyr and E = 1000 MW K−1.

(v) As model (iv), however, with Q = Qk , the point where com-

positional convection becomes essential in maintaining the adiabat.

(vi) As model (iv), however, with E = 283 MW K−1, the point

where dynamo action fails.

The results in Table 5 show that, if the core parameters of the

model are correct, it is only possible to sustain a dynamo and an

inner core throughout most of Earth’s history if the core contains

Table 5. Results for the range of models (i)–(vi) described in the text. Units

are MW K−1 (E), K Gyr−1 (dTc/dt), Myr (IC age), pW K−1 g (h), TW (Q’s).

h and QR are alternatives to cooling for models (i)–(iii) and are shown in

brackets, the total heat flux is either QR or Qc. Models (iv)–(vi) have both

heat sources and the total heat Q is their sum.

Model (i) (ii) (iii) (iv) (v) (vi)

�ρ = 0.59

E 1000 562 283 1000 325 283

dT c/dt 123 69 35 12 12 12

IC age 345 614 1220 3500 3500 3500

h (16) – (4) 14 4 3

Qc 15 9 4 2 2 2

QR (31) – (8) 28 7 6

Q 30 9 8

�ρ = 0.82

E 1000 644 283 1000 351 283

dT c/dt 97 63 28 12 12 12

IC age 438 680 1546 3500 3500 3500

h (16) – (4) 14 4 3

Qc 13 9 3 2 2 2

QR (31) – (8) 27 7 5

Q 29 9 7

�ρ = 1.00

E 1000 700 283 1000 373 283

dT c/dt 83 58 24 12 12 12

IC age 512 732 1811 3500 3500 3500

h (16) – (4) 14 4 2

Qc 12 9 2 2 2 2

QR (31) – (8) 27 7 4

Q 29 9 6

a substantial concentration of radioactive isotopes and a large frac-

tion of the Earth’s surface heat flux (20 per cent) originates in the

core.

6 C O N C L U S I O N S

(i) Compositional convection helps drive core convection and

the geodynamo. For PREM densities, about half the entropy comes

from gravitational energy changes caused by expulsion of oxygen

from the ICB and its redistribution throughout the outer core. This

gravitational energy contributes a much smaller proportion of the

heat flux (15 per cent). This alleviates the problem of high heat flow

found for thermal convection in paper I, however, only by a factor

of approximately 2.

(ii) The higher density jumps raise the contribution of compo-

sitional convection. For the highest jump considered, Qg and Eg

are raised by a factor of 2. Compositional convection then provides

two-thirds of the entropy balance rather than one half. This reduces

the heat flux and heat sources somewhat, however, not by enough to

change the conclusions qualitatively.

(iii) Ideal-solution theory gives accurate results for density: it

predicts well the compositional expansion coefficient and, there-

fore, the gravitational energy change. Ideal-solution theory requires

knowing only the density jump at the ICB, which is determined by

seismology, the change in volume on melting and the mean atomic

weight of the outer core. The exact chemical composition of the light

component is, therefore, rather unimportant for calculations of the

density and gravitational energy and will remain so for future cal-

culations unless an element is introduced with drastically different

chemical effects.

(iv) Ideal-solution theory does not predict the chemical potential

or its gradients well. The heat of solution makes a significant con-

tribution to the overall thermal budget and nullifies the latent heat’s

contribution to powering the dynamo for the larger density jump.

(v) Molecular diffusion of light material in the outer core is also

a potentially significant chemical effect: its contribution to the en-

tropy budget may be comparable with that of the magnetic field. All

light constituents (S, Si, O) contribute to this entropy because they

all diffuse, even though S and Si do not separate on freezing. It is

tempting to think of molecular diffusion as analogous to thermal

diffusion: light material diffuses down the pressure gradient and is

not, therefore, available to drive convection in the same way as heat

is lost by conduction down the adiabatic temperature gradient and

does not drive convection. This is not quite right because molecular

diffusion reduces the dynamo efficiency regardless of whether ma-

terial diffuses up or down. It is better to think of the convection as

stirring the core to uniform composition, while diffusion produces

an imbalance that must be continually corrected.
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(vi) For the PREM model, a cooling rate slower than 69 K

Gyr−1 requires convection at the top of the core to be driven

compositionally against a subadiabatic temperature gradient, as

originally envisaged by Loper (1978a). Heat is convected down-

wards by the convection in a refrigerator-like mechanism. Heat

continues to be conducted upwards along the adiabat, which is

maintained by vigorous compositional convection, however, the heat

emerging from the core is less than that conducted down the adia-

bat. A cooling rate slower than 35 K Gyr−1 fails to meet the entropy

requirements. Either the dynamo fails or the temperature gradient

falls below the adiabat and the upper part of the core becomes stably

stratified and ceases to convect. The heat-flux requirements under

these conditions are reduced somewhat provided the latent heat con-

tinues to be provided at the ICB, driving convection at the base of

the outer core. The corresponding cooling rates for higher density

jumps are given in the tables.

(vii) The cooling models predict a young inner core with an age

range 0.3–1.8 Gyr, all younger than the geomagnetic field and, there-

fore, the age of the dynamo, in agreement with other recent calcu-

lations (Labrosse et al. 2001). A young inner core presents quite

serious problems for explaining the presence of a magnetic field in

early times because the geodynamo would have to be driven by ther-

mal convection with no latent heat or compositional effects, which

requires a large cooling rate. A proper thermal history calculation

is needed to address the early evolution of such a model, however, it

will be hard to maintain core temperatures below the lower-mantle

liquidus in the distant past.

(viii) The heat flux across the CMB is a large fraction of the

Earth’s surface heat flux: at least 5 per cent and possibly 50 per cent.

Radioactive heating in the core exacerbates the heat-flux problem,

however, it maintains an old inner core. Lower heat fluxes require

a subadiabatic temperature profile at the top of the core; such a

hidden ocean (Braginsky 1999) seems quite likely in view of these

calculations.

(ix) There is a consensus about core properties relevant to con-

vection and the geodynamo: our results appear to be robust and

will only change substantially if radically different chemistries or

physical properties are proposed for the core. Even changing the

density jump at the inner-core boundary makes little difference to

the qualitative conclusions.

(x) Our favourite model is (v) in Table 5. The core heat flux

is reasonably low, it retains compositional convection throughout

most of Earth history, the cooling rate is low so that early tempera-

tures are not too high and the radioactive heating could perhaps be

supplied by the presence of potassium in the core. This amount of

heat requires approximately 1000 ppm of potassium, a very large

amount. These calculations assume constant cooling rates, which

is unrealistic over the long term. Further refinement needs a proper

thermal history that allows for changing cooling rates determined

by mantle convection. A new study is underway (Nimmo et al.

2004).
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Alfè, D., Price, G.D. & Gillan, M.J., 2000. Constraints on the composition

of the Earth’s core from ab-initio calculations, Nature, 405, 172–175.
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