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Abstract. The Method of Fundamental Solutions (MFS) is an effective technique for solv-
ing linear elliptic partial differential equations, such as the Laplace and Helmholtz equation.
It is a form of indirect boundary integral equation method and a technique that uses bound-
ary collocation or boundary fitting. In this paper the MFS is implemented as a technique to
initially solve the forward (direct) mathematical problem, where the location of an obstacle
within a region of interest is known. In the special issue of the conference proceedings the
MFS procedure will be used to solve the inverse problem using a nonlinear constrained min-
imisation procedure that locates the position of an obstacle within a region of interest based
on the boundary Cauchy data.
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1.1 Introduction: Electrical Impedance Tomography

Electrical Impedance Tomography (EIT) is a procedure to obtain the spatial properties of the
interior of an object from electrostatic measurements taken at its boundary. A typical EIT
technique would involve connecting an array of electrodes to the boundary of an object and
applying small currents to all or some of the electrodes [Henderson and Webster 1978, Barber
and Brown 1984, Borcea 2002]. The resulting electrical potentials can be measured and the
process can be repeated for numerous different configurations.

EIT is a non evasive technique and this can be of particular benefit when it is used for
medical imaging. The process uses no ionising radiation, therefore it is possible to use the
system for continuous monitoring, and it is able to produce thousands of images per second.
There is a large resistively contrast (up to 200:1) between a wide variety of tissue types in the
body [Geddes and Baker 1967, Faes et al. 1999]. It is also the case that normal tissue types
often have significantly different resistance values to that of pathological tissues, such as some
tumors and gliomas, enabling these constituents to be monitored using EIT. However, one of
the current drawbacks is a low spatial resolution [Boone 2006].
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Commonly, a current through a homogeneous object will induce a different electrostatic
potential than the same current through a similar object with an enclosed cavity [Hanke and
Bruhl 2003]. The electrical potential produced across the object containing the enclosed cavity
will depend on the precise location and the electrical properties of the cavity. This implies that
it should be possible to use boundary measurements of the potential to detect and locate such
cavities [Hanke and Bruhl 2003, Holder 2005].

In mathematical terms, the problem of recovering the conductivity information is a nonlinear
inverse problem and is severely ill-posed. It is therefore important to incorporate as much aprori
knowledge about the object as possible. To obtain an image with a good spatial resolution, a
large number of measured potentials between electrodes are required.

From the point of view of developing a mathematical model to generate the image, the known
quantities are the voltages and currents at specific points around the body and the unknowns
are the impedances within the body. As outlined in [Boone 2006], at low frequencies, these
quantities are related by the Laplace equation:

∇ · (σ∇φ) = 0, (1.1)

where σ is the conductivity, φ is the potential and ∇ is the gradient operator.
In this paper we initially describe the numerical method, namely, the method of fundamental

solutions (MFS), for solving direct problems associated to equation (1.1). Following the success-
ful implementation of the direct problem the, inverse EIT problem, which requires detecting a
cavity inside an object from a single pair of Cauchy outer boundary data will be investigated in
the special issue paper.

1.1.1 MFS background and development

The MFS is a member of a class of boundary-type techniques that involve computations being
undertaken with respect to points on the boundary of the region of interest. As such, they do not
involve interior points of the region of interest, which is useful in many real world applications.
The boundary element methods reduce the dimensionality of the problem and can therefore
offer an improved computational efficiency. One of the best known techniques is the Boundary
Integral Equation Method (BIEM) and it has been shown that the MFS can be viewed as a
form of BIEM [Johnston and Fairweather 1984].

The sources, poles, or singularities, that are needed to construct the base functions are lo-
cated outside the solution domain and this makes the solution non-singular inside the domain.
The expansion coefficients can be determined so that the solution satisfies the boundary con-
ditions with the help of direct collocation. There are a number of techniques for selecting the
location of the source points and it has been seen that this selection can have a serious impact
on the accuracy.

