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RESEARCH ARTICLE Open Access

Spindles and active vortices in a model of
confined filament-motor mixtures
David A Head1,2,3*, WJ Briels2 and Gerhard Gompper1

Abstract

Background: Robust self-organization of subcellular structures is a key principle governing the dynamics and

evolution of cellular life. In fission yeast cells undergoing division, the mitotic spindle spontaneously emerges from

the interaction of microtubules, motor proteins and the confining cell walls, and asters and vortices have been

observed to self-assemble in quasi-two dimensional microtubule-kinesin assays. There is no clear microscopic

picture of the role of the active motors driving this pattern formation, and the relevance of continuum modeling

to filament-scale structures remains uncertain.

Results: Here we present results of numerical simulations of a discrete filament-motor protein model confined to a

pressurised cylindrical box. Stable spindles, nematic configurations, asters and high-density semi-asters

spontaneously emerge, the latter pair having also been observed in cytosol confined within emulsion droplets.

State diagrams are presented delineating each stationary state as the pressure, motor speed and motor density are

varied. We further highlight a parameter regime where vortices form exhibiting collective rotation of all filaments,

but have a finite life-time before contracting to a semi-aster. Quantifying the distribution of life-times suggests this

contraction is a Poisson process. Equivalent systems with fixed volume exhibit persistent vortices with stochastic

switching in the direction of rotation, with switching times obeying similar statistics to contraction times in

pressurised systems. Furthermore, we show that increasing the detachment rate of motors from filament plus-ends

can both destroy vortices and turn some asters into vortices.

Conclusions: We have shown that discrete filament-motor protein models provide new insights into the stationary

and dynamical behavior of active gels and subcellular structures, because many phenomena occur on the length-

scale of single filaments. Based on our findings, we argue the need for a deeper understanding of the microscopic

activities underpinning macroscopic self-organization in active gels and urge further experiments to help bridge

these lengths.

1 Background

Filamentous proteins are prevalent within eukaryotic

cells and perform a variety of crucial tasks relating to

cellular integrity, locomotion, transport and division

[1,2]. Such tasks are often active in that they can only

proceed in concert with energy-consuming mechanisms,

including directed filament growth and motor protein-

generated tension, placing such processes outside the

realm of equilibrium thermodynamics [3]. Self-organisa-

tion of motor protein-filament mixtures will be selected

for when it robustly reproduces static or dynamic

structures beneficial to the cell’s viability. An example is

the mitotic spindle that forms during division of fission

yeast cells. It has been shown that this bipolar structure,

consisting of microtubules emanating from spindle pole

bodies towards an overlapping midplane region, exists

and functions essentially as normal even in cells with no

nucleus-associated microtubule organizing center [4,5].

The plausible conclusion is that the interaction between

filaments and motor proteins in the confined cell geo-

metry controls the location of the pole bodies. For bud-

ding yeast this self-organisation scenario has been

reinforced by the evolution of more sophisticated regu-

latory mechanisms [6]. Also, egg cell extracts from the

amphibious genus Xenopus can generate a well-formed

spindle apparatus despite entirely lacking cell walls
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[7-9]. Nonetheless an understanding of the principles

underlying self-organization of bioflaments driven by

motor proteins in confined spaces is of direct relevance

to many organisms [10].

Given the complexity of real cells it is often advanta-

geous to consider simplified model systems, and this

approach has been adopted to investigate the role of

confinement in filament-motor mixtures. Experiments

on growing microtubules confined to spherical emulsion

droplets revealed a droplet-size dependency on the

observed structure [11]: Droplets larger than ≈ 29 μm in

diameter contained asters with the polar microtubules

pointing towards the centre, controlled by the motor

protein dynein, whereas smaller droplets were found to

contain semi-asters with the aster’s focus near the inter-

face. These findings demonstrate that the degree of con-

finement can partly determine structure formation, but

as motor density and speed were not control variables

in these experiments their influence could not be

assayed.

A strikingly non-equilibrium property of filament-

motor mixtures is their ability to spon-taneously gener-

ate flows due to their active components, even in the

absence of boundary driving forces [12-14]. Assays of

microtubule-oligomeric kinesin mixtures in a quasi-two

dimensional geometry with flat, parallel confining walls

found a dynamic rotating structure denoted a vortex

[15,16]. Accompanying simulations of semiflexible fila-

ments [16] and subsequent hydrodynamic theories

[17,18] appeared to reproduce the observed structures.

