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with multiple change-points 3 
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A B S T R A C T 7 

A Bayesian multiple change-point model is proposed to analyse violations of air qual-8 

ity standards by pollutants such as nitrogen oxides (NO2 and NO) and carbon monox-9 

ide (CO). Threshold exceedance occurrences are modelled by a step rate Poisson 10 

process fitted after short-range correlations in the exceedance data are removed via 11 

declusterisation. The change-points are identified, and the rate function is estimated, 12 

using an MCMC algorithm adapted from Green (1995). This technique is applied to 13 

the daily concentration data collected in Leeds, UK (1993�2009). Results are vali-14 

dated by running the MCMC estimator on the posterior-replicated data. Findings are 15 

discussed in the context of the past environmental actions and events. The proposed 16 

methodology may be useful for the air quality management by providing quantitative 17 

means to measure the efficacy of pollution control programmes. 18 

Keywords: Air quality action plan; Urban air pollution; Threshold exceedances; Non-19 

homogeneous Poisson process; Change-points; MCMC 20 

 21 

1. Introduction 22 

Due to harmful effects of pollution on human health and the environment, air qual-23 

ity in urban areas is a matter of worldwide concern amongst scientists, policy makers 24 

and public alike. Significant health problems (e.g., respiratory and cardiovascular) 25 

can be caused or worsened by exposure to the air pollution, from mild effects such 26 

as increased use of inhalers by asthmatics to more serious including advancement of 27 

death (Brimblecombe, 1998; Ayres, 2002). 28 

The UK National Air Quality Strategy, adopted in 1997 (see AQS, 2007), deter-29 

mined statutory standards for eight main air pollutants, including nitrogen dioxide 30 

(NO2), nitrogen monoxide (NO) and carbon monoxide (CO). In particular, UK local 31 

authorities are required to identify Air Quality Management Areas (AQMA) where ap-32 

propriate, along with Air Quality Action Plans in pursuit of the air quality objectives 33 

(AQMA, 1997).  34 

It is well documented that the pollutant emission to the atmosphere is dominated 35 

by road transport, estimated to contribute 54% of CO and 32% of NOx emissions in 36 

                                                            
*
 Corresponding author. Tel.: +44 (0)113 343 1788; fax: +44 (0)113 343 5334.  

  E-mail address: tsjs@leeds.ac.uk (János Gyarmati-Szabó). 



2 

 

the UK (NAEI, 2010). In zones close to roadside, road traffic may be responsible for 1 

over 90% of the total emission of harmful pollutants such as NO2 (AQAP, 2004). The 2 

UK Traffic Management Act 2004 (TMA, 2004) has put in place legislation aiming to 3 

promote a systematic integration of air quality management with transport planning. 4 

As a result of these measures, including tough regulations for industry and tightened 5 

emission standards for vehicles (EUR, 2003), an improved air quality has been 6 

achieved in the UK, even though elevated levels of pollution still occur (AQS, 2007; 7 

Faulkner and Russell, 2010). 8 

Leeds City Council is taking a proactive stance in monitoring and managing air 9 

quality by deploying the state-of-the-art instrumentations in the city (with the data ac-10 

cessible to transportation and environmental researchers and modellers) and by im-11 

plementing traffic control schemes. Two AQMAs were declared in small areas of the 12 

inner city (AQAP, 2004), with the action plans including measures such as traffic de-13 

mand management, improvements to the highways network, reducing emissions 14 

from industrial and domestic sources, and raising awareness. 15 

In order to monitor and assess the efficacy of these and future policies, it is impor-16 

tant to develop adequate statistical methods to measure the impact of the regulations 17 

on the dynamics of various pollutants, especially with regard to the set standards. 18 

Clearly, any such methods should be linked to exceedance episodes, when the con-19 

centrations of one or more pollutants violate certain thresholds. This underpins the 20 

importance of developing reliable tools for statistical modelling of exceedances, in-21 

cluding their prediction and control. Progress in this direction would provide the nec-22 

essary feedback helping to assess and improve the current environmental policies, 23 

thus avoiding a grossly inefficient and costly �trial and error� approach. Furthermore, 24 

in addition to the environmental and health benefits, advancement of research meth-25 

odologies in the statistical modelling of pollutant concentration extremes could have a 26 

significant economic value, potentially leading to massive savings in the public 27 

spending related to the government�s environmental policies. 28 

To date, a number of statistical methods have been developed to model violations 29 

of the air quality standards. The common approach is based on extreme value theory 30 