1.1.2 Developing a function for the potential, φ

For simplicity, initially the problem considered will be limited to two dimensions. Let φ(P )
indicate the value of the potential function at any point P (x, y) ∈ D = D ∪ ∂D, where D is the
region occupied by the flow and ∂D is its boundary. If σ = constant then φ satisfies Laplace’s
equation

∇2φ(P ) = 0 for P ∈ D. (1.2)

In the MFS, an approximate solution for φ is sought in the form [Bogomolny 1985]:

φN (C,Q;P ) =
1
2

N∑
j=1

Cjln[(ξj − x)2 + (ηj − y)2], (1.3)
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where Qj(ξj , ηj) are the singularities which are assumed to be located outside D. The coefficients
Cj and the locations of the singularities are chosen to make φN satisfy the boundary conditions
as well as possible.

1.1.3 Imposing boundary conditions

In the first instance, Dirichlet boundary conditions will be used, i.e.

φ(P ) = g(P ), P ∈ ∂D, where g is a specified function. (1.4)

If we take Pi = (xi, yi) for i=1,2,...,M in (1.3) then

g(xi, yi) = φN (C,Q;xi, yi) =
1
2

N∑
j=1

Cjln[(ξj − xi)2 + (ηj − yi)2], i=1,2...,M. (1.5)

In this case, M is the number of points taken on the boundary ∂D and N is the number of
singularities taken outside the domain D. In the case when we have two disjointed boundaries,
for example an internal Γ0 and external Γ1, as in the case of an annulus, then we can take M1

points on one boundary and M2 points on the other boundary. The total number of collocating
points will be M = M1 + M2. In the case of an annulus, it is possible to take singularities both
inside the inner circle and outside of the outer circle. In this case, we can take N1 singularities
inside and N2 singularities outside such that N = N1 + N2. It is possible to vary the number of
points N and M taken to see what effect it has on the accuracy of the results.

1.2 Numerical investigation of 2D annulus

In the primary stages of this research it is advantageous to take problems that have an analytical
solution, as these provide a means to test the accuracy of the procedure. For different set ups
(e.g. varying the number of boundary points M taken, the number of singularities N taken and
the distribution of the singularities, etc.), results can be obtained and the effectiveness of the
MFS, in that particular set up, evaluated.

1.2.1 Example 1.1

In this first example we will be using a function for φ as

φ(x, y) = x2 − y2 = r2cos(2θ) (1.6)

which satisfies the Laplace equation (1.2) in a region D of interest taken to be a two-dimensional
annulus of internal radius R0 and external radius R1, centred at the origin. Singularities will be
taken both inside the shape and outside. These will be evenly distributed around circles of radii
Rint (inside) and Rext (outside), respectively. This is illustrated in figure 1.1 where the circular
region is shown containing a circular obstacle.

The points P, distributed around the boundary, are those that we have values of φ (given
analytically in this example) prescribed through the Dirichlet condition (1.4) as

on Γ0 : φ = x2 − y2 = R2
0cos(2θ), R0 = 0.5, (1.7)

on Γ1 : φ = x2 − y2 = R2
1cos(2θ), R1 = 1.
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Figure 1.1: Example 1.1 - Circular region with circular obstacle.

1.2.2 Fixing N singularities and M boundary collocation points

It is anticipated that it will be necessary to take a number of singularities both inside and outside
the annulus.We choose (ξj , ηj) to be uniformly distributed as follows:

(ξj , ηj), j= 1,..., N1 on Γint ={ r = Rint = 0.25},
(ξj , ηj), j= N1 + 1,..., N on Γext ={ r = Rext = 2}.

The following expressions distribute the points evenly around the circles of radii Rint and
Rext, respectively

ξj = Rintcos(θj), ηj = Rintsin(θj), for j= 1,...,N1, (1.8)

where θj = 2πj/N1, and

ξj = Rextcos(θ̃j), ηj = Rextsin(θ̃j), for j= N1 + 1, ..., N, (1.9)

where θj = 2π(j −N1)/(N −N1).