However, as discussed in Ref. [19], it is unlikely that the

simulations of Surrey et al. [16] and the theories and

simulations of Ref. [17,18] describe the same type of

vortex, because the hydrodynamic theories are based on

a nematic order-parameter description, while simula-

tions of semi-flexible filaments in Ref. [16] neglect self-

avoidance (and thus nematic order). Mesoscopic models

based on the Smoluchowski equations have not resolved

this issue [20,21]. Simulations of self-avoiding filaments

strictly in two dimensions showed no evidence of a vor-

tex state [19]. The microscopic picture underlying vor-

tex formation thus remains unknown. Gliding assays of

filaments along motor beds permit quantitative compari-

son to models [9,22] and at high concentration exhibit

vortex-like ‘swirls’ [23,24], although in this situation the

active forces are unbalanced monopoles, unlike dipoles

generated by motors connecting two filaments in the

bulk [25]. Vortex-like motion is often observed in self-

propelled systems such as bacterial swimmers [26-28],

but with differing microscopic mechanisms.

It is apparent that the combined influence of confine-

ment and activity on structure formation and sponta-

neous flows in filament-motor mixtures is presently not

well understood. Our aim here is to acquire a deeper

understanding of this problem in a broad sense, not

restricted to any one biological realisation, i.e. microtu-

bule-dynein or actin-myosin. It is therefore desirable to

study model systems in which all parameters can be

freely varied. The application of continuum equations,

which are coarsegrained over lengths much larger than

the filament length L, to structures of only a few L in

spatial extent is not guaranteed to be successful. We

therefore adopt a discrete numerical model in which

motors and filament segments are explicitly represented,

and all physical mechanisms that are potentially relevant

(steric hinderance, thermal fluctuations etc.) are incor-

porated. This model is an extension of one previously

employed in two dimensions [19], where it was found to

produce some signatures of active gels such as super-

diffusion and anomalous small wavelength density fluc-

tuations, but not vortices.

We consider arrays of filaments confined to a quasi-

two dimensional cylinder, with a height of a few fila-

ment diameters which permits filament overlap, and an

external pressure at the curved walls. We then systema-

tically vary the motor density, speed and applied pres-

sure. Four steady-state configurations arise within the

covered parameter space, including an aster and semi-

aster as observed in confined emulsion droplets [11],

and also a spindle-like state that spontaneously emerges

from the motor-filament interaction in the confined

geometry, possibly reproducing the fission yeast observa-

tions [4,5]. These states are described in Sec. 3.1 along

with a fourth nematic state that links to known equili-

brium phases. We also find a fifth, vortex state asso-

ciated with a definite rotation of filaments about a fixed

center that appears to be always transient. The existence

and properties of these vortices are characterised in Sec.

3.2. To highlight the important role played by motors at

filament plus-ends, we independently vary the detach-

ment rate of motors from plus-ends in Sec. 3.3 and

show that vorticity is associated with a critical fraction

of plus-ended motors. The observation of vortices in

fixed volume systems described in Sec. 3.4 confirm that

they are driven at least partly by motor motion and not

boundary fluctuations, and in Sec. 4 we discuss possible

future directions.

2 Methods

We consider a system of N semiflexible polar filaments,

which can be connected by motor proteins. Each fila-

ment consists of M = 30 monomers separated by a

bond length b with Hookean bond potentials with a

spring constant 100 kBT/b
2. Self-avoidance of filaments

is introduced by repulsive Lennard-Jones potentials with

diameter s and energy parameter ε = 5 kBT. A natural

choice is s = b. Semi-flexibility is described by curvature

elasticity with bending rigidity ! = 200 bkBT such that
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the persistence length ℓp = !/kBT is ℓp = 20L/3 with L =

Mb the filament length.

Only motors simultaneously connected to two differ-

ent filaments are explicitly represented. The concentra-

tion of free motors in solution is assumed to be

spatiotemporally uniform, which is a valid assumption

for rapidly-diffusing free motors when the ratio of

attached to free motors is small. This concentration is

renormalized into a constant rate of attachment as dis-

cussed below. Motors are modeled as two-headed Hoo-

kean springs with a spring constant kBT/b
2 and

dynamics defined by four rates as shown in Figure 1(a):

(i) The attachment rate kA for a motor to attach to two

monomers within a predefined range, here taken to be

the excluded volume radius 21/6s (so kA is the product

of a molecular attachment rate and the free motor con-

centration); (ii) the detachment rate kD of each head

independently from its filament (detachment of either

head results in removal of the whole motor from the

system); (iii) the movement rate kM of each head inde-

pendently towards the filament’s [+]-end, and (iv) the

detachment rate kE for motor heads already at a [+]

end. The movement rate is attenuated by an exponential

factor e−!E/kBT with ∆E the change in motor spring

energy for the trial move. Except where otherwise sta-

ted, kE = kD below.

Simulating 3D filament gels in a spherical or cubic

box at physiologically-relevant densities is computation-

ally prohibitive when excluded volume interactions are

included. To reduce computational demands while still

permitting filament overlap, we therefore adopt a quasi-

2D simulation cell with parallel confining walls normal

to the z-axis spaced 5b ≪ L apart; see Figures 1(b) and

1(c). This is a similar geometry to the microtubule

experiments [15,16]. Furthermore we only consider a

single ring of filaments driven by an inward-acting pres-

sure, intended to describe confinement in a cell, or

other filaments nearby. This external pressure acts

through a flexible, elastic wall as evident from Figures 1

(b) and 1(c) and described in detail below.