(see review papers by Thompson et al., 2001; Smith, 2004, and further references 31 

therein). Exceedances of air pollution concentrations can also be modelled using 32 

non-homogeneous Poisson processes (see Raftery, 1989; Smith, 1989; Shively, 33 

1991; Smith and Shively, 1995; Achcar et al., 2009). This approach is motivated by 34 

the asymptotic theory of stationary point processes stating that the series of occur-35 

rences of high threshold exceedances can be approximated by a Poisson process 36 

(Leadbetter et al., 1983). For nonstationary data, the approximating Poisson process 37 

has to be non-homogeneous, with the intensity rate depending on time. Estimation of 38 

the unknown rate function )(tλ  is greatly facilitated by choosing certain parametric 39 

classes, such as 1)( −= βαλ tt , )()( αβλ += tt , tet βαλ −=)(  ( 0, >βα ), etc. (Achcar 40 

et al., 2009). Note that these and other conventional formulas are restricted by a 41 

monotone behaviour of )(tλ . More complex models are obtained by incorporating the 42 

dependence of parameters on �external� factors (covariates) such as meteorological 43 
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conditions (Smith and Shively, 1995). However, such models are not suitable if the 1 

rate may change abruptly (e.g., following an updated air quality action plan). To cap-2 

ture this type of variation in the exceedance dynamics, Achcar et al. (2009) proposed 3 

a parametric non-homogeneous Poisson model allowing to handle up to three 4 

change-points using complicated iterative updates of the prior information. 5 

In the present paper, we use a non-homogeneous Poisson model with no prior re-6 

striction on the number of change-points. For simplicity, the rate )(tλ  is assumed to 7 

be a step function (i.e., constant between adjacent change-points). Note that statis-8 

tics of threshold exceedances is likely to involve short-range correlations due to 9 

patches of elevated concentration levels. Therefore, to ensure a better fit of the Pois-10 

son model it is essential to apply a suitable thinning (declusterisation) of the thresh-11 

old exceedance data (Shively, 1991). An efficient MCMC estimator is then used to 12 

automatically determine the number and locations of change-points, as well as the 13 

respective values (heights) of the rate function. These techniques are applied to NO2, 14 

NO and CO data collected in Leeds, UK, as daily concentration maxima over nearly 15 

17 years (1993�2009).  16 

The paper is organised as follows. In Section 2, we review basic properties of 17 

non-homogeneous Poisson processes and set out the step rate model; formal statis-18 

tical tests to compare different Poisson models are also outlined there. Section 3 19 

deals with the model specification and preprocessing, including thresholding, imput-20 

ing missing values, deseasonalisation and declusterisation. The results of fitting a 21 

step rate Poisson model to the NO2, NO and CO threshold exceedance data, using a 22 

suitable MCMC estimator, are reported in Section 4, followed by the model verifica-23 

tion and validation. Section 5 contains the discussion, including some preliminary in-24 

terpretation of the results in terms of past air quality related actions and events. Fi-25 

nally, a brief summary of the work is given in Section 6.  26 

2. Poisson model 27 

2.1. Non-homogeneous Poisson process 28 

Poisson process (Cox and Lewis, 1966) is a statistical model describing a series 29 

of uncorrelated random events (�arrivals�), whereby new arrivals are statistically in-30 

dependent of any past arrivals. Rate function )(tλ  of the Poisson process determines 31 

its local intensity. The number )(tN of arrivals on ],0[ t  is distributed according to a 32 

Poisson law, 33 
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The waiting time τ  to first arrival after time s  satisfies 37 
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Formulas (1), (2) imply that the joint probability density of arrivals conditioned on their 7 

total number nTN =)(  is given by   8 
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which coincides with the density of the increasing order statistics for n  independent 10 

points thrown in the interval ],0[ T  with the density )()( Tt Λλ  each (e.g., for a con-11 

stant rate this amounts to the uniform distribution on ],0[ T ). In turn, formula (4) im-12 

plies that the values )()( Ttt ii ΛΛ=′  have the same distribution as the uniform order 13 

statistics on ],0[ T  (Lewis and Shedler, 1976), which allows one to construct approxi-14 

mate goodness-of-fit tests for particular classes of the rate functions using estimates 15 

of the model parameters (see Section 2.2 below).    16 

In the present paper, the rate )(tλ  is assumed to be a step function,  17 

)0(,,1,0if)( 1101 Tsssskjstsht kkjjj =<<<<==<≤= ++ LKλ ,         (5) 18 

where the number k  of change-points, as well as their positions js  and heights jh  of 19 

the corresponding steps are not predetermined and therefore have to be statistically 20 

estimated.  21 

2.2. Statistical tests for the Poisson model 22 

To assess the utility of the change-point Poisson process as a fitting model, one 23 

can carry out statistical tests to compare three different models:  24 

• 0M : homogeneous Poisson process, const)( ≡tλ ; 25 

• 1M : Poisson process with a log-linear rate, )exp()( tt βαλ −= ; 26 

• 2M : Poisson step rate model with one change-point. 27 

For observed threshold exceedance data TtttX n <<<<< L210: , denote 28 
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A classical goodness-of-fit test for 0M  is based on the uniform distribution of arrivals 2 