In a similar manner as for distributing the singularities evenly around circles, M points
on the boundary also need to be identified. Since there are two boundaries, the internal and
external, M1 points were taken on the internal boundary and M2 = M −M1 points are taken
on the external boundary.

We collocate the boundary conditions (1.7) at (xi, yi), for i = 1,M1 on Γ0, and (xi, yi) for
i = (M1 + 1),M, on Γ1, namely

xi = R0cos(µi), yi = R0sin(µi), i = 1,M1, (1.10)

where µi = 2πi/M1 and:

xi = R1cos(µ̃i), yi = R1sin(µ̃i), i = M1 + 1,M, (1.11)

where µ̃i = 2π(i−M1)/(M −M1).



1.3 Results of MFS for the annular domain when M=N 5

1.2.3 The MFS procedure development

On developing equation (1.5) it is possible to construct the coefficient vector C from a system
of linear equations as demonstrated in the following:

gi = g(xi, yi) =
1
2

N∑
j=1

Cjln{[(ξj − xi)2 + (ηj − yi)2]
1
2 }, for i = 1, ...,M. (1.12)

Denoting C = (Cj)j=1,N , g = (gi)i=1,M ,

A(i, j) = ln{[(ξj − xi)2 + (ηj − yi)2]
1
2 }, i = 1,M, j = 1, N, (1.13)

the system of linear equations is generated in the form:

AT AC = AT g. (1.14)

Since AT A will always be a square matrix and because AT g will be a column vector of equal
size N, the Gauss elimination method can be used to solve the system of linear equations (1.14).

1.2.4 The normal in the radial direction

The normal derivative of φ on the boundary is a useful quantity to compare with the analytical
solution. Note that for a circular geometry ∂φ

∂n = ∂φ
∂r . To implement this it was necessary to

differentiate with respect to r equation (1.5), to obtain an equation for the radial derivative
at any point (rcosθ, rsinθ) in the domain D = D ∪ ∂D. Converting equation (1.3) to polar
co-ordinates and differentiating with respect to r gives:

∂φN (rcosθ, rsinθ)
∂r

=
N∑

j=1

Cj
(rcosθ − ξj)cosθ + (rsinθ − ηj)sinθ

(rcosθ − ξj)2 + (rsinθ − ηj)2
. (1.15)

1.3 Results of MFS for the annular domain when M=N

Following the development of the program, it was run for N = M = 4, 8, 16, 32, 64, 128, 256,
where we took N1 = N2 = N/2 and M1 = M2 = M/2. In each case, results were obtained
for both the values of φ and the radial derivative across the annular region. These are plotted
at a sufficient density for accurate display of the equipotential lines. At each of the points,
the analytical result has also been shown for comparison. Additionally, at each location, the
absolute error was calculated by subtracting the analytical result from the MFS result and taking
the magnitude. This allowed the error to be plotted in Unimap as a graph of constant errors.
Examination of this graph is the most direct technique to see how accurate the results of the
MFS are. Figure 1.2(a) shows the MFS results for φ when N = M = 8 which can be compared
with the analytical results. There are small errors in the MFS results that can be seen clearly in
figure 1.2(b) which shows the errors between the analytical and MFS results when N = M = 8.
In this case, it can be seen that the largest errors are approximately of the order of 1/60th of
the analytical result.

As the size of N = M increases (more singularities and points on the boundary are taken),
the accuracy also improves. Figure 1.2(c) shows the result for N = M = 32 where the maximum
error is reduced to 1/30,000 of the actual result. This improvement in accuracy is observed to
continue as the size of N = M further increases.
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(a) (b)

(c)

Figure 1.2: (a) MFS results across the annular region when N = M = 8. Errors between the
MFS and the analytical solution for φ across the annular region, (b) when N = M = 8 and (c)
when N = M = 32.