All walls repel the monomers with the same Lennard-

Jones non-bonding potential as for filaments. N = 175

filaments are placed in a radial aster configuration with

all [+]-ends pointing towards the center, in three parallel

layers with roughly 66-68 filaments per layer (note there

is some stochasticity in the initial conditions). This

initial condition was chosen to promote the formation

of asters and vortices, but does not inhibit other struc-

tures as described below. The system is surrounded by

an elastic wall, which initially is circular with radius 40b.

The wall is discretized into 80 nodes that are initially

regularly spaced. Changes in node separation from the

initial value ℓ0 to ℓ0 + δℓ incur an energy cost
1

2
kBTZδℓ

2
ℓ
−3
0

per adjacent node pair, with Z = 5b the

wall height. Similarly, changes in the local curvature

between adjacent node triplets from the initial value !0

to !0 + δ! incur an energy 103kBTℓ0Zδ!
2 per triplet.

The chosen coefficients ensure an approximately circu-

lar wall shape throughout the deformation without sig-

nificantly countering the external pressure for typical

filament densities, as confirmed by the far smaller final

wall radii measured when the filaments were absent.

The filaments, motors and elastic wall are all updated

stochastically. The filaments obey Brownian dynamics

[29] governed by an effective monomer friction coeffi-

cient g for hydrodynamically anisotropic slender ele-

ments, i.e. with a 2:1 ratio between implicit solvent drag

perpendicular to the filament axis (= 2g) to the parallel

direction (= g) [30]. Wall nodes move by Monte Carlo

Metropolis moves applied to the (x, y) coordinates of 80

nodes initially equispaced along its contour. The energy

for these moves includes the wall elastic and wall-fila-

ment interaction energies, and a pressure-volume term

PV where P > 0 is a fixed parameter for each run. To

check for convergence with time, various scalar quanti-

ties, such as the number of motors per filament, were

checked to be constant within noise when plotted

against log(t). In addition, the mean squared rotation

(!θ)2(t, t + !t) = N−1
∑N

i=1 |θi(t + !t) − θi(t)|
2, with θi

x

y

x,y

z

(b)

(c)

(a)
kA

kD

kMe
−∆E/kBT

b

L = Mb

Figure 1 Model definition. (a) Summary of key model parameters

including the rates of motor attachment kA and detachment kD,

and the bare stepping rate kM. See text for details. (b) Plan view

showing the filaments oriented with their light-shaded [+]-ends

towards the center. The arrows denote the external pressure acting

on the circular elastic wall. (c) Side view of the same, showing the

confining walls perpendicular to the z-axis.
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the angle between filament i’s centre-of-mass with

respect to the nominal centre of the box (more pre-

cisely, the mean of all wall nodes) and some fixed axis,

was checked to no longer to vary with t to within noise.

Stationarity was not achieved for the vortex states, for

which alternative measures were employed as described

in Sec. 3.2.

3 Results

Results are presented here in terms of the normalised

attachment rate kA/kD, the normalised motor rate kMτb
where τb = Lbg/4kBT is the approximate time for a fila-

ment to freely diffuse one monomer distance; the nor-

malised pressure P/P0 with P0 = ε/b3 with ε = 5 kBT the

Lennard-Jones repulsion energy, and, where relevant,

the scaled end-detach rate kE/kD.

3.1 Stationary states

For the parameter space considered, we observe four

classes of steady-state configuration as shown in Figure 2.

For a low density of fast motors, spindles are observed as

in Figure 2(a), which crossover to a radially-symmetric

aster as the motor density is increased as show in Figure

2(b). For slower motors, we observe a nematic at low

motor densities and semi-asters at high motor densities,

as shown in Figures 2(c) and 2(d) resp. Semi-asters typi-

cally arise for higher pressures than asters and are more

compressed, consistent with the emulsion experiments of

Pinot et al. [11] and justifying our use of the term.

Movies demonstrating the spontaneous emergence of all

of these states from the initial conditions for exactly the

same parameters are available as Additional File 1 (spin-

dle, corresponding to Figure 2(a)), Additional File 2

(aster, corresponding to Figure 2(b)), Additional File 3

(nematic, corresponding to Figure 2(c)) and Additional

File 4 (semi-aster, corresponding to Figure 2(d)).

To quantify to which state a system belongs, each fila-

ment’s polarity vector is projected onto the x-y plane to

give a two-dimensional unit vector aligned towards the

[+]-end. This is averaged over all filaments whose cen-

ters of mass have azimuthal angle θ with respect to the

center of the system, giving rise to the mean orientation

p̂(θ). This is then decomposed into angular mode vec-

tors am and bm,

p̂(θ) =
1

2π
a0 +

1

π

∞
∑

m=1

{am cos mθ + bm sin mθ}, (1)

from which can be defined the mode amplitudes Qm,

Qm =
1

2π2
(a2

m + b2
m). (2)

The Qm are invariant under global rotations of the

whole box.

