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Abstract 

Micromagnetic and analytical models are used to investigate how in-plane uniaxial 

anisotropy affects transverse and vortex domain walls in nanowires where shape anisotropy 

dominates.  The effect of the uniaxial anisotropy can be interpreted as a modification of the 

effective wire dimensions.  When the anisotropy axis is aligned with the wire axis (θa = 0), 

the wall width is narrower than when no anisotropy is present.  Conversely, the wall width 

increases when the anisotropy axis is perpendicular to the wire axis (θa =π/2).  The 

anisotropy also affects the nanowire dimensions at which transverse walls become 

unstable.  This phase boundary shifts to larger widths or thicknesses when θa = 0, but 

smaller widths or thicknesses when θa = π/2. 

 

  



 2 

1. Introduction 

For many years, Permalloy (Ni81Fe19) has been the material of choice for investigations of 

patterned magnetic elements, as it possesses negligible magneto-crystalline anisotropy and 

magnetostriction.  This means that the shape of the element can be used to control many 

magnetic properties, from the local magnetisation direction [1,2] to domain wall nucleation 

[3-5] pinning [6-10] and propagation characteristics [11-13]. In addition, the shape can also 

govern the type of domain wall that can form, as head-to-head (or tail-to-tail) domain walls 

tend to form in nanowires.  Depending on the wire width and thickness, the head-to-head 

wall may have a ‘transverse’ structure, characterised by a purely in-plane magnetization 

rotation, or form a vortex configuration, characterised by a circulation of magnetisation 

around a central core oriented out-of-plane [14,15]. The different magnetisation 

configurations within transverse and vortex walls lead to differences in propagation and 

pinning behaviour [16] which could affect the reliability of nanowire devices.  

Recent investigations have explored using materials that exhibit magneto-crystalline 

anisotropy [17-19] or stress-induced anisotropy [20-22], in addition to the shape anisotropy. 

Much of this work is driven by interest in multiferroic systems, which exhibit changes in 

anisotropy in response to an electric field. Provided they do not dominate the energy 

landscape [23], such “additional” in-plane anisotropies could be used to reinforce the effect 

of the shape anisotropy in a nanowire, which could stabilize magnetization as dimensions 

approach the superparamagnetic limit. In-plane anisotropy can also allow control over the 

velocity and Walker breakdown fields of domain walls [21]. Recent modelling has shown 

how localized changes in the anisotropy of an artificial multiferroic device, formed from a 

magnetostrictive nanowire coupled to a piezoelectric material, could allow low power 
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positioning of domain walls [22], providing a switchable functionality not possible with 

shape anisotropy alone.   

Here, we describe how micromagnetic and analytical models are used to examine the effect 

of an additional in-plane uniaxial anisotropy on domain wall width and the phase boundary 

between transverse and vortex walls. We discuss the effect in general terms, so the in-plane 

anisotropy could be magnetocrystalline or magnetostrictive in origin. 

2. Finite element modelling 

A finite element micromagnetic model [24,25] was used to solve the Landau-Lifshitz-Gilbert 

equation for smooth-sided wires containing either a vortex or a transverse domain wall.  

The wires studied were 50-300 nm wide and 5-20 nm thick, with a constant aspect ratio 

(length-to-width ratio) of 15 to minimise interactions between the wall and the wire ends. 

Wedge-shaped wire ends, inclined at 45° to the wire long axis (the x-axis, Fig. 1), were used 

to ensure all simulations had a similar end domain structure.  To examine the effect of an in-

plane anisotropy on the domain wall structure, the wire was modelled with magnetic 

properties similar to Permalloy (exchange stiffness constant, A = 10 pJ.m-1; saturation 

magnetisation, Ms = 800 kA.m-1), but with an additional in-plane anisotropy, K, with an easy 

axis directed at an angle θa to the wire long axis (Fig. 1). In order to ensure that the 

dominant anisotropy was due to shape, the maximum value of K was restricted to 10 kJ.m-3 

[21]. As only the static wall structure was needed, the Gilbert damping constant was set to α 

= 1 to allow rapid convergence in calculations.  