1.3.1 Summary of further results for Example 1.1

A range of investigations were carried out for this example and the results are outlined.

A similar series of results was observed for the radial derivative, namely that the errors also
get smaller with increasing matrix sizes (larger values of N = M).

A further stage of this work has been to investigate the effect of taking more boundary points
than singularities (i.e. taking M > N). The results, which are not shown for brevity, identified
that this caused relatively small improvements in accuracy for corresponding values of N .

Distributing singularities: The effect of distributing internal and external singularities
unevenly was investigated. For the purposes of the experiment, the singularities were still
distributed evenly around the internal and external fictious curves Γint and Γext. The refinement
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being the ratio of the numbers of internal N1 and external N2 singularities taken. This was
varied in each test. For the purposes of this stage of the investigation the total number of
singularities taken was set at N = N1 +N2 = 16. Taking odd numbers of singularities was noted
to significantly reduce the accuracy of the results. To this end, only the results for even numbers
of singularities are considered. Experiments E1 to E9 were run for a range of distributions of
internal and external singularities as described in table 1.1. The results are interesting as they

Experiment E1 E2 E3 E4 E5 E6 E7 E8 E9
Internal-N1 0 2 4 6 8 10 12 14 16
External-N2 16 14 12 10 8 6 4 2 0
Max error 0.11 0.038 0.072 0.1 0.033 0.22 0.033 11 7.7

Percentage error 5.5% 1.9% 3.6% 5.0% 1.7% 11% 1.7% 550% 390%

Table 1.1: Summary of results for experiments E1 to E9

suggest that when using the analytical solution (1.6) to define the boundary conditions (1.7)
for the annular case, internal singularities are not crucial. This is demonstrated through the
observation that, even with no internal singularities, the result is shown to have only a 5.5%
error as opposed to the 1.7% in the optimum case. This is still a relatively accurate result and
could be improved further through using more external singularities. In the case of no external
singularities, the accuracy of the results is not good. When less than four external singularities
are taken (experiments E8-E9), the MFS results break down and massive errors are introduced,
leaving a meaningless result. The most beneficial distribution appears to be equal numbers of
singularities positioned both internally and externally. Similar results were also observed to
occur when similar experiments were undertaken to find values of the radial derivative.

Alternative analytical solutions: Two further analytical examples have been investi-
gated, namely that of φ(P ) = 2xy = r2sin(2θ) and that of φ(P ) = ln(

√
x2 + y2) = ln(r). The

accuracy of the numerical results for both examples were highly comparable to those in Example
1.1 when equal numbers of singularities are taken on internal and external boundaries. Note
that in the later example, which becomes singular at r = 0, the location of singularities inside
the inner circle was found essential.

Alternative geometries: Following the successful implementation of the technique to an
annular domain; the technique was evaluated for other geometries. Investigating a variety of
shaped domains further develops the understanding of the MFS procedure. The two domains
selected are: (a) Example 1.2, a square obstacle within a circular domain and (b) Example 1.3,
two small circular obstacles within a circular domain. The square obstacle is of interest as it
contains corners. These will be potential problem areas for the regularity of the solution. The
second domain chosen investigates a multiply - connected geometry.

In each case the results again showed similar characteristics to those for the annular problem
in Example 1.1. Typical results are illustrated for the case of N = M = 16 for which the
errors between the analytical (1.6) and MFS results are shown in figures 1.3(a) and 1.3(b) for
examples 1.2 and 1.3, respectively. When comparing these results with the results from the
annular domain example (with a similar mesh size), it can be clearly observed that the sizes
of the errors are highly comparable between the three examples. In each case, the maximum
error of 0.033 is distributed around the outer boundary. There are no obvious disruptive errors
caused by the corners of the square in Example 1.2.