To determine the corresponding state, the measured

Qm up to m = 3 are compared to known values for ideal

states, and that with the closest Euclidean distance is

taken to be the state. The values for pure asters and

nematic phases are easy to derive; for an aster

p̂(θ) = (− cos θ , − sin θ), (Q0, Q1, Q2, Q3) = (0,1,0,0),

whereas for the nematic state where p̂(θ) = (0, 0), (Q0,

Q1, Q2, Q3) = (0,0,0,0). Note that while an isotropic

state would give the same Qm as for the nematic, such

states only arise for kA and P well below the considered

ranges. For spindles and semi-aster states there is a

degree of choice in how the target Qm are calculated, so

we choose simple forms that permit exact evaluation of

the Qm. For the spindle, p̂(θ) = (− cos θ , sin θ) for θ Î

(-π/4, π/4) or θ Î (3π/4, 5π/4) and zero otherwise, for

which (Q0, Q1, Q2, Q3) = (0, 2/π2 + 1/2, 0, 2/π2). For

the semi-aster, p̂(θ) = (− cos[θ/3], − sin[θ/3]) for θ Î

(-3π/4, 3π/4) and zero otherwise, for which (Q0,Q1,Q2,

Q3) = (9/π2, 9/4π2, 333/1715π2, 9/100π2). Variations in

these forms have been tested and although the bound-

aries between states shift slightly, the underlying trends

remain the same.

The occurrence of the four steady-states, plus a fifth

‘vortex’ state to be discussed below, with motor density

(a) (b)

(c) (d)

Figure 2 Snapshots of steady-states. Snapshots of steady-states

for a low motor attachment rate kA/kD = 1 (left) and a higher rate

kA/kD = 30 (right). Conversely, the top line is for fast motors kMτb =

3.75 × 10-2 and the bottom line for motors 10 times slower.

Filaments are shaded light (dark) towards their plus (minus) ends,

respectively. These states are referred to as (a) spindle, (b) aster, (c)

nematic and (d) semi-aster. The other parameters are P/P0 = 0.03

and kE = kD. Movies of the same parameter values are available

from the supplementary information.

Head et al. BMC Biophysics 2011, 4:18

http://www.biomedcentral.com/2046-1682/4/18

Page 4 of 11



and speed are presented in Figure 3 for two different

pressures. The observed configurations correlate with

the density and distribution of motors along the fila-

ments. The mean number of motors per filament nmot/

N is plotted in Figure 4 and shows an expected increase

with the attachment rate kA as well as the pressure. The

increase with pressure can be understood as due to the

closer packing of the filaments, increasing the number

of potential attachment points for motors and hence

nmot. The approximate scaling nmot ∼ k
3/2
A

is faster than

the linear relationship measured for constant volume,

two-dimensional simulations [19], presumably due to

similar reasons: As kA increases so does the motor den-

sity which, in this constant-pressure ensemble, allows

the system to contract, presenting more potential

attachment points between monomers and hence

further increasing the motor density. A derivation of the

value 3/2 of the exponent is not available so far.

Motors move to the [+]-end and dwell there until

detaching, thus a greater fraction are expected to occupy

filament [+]-ends, potentially resulting in tight binding

mediated via many motors. Plotted in Figure 5 is the

fraction of motors with at least one head at a filament’s

[+]-end, n
[+]
mot/nmot, for the same runs as in Figure 4. By

comparing to the configuration plots in Figure 3 it is

possible to infer signatures of crossovers between states

Figure 3 State diagrams. Variation of steady-state with motor

density and speed for (a) P/P0 = 0.01 and (b) P/P0 = 0.024. Markers

denote actual states determined as described in the text and the

boundaries are equidistant between pairs of data points. The vortex

region in (b) is a transient configuration that is explained in section

3.2 and is delineated as those states with a vorticity V exceeding

0.7. Since it eventually contracts to a semi-aster, the two distinct

semi-aster regions in (b) become contiguous in steady-state.

Figure 4 Motor density. No. of motors per filament versus

attachment rate kA/kD for the motor speeds and external pressure

denoted in the legend. The thick black dashed line has a slope of

3/2. Where data for the required P was not available, nmot was

interpolated from runs with P slightly higher and lower than the

target value.