Figure 1 shows axial magnetisation profiles (Mx/Ms) calculated by finite element modelling, 

taken along the centre of the wire, of transverse and vortex walls in a 150 nm wide, 10 nm 
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thick wire when K = 0 J.m-3 and K = 10 kJ.m-3 for θa = 0 rad and θa = π/2 rad.  The profiles 

show that while Mx changes approximately linearly across the width of transverse walls 

when K = 0 J.m-3 or θa = 0 rad (Figs. 1a and 1b), deviations from this linearity occur when θa = 

π/2 rad (Fig. 1c).  On the other hand, a highly non-linear variation of Mx is seen across all the 

vortex walls, particularly around the vortex core.  The calculated wall structures show that 

the magnetisation profile changes across the wire width, leading to a difficulty in defining a 

unique domain wall size.  For the micromagnetic model, we define the wall boundaries as 

the points along the centre of the wire where Mx/Ms = ±0.9.  This definition allows 

transverse and vortex walls to be compared without assuming a particular form to the 

magnetisation profile.  Without an in-plane anisotropy, the vortex wall has a width of wVW = 

258 nm, while the transverse wall has a width of wTW = 124 nm.  Under an in-plane 

anisotropy with easy axis parallel to the wire long axis (Fig. 1b), the wall widths decrease to 

wVW = 218 nm and wTW = 101 nm. The reduction is due to the in-plane anisotropy reinforcing 

the shape anisotropy in the wire. Correspondingly, when the in-plane easy axis is 

perpendicular to the wire long axis, the in-plane anisotropy acts against the shape 

anisotropy, increasing the wall width (wVW = 324 nm and wTW = 163 nm) above the width 

that occurs without an in-plane anisotropy. In each case, the vortex wall width is roughly 

twice that of the transverse wall.  

3. 1D analytical modelling 

3.1 Wall width 

The changes in the wall width with anisotropy direction are consistent with the concept that 

the superposition of the in-plane and shape anisotropies acts to change the effective wire 

dimensions [21]. To examine this in more detail, the in-plane anisotropy was included in a 
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one-dimensional (1D) analytical model.  Analytically, the structure of a transverse wall can 

be defined as , where q is the distance from the wall centre and 

ΔTW is the wall width parameter [26]. The micromagnetic model shows that the 

magnetisation in the domain walls varies across two dimensions (Fig. 1).  Nevertheless, the 

1D analytical model agrees with the micromagnetic profile across the narrowest part of the 

transverse wall (the bottom edge of the transverse walls shown in Fig. 1), so it can provide a 

useful platform to analyse changes in the wall structure.  The wall width parameter of a 

transverse wall under an in-plane anisotropy K with easy axis θa to the wire long axis (x-axis) 

is given by 

 

where φ describes the out-of-plane (azimuthal) rotation angle of the wall (φ = π/2 rad for a 

stationary wall), μ0 is the permeability of free space, and Ny and Nz are demagnetisation 

factors in the transverse (y-) and out-of-plane (z-) directions, which can be calculated from 

the ratio of the wire width and thickness [12].  Equation 1 predicts transverse domain wall 

widths (πΔTW) of 52 nm, 46 nm and 62 nm for the cases of K = 0 J.m-3 and K = 10 kJ.m-3 for θa 

= 0 rad and θa = π/2 rad in a wire identical to that shown in fig. 1.  In each case, the 

analytical wall width is approximately 40% of the corresponding micromagnetically 

calculated wall width, due to the different definitions of wall width.  The effect of the wall 

width definition can largely be removed by normalizing the wall widths to the case without 

anisotropy.  The structure of vortex walls is clearly more complicated than transverse walls 

(Fig. 1). However, noting that a vortex wall consists of two halves similar to two opposing 

transverse walls, we approximate the vortex wall width to ΔVW ≈ 2ΔTW. This is similar to the 
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wall width ratio derived elsewhere [15] and is consistent with the values calculated 

micromagnetically from Fig. 1. 

Comparing Eq. 1 with the wall width parameter obtained when K = 0 kJ.m-3, the effect of the 

in-plane anisotropy can be described in terms of “effective” demagnetisation factors,   

and , that include the uniaxial anisotropy, so that  

 

 

For 180° walls, these terms replace the actual demagnetisation factors used in analytical 

models that neglected uniaxial anisotropy.  Thus the effect of the uniaxial anisotropy can be 

intuitively understood in terms of altering the effective width, w’, and thickness, t’, of the 

wire, assuming that the relationship between the effective wire dimensions and 

demagnetisation factors is identical to the case without uniaxial anisotropy [12]: 

 (4) 

 (5) 