(Section 2.1), implying that  nS  is approximately normal with mean 2n  and variance 3 

12n  (Cox and Lewis, 1966). A test for 0M  against 2M  (Raftery, 1989) is based on 4 

the statistic (Raftery, 1989) 5 
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where the maximum is taken over all ]99.0,01.0[∈iu , and  7 

)1()()1(),( uuinuuiuig −−−−=         )10,,,1( <<= uni K . 8 

Approximate critical values can be computed from the formula (Akman and Raftery, 9 

1986) 10 
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For the model 1M , the coefficient α  is a nuisance parameter eliminated by switch-12 

ing to the conditional distribution with 0>n  observed arrivals in ],0[ T . The slope pa-13 

rameter β  is estimated from the maximum likelihood equation 0)�(
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As was explained in Section 2.1, the modified values 17 
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with )�exp(1�)(�)(� 1

0
tduut
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ββαλΛ −−== −∫ , are approximately distributed as the uni-19 

form order statistics, so the uniformity test described above may be applied (Lewis 20 

and Shedler, 1976).  21 

Models can also be compared using the Bayes factor ijB  (Raftery, 1996), defined 22 

as the ratio of posterior to prior odds for iM  against jM : 23 

.:,
)|(

)|(
1 n

j

i
ij ttX

MXP

MXP
B <<= L                                                                     (11) 24 



6 

 

An indicative scale for interpreting ijB  is given in Raftery (1996, p. 165); e.g., values 1 

from 12 to 150 are classed as strong evidence in favour of the null hypothesis iM . 2 

The Bayes factors for 0M  against 1M  and 2M  (Raftery, 1989) are given by 3 
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3. Model preprocessing 9 

3.1. Thresholding 10 

To set a specific threshold in order to extract the statistics of exceedances, it 11 

might seem natural to use the air quality standards (AQS, 2007). However, there are 12 

several difficulties: (i) the standards are set out in terms of hourly or maximum daily 13 

rolling 8-hour averages, while we work with the daily data; (ii) the standards limit 14 

permitted frequencies of threshold violations, which causes the �moving window� type 15 

dependence in the exceedance data; (iii) the standard threshold values produce 16 

scarce statistics of the resulting exceedances (e.g., 0.11% for NO2).  17 

A simple alternative is to use the quantile thresholding at, say, a 90th empirical 18 

percentile, leading to the specific threshold values of 96 ȝg m-3 (NO2), 185 ȝg m-3 19 

(NO) and 2.1 mg m-3 (CO). Cumulative counts of the resulting exceedance data for 20 

all three pollutants are shown in Fig. 1.  21 

3.2. Missing values 22 

Our concentration level data contain a noticeable proportion of missing values 23 

(6.6%, 5.5% and 9.9% in the NO2, NO and CO data, respectively), which considera-24 

bly decreases the exceedance statistics available and therefore may adversely affect 25 

the estimation of the unknown rate function )(tλ .  26 

One can improve estimation by compensating for the omissions (Cox, 1981). In 27 

this work, we impute the missing values using a (two-sided) moving average estima-28 

tor with the window size 65± days. We first impute raw concentration values drawn 29 

independently according to their estimated (univariate) distribution, and then apply 30 

thresholding. Even though such interpolation neglects possible short-range correla-31 
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tions in the concentration time series, it may be expected to work well due to a sub-1 

sequent high-level thresholding (Leadbetter et al., 1983).  2 

 3 

<Figure 1> 4 

 5 

 6 

<Table 1> 7 

 8 

 9 

The imputed exceedances for each pollutant are indicated in Fig. 1. Table 1 10 

shows the MCMC results for NO2 obtained before and after imputation. In both 11 

cases, the number of change-points identified by MCMC was found to be 1=k , with 12 

almost the same locations; however, the step heights of the rate function noticeably 13 

increased (by about 5%) as a result of more exceedances.  14 

3.3. Deseasonalisation 15 

It has to be taken into account that the concentration levels of all three pollutants 16 

under study (NO2, NO and CO) are affected by meteorological conditions, e,g. induc-17 

ing yearly oscillations (seasonality) in time series. For nitrogen oxides NO2 and NO, 18 

this may be explained by photochemical reactions between NO2 and NO involving 19 

ozone O3 (Clapp and Jenkin, 2001), leading to decreased levels of NOx during the 20 

summer due to higher solar radiation. Carbon monoxide CO is relatively nonreactive, 21 

but low temperatures in winter contribute to higher CO concentrations due to incom-22 

plete combustion in vehicle engines (CCME, 2002). Yearly cycles in the concentra-23 

tion time series are clearly visible in the daily data plots (Fig. 2, top), confirmed by 24 

computing the autocorrelation at lag 365 days (0.17 for NO2 and NO, 0.33 for CO). 25 

Furthermore, analyzing the estimated spectral density of the observed time series 26 