Figure 5 Plus-end motors. Fraction of motors with at least one

head at a filament’s [+]-end versus kA/kD for the same data as in

Figure 4, so the top two lines correspond to fast motors and the

bottom to slow motors.
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in the inflection points in these curves. For the slower

motors, there is an increase in n
[+]
mot/nmot as the nematic

state changes to a state with a greater degree of polar

ordering (spindle or semi-aster depending on the pres-

sure). For the faster motors there is a marked increase

in n
[+]
mot/nmot with kA, which corresponds to the cross-

over to the aster state with a high degree of [+]-end

binding. Further indication of the importance of [+]-end

binding is presented in section 3.3 where enhanced end-

unbinding rates kE >kD are considered.

3.2 Dynamics and vortices

The stationary states described above admit no sponta-

neous non-equilibrium flows, despite the motor motion

generating a positive energy flux: The increase in the

stored motor elastic energy due to motor motion and

thermal drift of the connected filaments is balanced by

the loss due to detachment, with no observed net trans-

location or rotation of the filaments in steady-state. Col-

lective rotation of all filaments about a fixed center

arises for one region of the considered parameter

ranges, but appears to be a transient flow that irreversi-

bly contracts to a non-rotating semi-aster configuration.

These states are referred to here as vortices due to their

superficial similarity with the rotational modes observed

in microtubule-kinesin assays [15,16] and are described

in detail in this section. A snapshot is given in Figure 6

and movies are provided as Additional File 5 (all

filaments shown) and Additional File 6 (one filament

highlighted for the same run as Additional File 5).

Collective rotation of the whole system can be quanti-

fied by the mean angular velocity of filament centre-of-

mass vectors r relative to the system center, or alterna-

tively by the net transverse velocity of each filament’s

centre-of-mass relative to its polarity,
〈

(v × p̂)z
〉

. Here

we employ the latter as it is available for all of our runs,

but we have confirmed that it closely tracks the angular

velocity in those runs for which both were measured.

Examples of v × p̂ for 3 independent runs are given in

Figure 7, and show finite rotation of either sign until the

system irreversibly contracts to a semi-aster state and

rotation ceases. This contraction time can be confirmed

by visual observation of system states, and can be pre-

cisely located by fitting the system radius as a function

of time, R(t), to the four-parameter hyperbolic tangent R

(t) = Rmin + ∆R tanh[(t - tcont)/∆t]. The mean of
〈

(v × p̂)z
〉

is presented in Figure 7 for each run as a hor-

izontal line segment, that extends from t = 0 to the con-

traction time tcont found from this fit. In all cases, tcont

coincides with the rapid decay of v × p̂ to zero, provid-

ing independent confirmation that rotation ceases when

the system contracts to a semi-aster.

It is now possible to define a vorticity order parameter

for each point in parameter space. For each run a, the

mean μa and standard deviation sa of (v × p̂)|z is calcu-

lated starting from t = 0 up to the time that the system

contracts. This is regarded as significant if the mean is

comparable to or larger than the standard deviation, but

since the sign is arbitrary we also take the absolute

Figure 6 Snapshot of a vortex. Snapshot of a vortex rotating in

the anti-clockwise direction as presented, for parameters P/P0 =

0.024, kA/kD = 35 and kMτb = 7.5 × 10-3 taken at a time t/τb ≈ 5.3 ×

103. The colour code is the same as in Figure 2.

Figure 7 Example of vorticity. Examples of the vorticity

(v × p̂)|z scaled by a characteristic velocity v for kA/kD = 35, kMτb
= 7.5 × 10-3 and P/P0 = 0.024. For clarity error bars are only given

for a single run. The thick horizontal line segments denote the

mean value up to the time when the vortex contracts to a semi-

aster, and are plotted up to this time.
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value to give the vorticity for a single run,

Vα =

∣

∣

∣

∣

µα

σα

∣

∣

∣

∣

≥ 0. (3)

This is then averaged over all runs with the same

parameters to give the mean vorticity V = Vα
. A given

point in parameter space is then regarded as exhibiting

a (transient) vortex if V exceeds some arbitrarily-chosen

value of order unity. The corresponding region of para-

meter space for V > 0.7 is plotted in Figure 3 and arises

for higher densities of motors that are not so fast that

they aggregate at [+]-ends, which would stabilize an

aster relative to a vortex. Independently varying the frac-

tion of [+]-ended motors by increasing the end-detach-

ment rate kE supports the existence of a critical fraction

for vortex formation, as discussed in Sec. 3.3.

The reciprocal relationship between vorticity and con-

traction time is clearly evident when both quantities are

plotted together; see Figure 8. Stronger vortices have a

shorter lifetime than weaker vortices. The distribution

of contraction times is presented in Figure 9(a) for a

single pressure. As the data is noisy we do not attempt

to extract an arbitrary distribution, but instead make

two statistical tests for the most basic possibilities, i.e.

that contraction happens at a fixed time, which would

give a Gaussian distribution, or that it happens at a

fixed rate corresponding to an exponential distribution.