To illustrate this, fig. 2a shows the effective dimensions determining ΔTW when the wall is 

stationary (i.e. the w’/t’ that satisfy Eq. 4) for a wire with a physical width-to-thickness ratio 

of w/t = 20 under various anisotropy conditions.  When θa = 0 rad, the effective w/t 

experienced by ΔTW is actually smaller than the physical width-to-thickness ratio.  As the 

anisotropy angle increases, the effective width-to-thickness ratio of the stationary wall 

width also increases, such that for θa > π/4 rad ΔTW is determined by an effective w/t larger 
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than the physical width-to-thickness ratio.  These results are consistent with the 

micromagnetic model (fig. 1), which show that when θa = 0 rad, the wall width is smaller 

than the case with no anisotropy, while when θa = π/2 rad, the wall width is enhanced.  In 

addition to the increase in ΔTW, the Walker breakdown field, , also 

increases with θa (fig. 2b), in qualitatively similar behaviour to that observed in previous 

micromagnetic models below π/3 rad (60°) [21].  That Hw is independent of K when θa = 0 

rad may be indicative of the different dependence of the Walker breakdown field and wall 

width on the wire dimensions [13]. 

Figure 3 shows a comparison between the analytical and micromagnetic wall widths (using 

φ = π/2 rad) when K = 10 kJ.m-3, normalised to the case where K = 0 kJ.m-3.  The analytical 

model predicts the general form of the θa dependence for the vortex wall, except that the 

micromagnetic data have an additional phase shift of around π/12 rad (15°) for clockwise 

walls and -π/12 rad for counter-clockwise walls.  The chirality-dependence of the vortex wall 

width is caused by rotational asymmetry within the vortex wall structure, which is 

reinforced in clockwise walls when θa > 0 rad an in counter-clockwise walls when θa < 0 rad.  

The polarity of the vortex cores, while not explicitly studied here, is not expected to 

influence the effect of the anisotropy on the wall width. In contrast to the chiral effects seen 

in vortex walls, transverse walls with magnetisation parallel to the positive or negative y-

directions behave identically. Transverse walls follow the same trend as clockwise vortex 

walls when θa > 0, but when θa < 0 they follow the same trend as counter-clockwise vortex 

walls.  It is likely that asymmetry in the wall structure, such as that seen in Fig. 1c, may be 

responsible for the observed dependence of the transverse wall width. Despite not 

accounting for the wall asymmetry, the 1D analytical model does reproduce the underlying 
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form of the micromagnetic data, suggesting that it contains most of the terms needed to 

understand the system. Significantly, all walls have similar normalised widths when the in-

plane anisotropy axis lies either parallel (θa = 0 rad) or perpendicular (θa = π/2 rad) to the 

wire.  This is precisely what is expected from the 1D analytical model, suggesting that when 

the in-plane anisotropy axis lies along a symmetry axis of the wire, the effect of the wall 

asymmetry on the wall width is negligible. 

3.2 Wall structure 

In addition to changing the domain wall width, the in-plane anisotropy also alters the 

domain wall energy. As vortex and transverse walls have different magnetisation structures, 

they have different responses to the in-plane anisotropy. We used finite element modelling 

to determine the wire dimensions at which transverse walls have lower energy than vortex 

walls, defining a phase boundary of wall type stability. Points on this boundary are shown in 

Fig. 4 for K = 0 J.m-3, and K = 10 kJ.m-3 with θa = 0 rad and θa = π/2 rad. The K = 0 J.m-3 case 

follows previous phase boundary calculations [14,15]. We neglect the phase boundary 

between symmetric and asymmetric transverse walls [15], although we note that this 

boundary is also affected by the in-plane anisotropy, as indicated by the wall structures 

shown in Figs. 1a and 1b.  Figure 4 shows that when the easy axis of the in-plane anisotropy 

is parallel to the wire long axis (θa = 0 rad), the vortex/transverse phase boundary shifts so 

that for a given thickness, wider wires can support transverse walls.  This is consistent with a 

decrease in effective wire width, as the phase boundary behaves as if the wires are 

narrower than they really are.  On the other hand, when θa = π/2 rad, the phase boundary is 

shifted to narrower widths (the effective wire width increases), allowing wires with small 

cross-sectional dimensions (width 165 nm, thickness 5 nm) to support stable vortex walls. 
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This means that the introduction of a uniaxial in-plane anisotropy, for example via a forming 

field during deposition [27], could change the stable configuration of a domain wall in a 

magnetic nanowire. A switchable uniaxial anisotropy, such as by the piezoelectric actuation 

of a magnetostrictive wire [22], could lead to the selective destabilisation of one type of wall 

structure in favour of the other.  Transformation to a lower energy wall state may require 

thermal activation to overcome the energy barrier between the wall types [28].  While 

beyond the scope of this study, it is also possible that uniaxial anisotropy could directly 

influence the energy barrier between transverse and vortex states, given that the direction 

of anisotropy can determine whether a transverse wall undergoes Walker breakdown via a 

transition to an anti-vortex state or a vortex state [21].  