(Venables, 2002), seasonality was found to be significant.  27 

Deseasonalisation may be based on fitting a regression model for the log-28 

transformed data (Cox and Lewis, 1966) 29 

ctbtatXtX −−−= ωω sincos)(log)(
~

log ,         )days(
365

2 1−=
π

ω ,                   (15)  30 

Possible deviations from stationarity in the concentration data are likely to occur on a 31 

scale much slower than the annual variability, hence the regression estimation may 32 

be expected to give satisfactory results (cf. Cox and Lewis, 1966). Periodic trends 33 

filtered out from the raw data are shown in Fig. 2 (top). Deseasonalised data )(
~

tX  34 

are plotted in Fig. 2 (bottom) showing a much improved scattering, with no visible pe-35 

riodic pattern 36 

 37 

 38 

<Figure 2> 39 

 40 

 41 
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Alternative methods of deseasonalisation may be based on moving-average, ker-1 

nel type local smoothing or spectral techniques (Cox and Lewis, 1966; Lewis and 2 

Shedler, 1976). One could also take into account weekly periodicities due to traffic 3 

patterns caused by peak hours and weekday�weekend oscillations. However, weekly 4 

oscillations occur much more frequently as compared to the annual scale, so are bet-5 

ter averaged out by fitting a step rate Poisson model; in addition, the weekly patterns 6 

are likely to be rather stable across decades.   7 

3.4. Declusterisation 8 

The time series of threshold exceedances by air pollution concentrations is likely 9 

to involve dependence (autocorrelation) manifested in clustering of consecutive ex-10 

ceedances, which may render Poisson model unsuitable. However, thanks to a rela-11 

tively short range of such correlations, the dependence problem can be rectified by a 12 

suitable thinning, or �declusterisation� (Leadbetter et al., 1983; Shively, 1991), usually 13 

achieved by retaining one point from each cluster (merged with the subsequent point 14 

below the threshold to remove the tie).  15 

Significance of dependence before and after declusterisation may be tested using 16 

the sample correlation coefficient for gaps between exceedances or by estimating 17 

serial correlation at various lags (Venables, 2002). We deployed the nonparametric 18 

Wald�Wolfowitz runs test of independence (Gibbons and Chakraborti, 2003) applied 19 

to a two-valued data sequence representing threshold exceedances versus non-20 

exceedances. Note that the runs test applied to the entire declustered sequence may 21 

still reject 0H  due to nonstationarity, so it should be used on separate intervals be-22 

tween the change-points, which need to be estimated in advance. 23 

In this study, declusterisation resulted in a reduction of the data size by about 30�24 

35%. The runs test accepted independence on all intervals between the estimated 25 

change-points, with the p-values above 0.10.  26 

4. Results for the air pollution data 27 

In this section, we report the results of estimation of the unknown step rate func-28 

tion )(tλ  to fit a non-homogeneous Poisson process to threshold exceedance data 29 

obtained from the NO2, NO and CO concentration level measurements. The data 30 

were collected in the Leeds city centre by a permanent monitoring station located 31 

about 30 metres from a busy 4-lane inner-city road and 150 metres from an urban 32 

motorway, with traffic flow of approximately 21,500 and 93,500 vehicles per day, re-33 

spectively (AURN, 2010). The data used in the study (AQA, 2010) correspond to the 34 

daily maxima for each of the three pollutants, observed from 4 January 1993 to 31 35 

December 2009 (i.e., for T = 6 206 days). 36 

4.1. Posterior estimates of the rate function 37 

From the cumulative plot of exceedance frequencies for NO2 (Fig. 1), it is evident 38 

that the initial part of the graph up to 2500≈t  is close to a linear function (with the 39 

slope about 0.1122500280 = ), followed by a noticeable drop of the slope to ap-40 
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proximately 0.018)25003600()280300( =−−  until 3600≈t . One may also suspect 1 

one or two less significant change-points further on (e.g., near 4500≈t ). Similarly, 2 

the cumulative graphs for NO and CO in Fig. 1 suggest about four to five hypothetical 3 

change-points each. Hence, as a prior distribution for the unknown number k  of 4 

change-points it is reasonable to choose a Poisson law with mean 5.4 .  5 

The programming code for the Markov chain Monte Carlo (MCMC) algorithm 6 

adapted from Green (1995) was implemented in R using a standard laptop (AMD 7 

processor DualCore 2.2 GB, RAM 4GB). The sampler takes 1000 steps within 20 8 

seconds. Manual programming was necessary since the standard MCMC engines 9 

(e.g., WinBUGS, http://www.mrc-bsu.cam.ac.uk/bugs/) are not yet suitable for models 10 

with variable dimension. 11 

After a burn-in period of length 15,000�20,000, pilot runs established that the dy-12 

namics of the Markov chain have reached the stationary regime. As usual, conver-13 

gence of the sampling algorithm was monitored by visual inspection of the output 14 