To give some measure of the goodness-of-fit, the

Anderson-Darling statistics for an exponential distribu-

tion with an unknown mean has a significance level of P

≈ 0.2, whereas that for a normal distribution of

unknown mean and variance has a significance level of

P ≈ 0.025 [31,32]. This clearly favours the exponential

over the Gaussian distribution. Attaining even this noisy

data consumed considerable computing resources and

we were unable to repeat this procedure for other para-

meter values.

Assuming the true distribution is exponential, this

would suggest that contraction is triggered by sponta-

neous fluctuations that occur at a constant rate in time.

From observation of movies of filament arrangements, a

likely candidate is the transient void formation fre-

quently observed near the outer wall, where nearby fila-

ments are attached purely by motors at their [+]-ends

and not along their length. Such voids, when large

enough, lead to a ‘hinge’-like mechanism in which the

void expands and one section of the polarity field

inverts, leading to the semi-aster.

The onset of vorticity is also evident in the histogram

of the signed vorticity, i.e. the Vα before taking the mod-

ulus in eqn. (3), which can be positive or negative

depending on the direction of rotation. For low pres-

sures with V ≪ 1 this distribution is unimodal around

the origin, but becomes bimodal when vorticity is more

evident as demonstrated in Figure 9(b). Of the 20 runs

presented here, 12 rotated in one direction and 8 in the

other, which has a significance interval of P ≈ 0.5 as

determined from a Binomial test with equal probabilities

for both directions. This is to be expected given our use

of stochastic initial condition that does not predispose

the system to any preferred rotational direction.

Independent confirmation of vorticity can be inferred

from the mean-squared angular deviation 〈(∆θ)2〉 already

defined in Sec. 2. This is plotted in Figure 10 for the

same parameters as above as a function of the lag time

∆t, averaged over all waiting times t up until tcont. There

is a crossover from linear behavior (∆θ)2 ~ ∆t for low

pressures with low vorticity, to a more rapid scaling (∆θ)
2 ~ (∆t)2 for pressures well into the vortex regime. Since

this quantity is the angular analogue of the mean squared

displacement for translation degrees of freedom, these

two limits can be regarded as diffusive and ballistic,

respectively. Microscopically the diffusive limit corre-

sponds to fluctuations with no net drift, whereas the bal-

listic limit arises when all filaments are rotating around

the system with a constant angular velocity in the same

direction. Therefore the vortex state should correlate

with ballistic motion, and comparison of Figures 8 and

10 confirms this. This figure also demonstrates that the

integrated angular rotation of the vortex before contrac-

tion is typically larger than π/2, much larger than the dif-

fusive drift ≈ π/10 over the same time frame.

3.3 Enhanced detachment from ends

In the simulations that accompanied the microtubule

experiments, it was claimed that the residence time at

Figure 8 Vorticity and contraction times. Contraction time to a

semi-aster tcont/τb (left axis; solid circles) and vorticity V (right axis;

open squares) versus pressure P/P0 for kA/kD = 35 and kMτb = 7.5 ×

10-3. The contraction time was determined by the fit of the radius

to a hyperbolic tangent, or assigned the maximum value of tcont =

1.6 × 104τb if no contraction had occurred within this time. Each

point represents 5 independent runs.
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the microtubule [+]-ends played a crucial role in deter-

mining the vortex stability, with an enhanced end-

detachment rate required to form vortices [16]. By con-

trast, for our model it is the fraction of motors at fila-

ment [+]-ends that determines vortex stability relative to

an aster. The vorticity, motor density and fraction of

motors at [+]-ends are plotted in Figure 11 against end-

detachment rates kE ≥ kD for two sets of kA, kM and P.

It is clear that increasing kE can both destroy a vortex

that existed when kE = kD, and create a vortex when kE

= kD gave an aster. In order of increasing kE, the

sequence aster ® vortex ® semi-aster (where any vor-

tex is either absent or too short lived to be discerned) is

typically observed, although we do not claim this

sequence is followed by all points in parameter space.

There is a slight increase in motor density in the semi-

aster state as evident from the figure, resulting from an

Figure 10 Mean-squared angular changes . Mean-squared

changes in angle 〈(∆θ)2〉 versus lag time ∆t for the pressures given

in the legend, kA/kD = 35 and kMτb = 7.5 × 10-3. The short thick line

segments have the slope given.

Figure 11 Varying end-detach rates. Variation of vorticity, motor

density and fraction of [+]-end motors with kE for kA/kD = 35 and

kmτb = 7.5 × 10-3 (solid lines, filled squares) and kA/kD = 60 and kMτb
= 37.5 × 10-3 (dashed lines, open diamonds). P/P0 = 0.024 in both

cases. The thick dashed line in the lower plot corresponds to 25%.

Quantities were measured just prior to contraction, or in steady-

state if there was no contraction or it happened too rapidly to

discern.