Implementing Neumann boundary conditions: A further stage of experimentation was
undertaken where, instead of using the analytical solution to prescribe the Dirichlet boundary
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(a) (b)

Figure 1.3: Errors between the MFS and the analytical results for φ when N = M = 16 across
the region between (a) the square obstacle and the outer circle (Example 1.2), and (b) the two
circular obstacles and the outer circle (example 1.3).

conditions (1.4), the differential values were calculated at the internal boundary to allow Neu-
mann boundary conditions Γ0 to be used. The program was re-run using a Neumann boundary
condition on Γ0 and a Dirichlet boundary condition on Γ1, and the results are highly comparable
with those in Example 1.1, produced when the Dirichlet boundary condition only is used.

Example with no analytical solution: A final two-dimensional example is taken where
no analytical solution is known. The original annular region of Example 1.1 was used for this
investigation. The boundary conditions were fixed such that:

on Γ0 : φ = 0,

on Γ1 : φ = x.

In this example the MFS procedure appears to successfully generate correct solutions. In taking
larger mesh sizes and observing the results, it can be clearly seen that values progressively
become convergent with larger values of N and M . This indicates strongly that the MFS
procedure works successfully in this non analytical case. This example models the physical
situation in which Γ0 is the boundary of a perfectly conducting cavity, i.e. σ = ∞ inside the
inner cavity surrounded by Γ0.

Developing the MFS technique for three-dimensional domains: Following the suc-
cessful operation of the MFS approach in two dimensions, the problem was investigated in
three-dimensions. To solve the Laplace equation (1.2) in a three-dimensional domain D, it is
necessary to adapt the MFS equation (1.3) so that it still satisfies Laplace’s equation in three
dimensions, namely

φN (C,Q;x, y, z) =
N∑

j=1

Cj [(ξj − x)2 + (ηj − y)2 + (ζj − z)2]−
1
2 , P (x, y, z) ∈ D. (1.16)

The first three-dimensional geometry to be considered was that of a spherical cavity enclosed
within a spherical region and the second example was that of a cubic region containing a cube
shaped obstacle (figures 1.4(a) and 1.4(b), respectively). For brevity, the results for these two
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(a) (b)

Figure 1.4: (a) Spherical region of unit radius containing a spherical obstacle of radius 0.5 at
the centre, and (b) Cubic region (−1, 1)3 containing the cube shaped obstacle (−0.5, 0.5)3 at its
centre.

examples are summarised. The MFS has been shown to work successfully for both these exam-
ples, throughout the region for a range of size obstacles located at various positions within the
regions. Figures 1.5(a) and 1.5(b) show the small errors in the results between the analytical
solution φ(x, y, z) = x2 + y2 − 2z2 and the MFS results on planes taken through the spherical
and cubic domains, respectively, at a height z = 0.5. Further reductions in error are observed
as the mesh size is increased.

(a) (b)

Figure 1.5: Errors between the MFS and the analytical solution for φ across a plane at z = 0.5
through (a) spherical region with M = N = 128, and (b) cubic region with M = N = 48.
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1.4 Conclusions

We have successfully demonstrated that the MFS procedure can be used to solve direct problems
to a high level of precision in both two- and three-dimensions. Our numerical experiments
exhibited robust results for a wide range of complex geometries for problems with and without
analytical solutions. Typically, for the two-dimensional MFS technique, to obtain a result that is
99.9% accurate, between 16 and 32 singularities should be taken. In the case of three-dimensional
examples, to obtain a similar accuracy then at least 128-256 singularities are required in the case
of the spherical region and 192-300 are required in the case of the cubic region. Taking mixed
Dirichlet and Neumann boundary conditions has also been shown to be successful when using
the MFS technique. The successful application of the MFS procedure in solving the forward
problem suggests that it is a robust technique to exploit as a means to solve the inverse problem
of identifying the location of an unknown cavity from Cauchy boundary data. The results from
further work on the inverse problem will be covered in the special issue paper.
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