plots and also by simple convergence diagnostic tools based on the MCMC output 15 

for a single Markov chain (Gilks et al., 1996). In addition, reliability of the burn-in runs 16 

was verified by trying different initial values, also utilised to control the termination 17 

time of the MCMC algorithm. In the stationary regime, the MCMC was run for 18 

500,000 updates. Examining the autocorrelation plots, it was determined that inde-19 

pendence within the sample is ensured by selecting every 40th generated value, thus 20 

providing a posterior sample of size 500,1240000,500 = .  21 

 22 

<Figure 3> 23 

 24 

 25 

As a result of the MCMC performance, it was concluded that the MCMC sampler 26 

spent most of its time in parametric states corresponding to 1=k , 3=k  and 4=k  27 

change-points for NO2, NO and CO, respectively (Fig. 3). The change-point locations 28 

js , estimated via the modes of the posterior marginal densities, are shown in Fig. 4. 29 

Specific time values of the change-points, along with 50% credible intervals, are 30 

given in Table 2. The step heights jh  of the rate function )(tλ  were estimated via the 31 

median of the posterior marginal distributions (see Fig. 5 and Table 3). Note that the 32 

parametric dimension of the model is bounded by  33 

10541)dim()dim()dim( =++≤++ jj hsk ,  34 

furnishing 125010500,12 =  sampled values per parameter, which ensures good ac-35 

curacy of the posterior estimation. 36 

 37 

<Figure 4> 38 

 39 

<Table 2> 40 

 41 
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 1 

<Figure 5> 2 

 3 

 4 

<Table 3> 5 

 6 

<Figure 6> 7 

 8 

 9 

The graph of the step function )(tλ
)

 (with estimated change-points js  and step 10 

heights jh ) is shown in Fig. 6 along with an �integral� estimate )(tλ  of the posterior 11 

mean rate function calculated by averaging 5000 sample step rate functions drawn 12 

from the MCMC posterior distribution. The transition areas for )(tλ  near the change-13 

points are typically quite narrow, confirming a stepwise nature of the rate function 14 

)(tλ . Fig. 6 also shows the cumulative graphs simulated via Poisson processes with 15 

rates )(tλ
)

 and )(tλ , contrasted with the observed cumulative plot (cf. Fig. 1). As 16 

could be anticipated, the integrated (cumulative) estimates demonstrate a much bet-17 

ter fit to the data. 18 

4.2. Verification of the Poisson change-point model 19 

The fitted step rate Poisson model can be verified by checking uniform distribution 20 

of exceedance occurrences between the consecutive change-points (Section 2.1). 21 

Specifically, for NO2 there are two step intervals separated by the estimated change-22 

point 24901 =s  and containing 2570 =n  and 1331 =n  exceedances. Using the uni-23 

formity test based on (6), we obtain the approximate p-values 0.6326 and 0.4907, re-24 

spectively, confirming good quality of the fitted model. For NO and CO, the results 25 

were similar.  26 

Further verification is motivated by challenging the lack of change-points on some 27 

intervals. For instance, to compare two competing models 0M  and 2M  for NO2 on the 28 

interval ]6206,2490[ , we evaluate the test statistic (7) (with 1331 == nn ) and use 29 

formula (8) to find the approximate p-value 0.1457, indicating that model  0M  is ac-30 

ceptable. Moreover, formula (13) gives the Bayes factor .393302 =B , which consti-31 

tutes strong evidence in support of 0M . Similar calculations for NO and CO also con-32 

firmed the absence of �extra� change-points.  33 

It is interesting to assess the stepwise variation of the rate function )(tλ  as op-34 

posed to a more gradual change, especially for NO and CO (Fig. 1), by testing model 35 

1M  against the alternative 2M . Starting with the NO data, from equation (9) we esti-36 

mated the slope 0.000313=β
)

 and tested the uniformilty of the modified ex-37 

ceedances (10). The statistic (6) gave the p-value 0.025, suggesting that 1M  should 38 

be rejected. This was confirmed by calculating the Bayes factor 53.1721 =B  using 39 
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equations (12), (13) and (14). Similar results were obtained for CO, confirming that 1 

model 1M  is less suitable than the fitted step rate model.  2 

4.3. Validation of the fitted Poisson model 3 

To validate the employed MCMC sampler, we simulated data sets from non-4 

homogeneous Poisson processes with the estimated step function )(tλ
)

 as a rate 5 

function and again applied MCMC to see if there were any significant differences in 6 

the estimates. The results (Fig. 7) show an excellent match of the posterior estimates 7 

for the simulated data sets with those obtained earlier for the observed data.  8 

 9 

<Figure 7> 10 

 11 

<Figure 8> 12 

 13 

 14 

Following the method of posterior predictive simulation (Gilks et al., 1996), repli-15 

cated the counting processes and compared them to the corresponding cumulative 16 

plots (Fig. 8). Due to random fluctuations, deviations of the replicated cumulative 17 

plots increase over time. The accuracy may be improved by simulating Poisson 18 

processes conditioned to have the same number of occurrences as in the real data. 19 