(a) (b)
Figure 9 Contraction time and vorticity statistics. (a) Probability distribution of contraction times on log-linear axes for P/P0 = 0.024, kA/kD =

35 and kMτb = 7.5 × 10-3. The thick line gives the best fit to an exponential distribution which has a mean ≈ 1.7 × 104, corresponding to ≈ 0.75

full rotations (the longest vortex survived for ≈ 2.6 rotations). Data corresponds to 20 independent runs. (b) Normalised probability histogram of

signed vorticity for P/P0 = 0.020 (white bars in the background; 5 runs) and P/P0 = 0.024 (shaded bars in the foreground; 20 runs).
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increase in potential attachment points due to the

increased density.

Thus residence time at [+]-ends, which is ∝ k−1
E , is not

the determining factor with regards vortex stability here.

Rather, vortices coincide with around 25% of motors at

[+]-ends as highlighted in the figure. There is no critical

dependency on the motor density, although we specu-

late that below some minimum value spindles or

nematic states would be observed instead. The critical

fraction 25% will likely depend on parameters that were

not varied in this work, such as filament length M and

the motor spring stiffness. A systematic survey of these

parameters, or of kE ≠ kD for all kA, kM and P, is how-

ever beyond the scope of this work.

3.4 Controlled volume

One message from the previous sections is that the

observed steady-state is predominately determined by

the density of motors and the fraction at [+]-ends. It

may appear that the primary role of motor motion,

which would be the source of any non-equilibrium

effects in this model, is merely to select the fraction of

[+]-ended motors, faster motors giving a higher fraction.

It might even be speculated that even the transient vor-

tex state is driven, not by motor motion, but rather as a

protracted buckling event powered by the pressurised

walls.

It is straightforward to show that motor motion can

drive vortex motion, however. Plotted in Figure 12 is

the rotational velocity
〈

v × p̂
〉

/v for two independent

runs in a box with fixed radius, where v is a characteris-

tic filament velocity. The system is initially in an aster

configuration, but when the radius is suddenly reduced

by b/2 at a time t/τb ≈ 1.6 × 104, the system switches to

a rotating vortex state that appears to be long-lived; the

total time window in this figure is an order of magni-

tude longer than the longest vortex described in Sec. 3.2

(which has the same parameters). Since there is no

energy input from the walls, the only possible cause for

this rotation is the motor motion. Thus the pressure

ensemble is important to let the system adjust its den-

sity to the vortex state; however, the same pressure also

destabilizes the vortex state, because it favors further

contraction into the semi-aster.

Although the magnitude of the rotational velocity

remains fixed (note that the characteristic velocity v is

the same for both runs and constant in time), the direc-

tion aperiodically reverses as evident in the changes of

sign in the figure. The statistics of time intervals

between direction switching suggest that the underlying

mechanism may be the same as for the contraction to

the semi-aster state in the constant pressure case. Speci-

fically, the mean switching time ∆tswitch/τb = 21.6 × 104

± 5.8 × 104 is consistent with the mean contraction

time ≈ 1.7 × 104 measured earlier, and again is consis-

tent with an exponential distribution (significance level

P ≈ 0.2 from n = 7 values using the Anderson-Darling

test [31,32]). This suggests that the same spontaneous

fluctuation that permits contraction under constant

pressure instead promotes rotational reversal under con-

stant volume.

4 Discussion

It has been demonstrated that the vortices described

here involve the collective rotation of the filaments

about a fixed centre. This was predicted by the nemato-

dynamics theory of Kruse et al. [17], but contrasts with

the simulations of intersecting filaments [16] for which

movies appear to show no actual filament rotation,

rather the motors run along a static vortex configuration

of the growing filaments. It is possible that our inclusion

of excluded volume interactions, which are necessary to

generate the nematic elasticity required by the theory

(a)

(b) (c)

Figure 12 Fixed volume vortices. (a) Filament rotation for two

independent runs at fixed volume. The imposed radius R is given in

the lower panel. Snapshots for the run corresponding to the solid

black line at points (b) and (c) are given in the lower figures. A

short time at the initial radius R/b = 38 was required to avoid

numerical instabilities.
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but were absent in these earlier simulations, may explain

this discrepancy. Those simulations also employed grow-

ing filaments, whereas here as in the continuum model-

ing these lengths were fixed, suggesting a further

potential source of discrepency. Unlike the continuum

theories, however, our vortices are only one filament in

radius so there is no radial gradient in the polarity field,

making direct comparison problematic. We conclude

that the challenging task remains to demonstrate a defi-

nitive link between macroscopic vortices and micro-

scopic filament-motor interactions. An important aspect

could be the system size of the microscopic models,

because a minimum size much larger than currently

accessible by simulations may be needed to see vortices

in a bulk system. Further experiments might elucidate

the underlying mechanism. For instance, fluorescently

tagging a small fraction of microtubules would allow

individual filament rotation (if any) to be visualised.

The variation of steady-state structure with motor

speed and density shown in Figure 3 can in large part

be understood as due to a non-uniform density of

motors along the filament, in particular the fraction of

motors at a [+]-end which dwell there before detaching.