The shift in the phase boundary can be understood by considering the conditions under 

which there is no energy difference between vortex and transverse walls.  Analytical 

descriptions of the exchange and demagnetisation energy differences, 

 and , were deduced in previous work 

neglecting in-plane anisotropy [14] (rmax and rcore are the outer and core radii of the vortex). 

The in-plane anisotropy energy, , for transverse wall is given by 

 

 

for φ = π/2 rad, where w and t are the wire width and thickness, respectively.  The in-plane 

anisotropy energy, , for vortex walls has a similar form, but with an additional term 

describing the vortex core. As we approximate the wall width parameter of vortex walls to 

2ΔTW, the energy difference between vortex and transverse walls is given by 
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Minimizing the total energy (ΔEex + ΔEms + ΔEani = 0), we can determine the relation between 

the wire width, wb, and thickness, tb, at the vortex/transverse wall phase boundary: 

 

The vortex core radius is on the scale of the exchange length, so we assume rcore ≈ 5 nm.  

Here, we find that rmax/rcore = 8 gives a good fit to the micromagnetic model when K = 0 kJ.m-

3 (Fig. 4). The analytical solutions agree reasonably well with the micromagnetic model 

when θa = π/2 rad with K = 10 kJ.m-3 but tend to overestimate the effect of the in-plane 

anisotropy when θa = 0 rad (fig. 4). Further analysis of Eq. 8 reveals that the anisotropy 

energy due to the vortex core contributes relatively little to the shift in the phase boundary.  

More significant is the relative difference between the widths of the transverse and vortex 

walls.  When θa = π/2 rad, the anisotropy energy decreases with a greater degree of 

magnetisation across the wire width, so the larger width of vortex walls is advantageous and 

the phase boundary is shifted to lower wire widths.  On the other hand, when θa = 0 rad, the 

anisotropy energy is minimised when the axial domain magnetisation is maximised, 

favouring the smaller width of transverse walls and shifting the phase boundary to higher 

wire widths.  However, the 2D structure of the vortex wall means that some magnetisation 

components in the wall will still be aligned with the in-plane anisotropy axis when θa = 0 rad, 

reducing the overall energy of the wall.  This explains why the analytical model 

overestimates the effect of the in-plane anisotropy on the phase boundary when θa = 0 rad. 

The structure of a head-to-head domain wall has a large effect on its dynamic behaviour. 

Field-dependent and spin-polarised current-dependent domain wall mobilities differ for 
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transverse and vortex walls, with transverse walls generally travelling faster [15, 29-31]. The 

type of domain wall also affects strongly interactions with deliberate defects in wire edges, 

which are often used to control domain wall position, and very different de-pinning fields 

can be observed with the two wall types [16]. Reliable device operation will usually require 

domain wall structure to be preserved. A uniaxial anisotropy could also be useful in 

preventing Walker breakdown and the accompanying oscillations in magnetisation 

configuration [11, 21, 32].  

4. Summary 

The structure of transverse and vortex domain walls in nanowires with in-plane anisotropy 

was investigated using micromagnetic and analytical models.  The transverse and vortex 

wall widths depend on the strength of the anisotropy and the angle of the in-plane easy axis 

with respect to the wire easy axis, θa.  In addition, the vortex wall width was dependent on 

the vortex chirality, except when θa = 0 rad and θa = π/2 rad.  At every θa, the largest vortex 

walls were approximately twice as wide as the transverse walls.  Narrower walls occur when 

the in-plane easy axis is aligned with the wire long axis (θa = 0 rad), whereas wider walls 

occur when the in-plane easy axis is perpendicular to the wire axis (θa = π/2 rad).  

Conceptually, this can be understood in terms of the in-plane anisotropy altering the 

effective wire dimensions experienced by the wall width, so that for a given thickness, the 

wire behaves as if it is narrower than it actually is when θa = 0 rad, but wider θa = π/2 rad.  

Analytical models accounting for the change in the effective wire dimensions reproduced a 

similar response of the Walker breakdown field to the anisotropy as is seen in 

micromagnetic models.  This suggests that the effect of uniaxial anisotropy on other 
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dynamic quantities, such as the wall velocity or the de-pinning field from a defect, may also 

be understood in terms of modifying the effective wire dimensions. 