Conditional replicates are presented in Fig. 8, showing an excellent fit with the ob-20 

served plot and also consistent with the sample mean plot for data sets simulated 21 

with a posterior estimate )(tλ
)

. 22 

5. Discussion 23 

5.1. General comments  24 

Statistical analysis of observed pollutant concentrations developed in this paper is 25 

essentially based on the extreme value approach by utilising high threshold ex-26 

ceedances for statistical inference. We focused on the corresponding point process 27 

of exceedance occurrences in time, whereas the actual values of exceedances were 28 

not taken into consideration. This simplified model has an advantage of being less 29 

sensitive to deviations from the model assumptions, and hence more useful in real 30 

data applications. The algorithmic tractability of the model makes it suitable for an ef-31 

ficient MCMC multi-parametric estimation. As has been demonstrated in this work, 32 

MCMC provides a reliable identification of the unknown change-points in the rate 33 

function, including their number, location and the corresponding step heights. 34 

A global downward trend in the behaviour of the rate functions for each pollutant 35 

(Fig. 6) indicates a general improvement in the air quality, arguably promoted by en-36 

vironmental actions (NAEI, 2010). It may also be attributable to the improvement of 37 

car engines (in particular, using the three-way catalytic converters as standard) and 38 

to the developing change in drivers� attitudes (Glaister, 2002). Since a step rate 39 
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model is unsuitable for capturing this kind of dynamics, it is interesting to consider a 1 

more general class  2 

)()( tet tλλ β
β

−= ,                                                                                                  (16) 3 

where )(tλ  is a pure step function (5). Model (16) can be reduced to (5) by filtering 4 

out the log-linear term together with annual periodicity, using the regression equation 5 

(cf. (15))  6 

ctbtattXtX −−−+= ωωβ sincos)(log)(
~

log .                                                  (17) 7 

Fig. 9 illustrates the results of fitting the combined trend (17) to the raw data; note a 8 

better fit as compared to a pure periodic trend (cf. Fig. 2).  9 

Due to the computational complexity of the model and the distribution-oriented na-10 

ture of Bayesian inference, specific conclusions of the MCMC-based analysis should 11 

be treated with caution. There is a need for an additional cross-examination and veri-12 

fication of these findings in co-operation with experts from other subject areas, in-13 

cluding policy makers as well as environmental and transport modellers and practi-14 

tioners. Special care is required when relating the conclusions of the threshold ex-15 

ceedance analysis with official statistics (see, e.g., NAEI, 2010; Faulkner and Rus-16 

sell, 2010) usually based on averaged observations rather than on extreme values. 17 

This underpins possible significant discrepancies in the interpretation, since extreme 18 

value statistics may appear more sensitive to traffic pollution changes than the typi-19 

cal, bulk values (Smith, 2004).  20 

 21 

 22 

<Figure 9> 23 

 24 

5.2. Mapping and interpretation 25 

The following is a preliminary attempt of �mapping� of our results, i.e., relating the 26 

identified change-points with real transport and environment related circumstances.    27 

5.2.1. High Occupancy Vehicle lane. Two change-points in Table 2 (29 October 28 

1999, NO2, and 11 November 1999, NO) may be associated with the High Occu-29 

pancy Vehicle (HOV) lane scheme, designed to give priority to vehicles with more 30 

than one commuter (HOVL, 2004). The HOV lane in Leeds was opened on 11 May 31 

1998 on the A647 Stanningley Road and Stanningley By-Pass, which form the prin-32 

cipal radial route to the west of the city centre. By the official assessment (HOVL, 33 

2004), a relatively small improvement of air quality was attributed �to reduced vehicle 34 

emissions rather than to the impact of the HOV lane�. However, the reduced conges-35 

tion on A647 could also affect the traffic in the city centre where our data were col-36 

lected (AQA, 2010). In addition, due to predominantly westerly winds in North East 37 

England (MET-O, 2010), an improved air quality near A647 might positively contrib-38 

ute to the city centre (5 miles east of the HOV lane).  39 
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5.2.2. East Leeds Link Road. Leeds City Council initiated a number of projects to 1 

improve the highway network, including the East Leeds Link Road (ELLR) designed 2 

to reduce through-traffic in the city centre (ELLR, 2010). The new 4 km dual car-3 

riageway link between junction 45 of the M1 and the Leeds Inner Ring Road was 4 

opened on 10 February 2009, expected to provide �indirect� improvements in the air 5 

quality, with low to moderate impact (AQAP, 2004). Our model has not detected any 6 

change-points around February 2009 or after, but using more data beyond December 7 