Varying the end-detachment rate kE confirms that a

strong binding at [+]-ends can stabilise an aster relative

to a vortex or semi-aster. The motor speed kM plays a

role in selecting the distribution of motors along the

filament, but also contributes to the rotation of vortices

as inferred from the fixed volume system in Sec. 3.4.

Therefore we claim that the observed vortex is a genu-

ine non-equilibrium state powered at least partially by

the unidirectional motion of energy-consuming motor

heads along the filaments, although at constant pressure

they appear to be transient. It is not clear if varying

some other parameters may produce stable vortices.

Systematically quantifying the role of all of the model

parameters is clearly challenging for such a high-dimen-

sional parameter space, and here we have adopted the

pragmatic approach of holding most parameters fixed

while varying those deemed most likely to be critical.

Eventually the impact of all parameters on structure and

dynamics will need to be quantified if a broad descrip-

tion of active gels is to be attained. Here, we highlight

two parameters likely to reveal novel or interesting

behaviour. First, the filament length L = Mb was fixed

at M = 30 monomers throughout, whereas extensive

simulations with M = 25 revealed similar steady-state

diagrams as Figure 3 but no vortices. Increasing the

aspect ratio therefore seems to enhance vorticity, and it

would be interesting to quantify this effect. Secondly,

the elastic parameters for the wall were set to maintain

a roughly circular shape, as in the emulsion experiments

of Pinot et al. [11]. However, in those experiments flex-

ible vesicles were also considered that produced a richer

array of observed structures, and this effect could be

easily investigated within our model by lowering the

bending stiffness of the wall.

While it was always our intention to model filament-

motor systems as generally as possible, it is nonethe-

less insightful to consider the corresponding para-

meters for an actual system. Taking the filament

diameter to be b = 10 nm, intermediate between

microtubules (about 25 nm) and actin (about 7 nm),

the filament length in our simulations becomes 0.3

μm, and the forces generated by our motors corre-

spond to kBT/b ≈ 0.4pN. These values are smaller than

but comparable to real systems, e.g. for actin-myosin

complexes, filament lengths are typically around 1 μm

and myosin proteins generate approximately 1.5pN

[33]. Mapping our inverse movement rate k−1
M to the

typical motor cycle time of 20- 40 ms [33] suggests

that our average simulation run extended to about one

minute, again comparable to but shorter than typical

experimental times. Vortex rotation times will also be

of the order of a minute. Our findings should thus be

experimentally accessible, and we predict that the

steady states observed here will be reproduced if a

confining geometry of size comparable to the mean

filament length can be engineered in in vitro actin-

myosin or microtubule-kinesin experiments. The

chances of success will be increased if motor concen-

trations capable of generating around 10-100 or more

motors per filament are chosen, and perhaps reducing

the mean filament length to give aspect ratios around

30-50.

In very recent experiments on actin (without myosin)

in confined geometries [34], pattern formation strikingly

similar to our nematic state in Figure 2(c) was observed.

Since we find such states for a low density of slow

motors, this is entirely consistent with the approach to

the passive systems investigated in these experiments.

5 Conclusions

We have systematically varied motor speed and density

in filaments confined to a pressurised cylindrical cell,

and have uncovered four qualitatively different types of

steady state, namely aster, semi-aster, spindle and

nematic. The corresponding regions of parameter space

for each state were delineated by modal analysis of the

filament polarities. Furthermore, in one region of para-

meter space we found a vortex state in which filaments

rotated about the system centre for a finite time before

buckling to a semi-aster. Quantitative analysis of rota-

tion speed and mean-squared angular displacement pro-

vided unambiguous evidence of coherent filament

rotation in this state. The vortex state persisted for far

longer times with fixed walls, albeit with stochastic
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changes of direction, demonstrating that motors and not

pressure alone are necessary for the observed vortex

rotation.

Additional material

Additional file 1: Movie showing the transition from the initial

conditions to a spindle steady state. System parameters are

identical to Figure 2(a). The colour scheme for this and all movies are

as follows: Filaments are light (dark) near their plus (minus) ends; the

blue-green hue is to aid visualisation and has no significance. Motors are

coloured in red.

Additional file 2: Movie showing the transition from the initial

conditions to an aster steady state. System parameters are identical to

Figure 2(b).

Additional file 3: Movie showing the transition from the initial

conditions to a nematic steady state. System parameters are identical

to Figure 2(c).

Additional file 4: Movie showing the transition from the initial

conditions to a semi-aster steady state. System parameters are

identical to Figure 2(d).

Additional file 5: Movie showing the transition from the initial

conditions to a dynamic vortex, and subsequent contraction to a

semi-aster. System parameters are identical to Figure 6.

Additional file 6: Identical run to additional file 5, with one filament

highlighted and the remaining translucent.
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