 The change in effective wire dimensions alters the phase boundary describing the stability 

of transverse and vortex walls in the nanowire, such that the phase boundary is shifted to 

larger widths or thicknesses when θa = 0 rad, but smaller widths or thicknesses when θa = 

π/2 rad. The main contribution to the shift in the phase diagram is the difference between 

the transverse and vortex wall widths. Given the recent interest in fabricating 

nanostructures from materials with magnetocrystalline anisotropy and the emerging field of 

piezoelectric-controlled magnetic anisotropy with artificial multiferroic structures, 

knowledge of how the phase boundary shifts in the presence of in-plane anisotropy could 

benefit both fundamental studies and future technologies. 
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Figure Captions: 

Figure 1: The axial magnetization (MX/MS) profile though the centre of a 150 nm wide, 10 

nm thick nanowire containing a transverse wall (TW) or vortex wall (VW) for (a) K = 0 kJ.m-3, 

(b) K = 10 kJ.m-3, θa = 0 rad and (c) K=10 kJ.m-3, θa = π/2 rad.  The magnetization at MX/MS = 

±0.9, used to estimate the wall width, is indicated by the horizontal dotted lines.  The 

vertical lines indicate the widths of the TW (wTW) and VW (wVW) walls when no anisotropy is 

present.  The magnetization structure of transverse (top) and vortex (bottom) walls are 

shown for each anisotropy condition. 

Figure 2: (a) The effective width-to-thickness ratio, w’/t’, determining the stationary wall 

width parameter, ΔTW, and (b) the analytical Walker breakdown field, HW, normalized to the 

case without anisotropy, in a 100 nm wide, 5 nm thick magnetic wire with various uniaxial 

anisotropy strengths, K, and in-plane directions, θa.  

Figure 3: The effect of the in-plane easy axis angle, θa, on the stationary wall width for up 

(positive y-magnetization) transverse (TW) and clockwise (CW) and counter-clockwise (CCW) 

vortex walls (VW) when K = 10 kJ.m-3, normalised to the case when K = 0 kJ.m-3.  The 

analytical model, based on equation 1 with φ = π/2 rad, predicts the same normalised wall 

width for transverse and vortex walls. 

Figure 4: Micromagnetic (μmag) and analytical calculations of the critical widths, wb, and 

thicknesses, tb, defining the vortex (VW) and transverse wall (TW) phase boundary with no 

in-plane anisotropy (K = 0 kJ.m-3), and with K = 10 kJ.m-3, directed along the wire long axis 

(θa = 0 rad) and perpendicular to the wire long axis (θa = π/2 rad). 
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nm thick nanowire containing a transverse wall (TW) or vortex wall (VW) for (a) K = 0 kJ.m-3, 

(b) K = 10 kJ.m-3, θa = 0 rad and (c) K=10 kJ.m-3, θa = π/2 rad.  The magnetization at MX/MS = 

±0.9, used to estimate the wall width, is indicated by the horizontal dotted lines.  The 

vertical lines indicate the widths of the TW (wTW) and VW (wVW) walls when no anisotropy is 

present.  The magnetization structure of transverse (top) and vortex (bottom) walls are 

shown for each anisotropy condition. 
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Figure 2: (a) The effective width-to-thickness ratio, w’/t’, determining the stationary wall 

width parameter, ΔTW, and (b) the analytical Walker breakdown field, HW, normalized to the 

case without anisotropy, in a 100 nm wide, 5 nm thick magnetic wire with various uniaxial 

anisotropy strengths, K, and in-plane directions, θa.  
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Figure 3: The effect of the in-plane easy axis angle, θa, on the stationary wall width for up 

(positive y-magnetization) transverse (TW) and clockwise (CW) and counter-clockwise (CCW) 

vortex walls (VW) when K = 10 kJ.m-3, normalised to the case when K = 0 kJ.m-3.  The 

analytical model, based on equation 1 with φ = π/2 rad, predicts the same normalised wall 

width for transverse and vortex walls. 
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Figure 4: Micromagnetic (μmag) and analytical calculations of the critical widths, wb, and 

thicknesses, tb, defining the vortex (VW) and transverse wall (TW) phase boundary with no 

in-plane anisotropy (K = 0 kJ.m-3), and with K = 10 kJ.m-3, directed along the wire long axis 

(θa = 0 rad) and perpendicular to the wire long axis (θa = π/2 rad). 

 

 

 

 

 

 

 

 


	1.pdf
	Bryan_Transverse