2009 might make it different.  8 

5.2.3. Leeds Free City Bus. This zero-fare service (3.4 miles long loop in the city 9 

centre) began on 30 January 2006. It is estimated that the scheme has reduced the 10 

numbers of cars entering the city centre (LCCA, 2010) and hence contributed to-11 

wards meeting a target of 10% reduction by 2011 in NO2 (LCCA, 2010). The 12 

scheme�s impact was not strong enough to be picked up by our model, perhaps be-13 

ing masked by the general downward trend. 14 

5.2.4. Christmas 2004. Two change-points in Table 2 (1 December 2004, NO, 15 

and 8 January 2005, CO), with overlapping 50%-credible intervals, are both close to 16 

the Christmas and New Year holidays when the traffic drops dramatically. It is un-17 

clear if this alone has affected the threshold exceedance data so much as to lead to 18 

a statistically significant change-point for NO and CO. Incidentally, note a strong drop 19 

in the raw time series for NO2 around 16 December 2001 (Fig. 2); however, no 20 

change-points were detected anywhere near. 21 

5.2.5. Construction works. There were construction works near the monitoring 22 

station in the city centre, from mid-January 2005 until end of June 2009 (AURN, 23 

2010). There were some concerns that the associated transportation and engineering 24 

activities might be responsible for sporadic elevated pollution levels in the area. From 25 

Table 2, the latest identified change-point was 8 December 2005 (for CO), with the 26 

50% credible interval covering the commencement date of the construction. How-27 

ever, causal association seems unlikely due to a decrease of the estimated rate, 28 

suggesting that any contribution to the air pollution in NO2, NO and CO was relatively 29 

mild as compared to a presumably dominant input from intensive traffic on the nearby 30 

roads (AURN, 2010). On the other hand, contributions to other pollutants might have 31 

been more prominent (e.g., particulate matter due to dust) and hence could be 32 

picked up by our methods; indeed, PM10 concentration data (not reported here) re-33 

veal substantially elevated levels from April to December 2005.  34 

5.2.6. Fuel crisis 2000. The UK �fuel crisis�, lasting one week in September 2000, 35 

was caused by the increase of the fuel prices and subsequent public protests includ-36 

ing blockade of oil facilities, which led to disruption of fuel deliveries and hence to 37 

significant reductions in traffic flows (Hathaway, 2001). According to AQAP (2004), 38 

this resulted in a dramatic improvement of the air quality in the city (e.g., by 30�40% 39 

for NO2). Our model has not picked up any noticeable change near this point in time, 40 

which is not surprising in view of a very short-lived impact of this episode. 41 
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5.2.7. European emission standards. These standards determined acceptable 1 

exhaust emission limits for new vehicles sold within the European Union (EUR, 2 

2003); e.g., for passenger cars the staged inception dates were: July 1992 (Euro 1), 3 

January 1996 (Euro 2), January 2000 (Euro 3), January 2005 (Euro 4) and Septem-4 

ber 2009 (Euro 5). Some of these dates may be related to the identified change-5 

points (Table 2). In particular, 29 October 1999 (NO2) and 11 November 1999 (NO) 6 

are close to Euro 3 (covered by the 50% credible intervals), while the Christmas 2004 7 

change-points (Section 5.2.4) may be linked with Euro 4. Furthermore, 18 May 1995 8 

(NO) and 5 April 1995 (CO) may be attributed (even though with somewhat lower 9 

credibility) to Euro 2 which significantly tightened up the CO standard for diesel cars 10 

and reduced the NOx permitted levels by 25�45% (EUR, 2003). 11 

6. Conclusions 12 

In this paper, we have used a non-homogeneous Poisson model to fit the ob-13 

served series of threshold exceedance occurrences in time, extracted from the daily 14 

pollution concentration data obtained in Leeds (UK) in 1993�2009. The time depend-15 

ence of the unknown Poisson rate was assumed to be a step function, with an arbi-16 

trary number of possible change-points and no restrictions on its values (in particular, 17 

with no a priori requirement of monotonicity). The principal aim of the modelling was 18 

to identify statistically significant change-points in the rate function, signalling notable 19 

changes in the pollution dynamics patterns. Statistical estimation of the unknown rate 20 

function was carried out using Bayesian posterior samples obtained by adapting an 21 

MCMC algorithm proposed by Green (1995). Our results have demonstrated the 22 

computational and statistical efficiency of the MCMC method.  23 

Once the statistical identification is carried out and validated (e.g., by simulations), 24 

it is important to seek a meaningful interpretation of the results, bearing in mind up-25 

dates in the environmental policies by local and central authorities as one possible 26 

source of the emerging change-points. Certain care is needed in practical applica-27 

tions of the Poisson model, since �false� change-points may be induced by meteoro-28 

logical conditions, seasonality, missing values and cluster correlations in threshold 29 

exceedances. We have addressed these issues by the data preprocessing (including 30 

deseasonalisation and declusterisation), supported by a graphical and statistical as-31 

sessment of the results.  32 

The application of non-homogeneous Poisson processes with multiple change-33 

points may provide a suitable modelling framework in the air quality management, 34 

which can be used to analyse pattern changes in the violation of air quality standards 35 

by various pollutants. In particular, these methods may be instrumental in obtaining 36 

important feedback about environmental actions and assessing their impact on the 37 

dynamical patterns of potentially hazardous pollutants. 38 
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Figure captions 1 

 2 

Fig. 1. Cumulative count plots of threshold exceedances for the observed raw data 3 

(black) and for the data with the missing values estimated via the moving-average 4 

with a two-sided window of size 65±  days (grey). Black ticks on the time axis indi-5 

cate the occurrence of missing values; red points on the grey curve show the im-6 

puted exceedance values.  7 

 8 

Fig. 2. Top: observed daily maximum concentrations of NO2, NO and CO (black) and 9 

the estimated yearly periodic trend for the log-transformed data (red). Bottom: de-10 

seasonalised data, with the yearly periodic trend removed. 11 

 12 

Fig. 3.  Estimated MCMC posterior distribution of the number k  of change-points in 13 

the step rate function )(tλ , obtained for the observed threshold exceedance data 14 

(red) and for data simulated via non-homogeneous Poisson process with the 15 

estimated step function )(� tλ  as the rate (blue). 16 

 17 

Fig. 4. Estimated MCMC posterior density functions of the marginal distributions for 18 

the locations js  of the identified change-points (cf. Table 2), obtained for the ob-19 

served threshold exceedance data (red) and for data simulated via non-20 

homogeneous Poisson process with the estimated step function )(� tλ  as the rate 21 

(blue). The estimates were computed using a Gaussian kernel with bandwidth 95 22 

days. 23 

 24 

Fig. 5. Estimated MCMC posterior density functions of the univariate marginal distri-25 

butions for the heights jh  of the estimated change-points (cf. Table 3), obtained for 26 

the observed threshold exceedance data (red) and for data simulated via the esti-27 

mated step rate function )(� tλ  (blue). The estimates were computed using a Gaussian 28 

kernel with bandwidth 0.003 days-1.  29 

 30 

Fig. 6. MCMC results for each pollutant: estimated rate functions (left axes) and the 31 

corresponding cumulative plots for data sets simulated via non-homogeneous Pois-32 

son process (right axes). Colour-coded plots correspond to the posterior mean rate 33 

)(tλ  (red) and a step rate function )(� tλ  estimated from the posterior distribution 34 

(blue). Black dotted graphs show the cumulative plots of observed threshold ex-35 

ceedances. Dashed vertical lines indicate the locations of estimated change-points.  36 

 37 
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Fig. 7. Validation of the MCMC performance in the step rate Poisson model estima-1 

tion. The rate graphs (left axes) show the step rate function )(� tλ  (blue) estimated for 2 

the observed threshold exceedances from the MCMC posterior distribution, and the 3 

posterior mean rate )(tλ  (red) obtained for a data set simulated via a non-4 

homogeneous Poisson process with rate )(� tλ . Cumulative plots (right axes) corre-5 

spond to data sets simulated via non-homogeneous Poisson processes with rate 6 

)(� tλ  (blue) or )(tλ  (red).  7 

 8 

Fig. 8. Bayesian validation of the MCMC results using replicated counting processes. 9 

The graphs show cumulative plots for simulated data, non-conditional (left) and con-10 

ditional (right) on the total number of observed threshold exeedances. Black: cumula-11 

tive plots for the original exceedance data. Grey: 1000 replicated trajectories simu-12 

lated each with a rate function independently sampled from the MCMC posterior dis-13 

tribution. Red: pointwise average of these trajectories. Blue: pointwise average of 14 

another 1000 simulated trajectories of a Poisson counting process with the step rate 15 

function )(� tλ  estimated from the posterior distribution. 16 

 17 

Fig. 9. Combined log-linear/periodic trend of the form (17) (red) fitted to the the log-18 

transformed raw data (black). 19 

 20 
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 1 

Table captions 2 

 3 

Table 1 4 

Comparison of the MCMC estimation results for NO2 before and after imputation of 5 

missing values. Here n = number of exceedances in ],0[ T ; k = number of change-6 

points; 1s  = location of the (first) change-point; 10,hh  = step heights of the rate 7 

function on the intervals ),0( 1s , ),( 1 Ts , respectively.  8 

 9 

Table 2 10 

Posterior modes of the estimated change-points js  and the corresponding lower and 11 

upper quartiles, expressed as day numbers (ranging from 1 to 6206) as well as 12 

calendar dates (dd-mm-yy). 13 

 14 

Table 3  15 

Posterior modes of the estimated heights jh  of the unknown step rate function )(tλ , 16 

with the corresponding lower and upper quartiles. 17 

 18 


