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[1] Regional-scale above-ground biomass (AGB) estimates
of tropical savannas and woodlands are highly uncertain,
despite their global importance for ecosystems services and
as carbon stores. In response, we collated field inventory data
from 253 plots at four study sites in Cameroon, Uganda
and Mozambique, and examined the relationships between
field-measured AGB and cross-polarized radar backscatter
values derived from ALOS PALSAR, an L-band satellite
sensor. The relationships were highly significant, similar
among sites, and displayed high prediction accuracies up
to 150 Mg ha�1 (±�20%). AGB predictions for any given
site obtained using equations derived from data from only
the other three sites generated only small increases in
error. The results suggest that a widely applicable general
relationship exists between AGB and L-band backscatter
for lower-biomass tropical woody vegetation. This
relationship allows regional-scale AGB estimation,
required for example by planned REDD (Reducing
Emissions from Deforestation and Degradation) schemes.
Citation: Mitchard, E. T. A., S. S. Saatchi, I. H. Woodhouse,

G. Nangendo, N. S. Ribeiro, M. Williams, C. M. Ryan, S. L.

Lewis, T. R. Feldpausch, and P. Meir (2009), Using satellite

radar backscatter to predict above-ground woody biomass: A

consistent relationship across four different African landscapes,

Geophys. Res. Lett., 36, L23401, doi:10.1029/2009GL040692.

1. Introduction

[2] There is no universally accepted methodology for
assessing the above-ground biomass (AGB) of woody trop-
ical landscapes. While there is a degree of consensus on the
best methods of collecting ground-based inventory data
[Brown, 1997; Chave et al., 2009; Phillips et al., 2009],
and a general agreement that remote sensing data provides
the best methodology for both scaling-up ground-based
measurements and monitoring changes over large scales,
there is a plethora of different sensors and analytical proce-
dures available for scaling-up AGB estimates [Lu, 2006].
[3] Tropical savanna and woodland ecosystems provide

substantial ecosystem services at local to global scales: the

provision of timber, fuel and other products, the regulation
of soil and water, biodiversity retention, atmospheric services
and eco-tourism. However, attempts to mitigate rising atmo-
spheric CO2 levels have led to projects aiming to preserve
these ecosystems based solely on their carbon stocks. To be
successful, whether in voluntary carbon markets or via a
post-Kyoto climate change agreement under one of the
Reducing Emissions from Deforestation and Degradation
(REDD) frameworks, a universal, low-cost and robust way
to measure and monitor carbon stocks over large regions is
needed [Grassi et al., 2008].
[4] An ideal large-scale AGB measurement system would

be one that could sense AGB directly, and as such would
have no upper biomass limit, and do so independently of
cloud cover. Currently no such system exists, although future
satellite platforms which will combine fully polarimetric
radar with measurements of vegetation height may come
closer to this goal [Donnellan et al., 2008; Le Toan et al.,
2008]. However, for areas with an AGB < �150 Mg ha�1,
which incorporates the savanna and woodland biomes, and
drier tropical forest formations, the L-band radar sensor
ALOS PALSAR may go some way towards providing a
system for measuring AGB that meets observational require-
ments. In this paper we set out evidence supporting this claim.
[5] Synthetic Aperture Radar (SAR) sensors are active

instruments, sending a pulse of microwave radiation and
detecting the radiation scattered back (backscatter, referred
to as sigma0 [s0]) by the surface and the 3-dimensional
structures on it. When longer wavelength microwaves are
used (>20 cm) the detected radiation is mostly due to
backscattering from the branching elements and stems of
the trees, and thus radar should respond in a characteristic
way to forest volume and biomass [Saatchi andMoghaddam,
2000]. As a result, long wavelength SAR has a stronger and
more universal relationship than optical or short wavelength
microwave sensors which are sensitive to leaf characteristics,
where relationships with the woody component of vegetation
are indirect and thus highly site- and season- specific. The
radar backscatter response saturates at higher biomass values
in savanna ecosystems, at a variable point (>60 Mg ha�1

[Santos et al., 2002], >80 Mg ha�1 [Lucas et al., 2000], and
>150 Mg ha�1 [Mitchard et al., 2009], all using different
L-band systems). This saturation point is due to the com-
peting mechanisms of scattering and attenuation (absorption)
of microwave energy in the canopy of the vegetation, and is
highly dependent on the canopy density, stem density, tree
species, and vegetation and soil moisture conditions, as
well as the characteristics of the radar data used. Never-
theless, this point is high enough that useful biomass
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estimates are possible for mixed tree-grass systems (savannas
and woodlands), as these typically have maximum AGB
values <100 Mg ha�1, though higher values can exist in
gallery forests [Brown, 1997].
[6] Advanced Land Observing Satellite (ALOS) Phased

Array L-band Synthetic Aperture Radar (PALSAR) was
launched in January 2006. It operates at a 23.6 cm wave-
length in a number of modes, but the Fine-beam dual-
polarization (FBD) mode, which provides HH (horizontal
transmit and horizontal receive) and HV (horizontal transmit
and vertical receive) data at a 34.3� incidence angle, shows
the greatest potential for these purposes. This is because of
its high signal:noise ratio, high resolution (�20m), provision
of cross-polarized data, and because it is being systematically
collected across the tropics with the aim of forming a freely-
available 50 m resolution mosaic (http://www.eorc.jaxa.jp/
ALOS/en/kc_mosaic/kc_mosaic.htm).
[7] PALSAR, and other L-band systems, have previously

been shown to respond to the AGB of tropical savannas and
woodlands with varying degrees of accuracy [Lucas et al.,
2000; Mitchard et al., 2009; Podest and Saatchi, 2002;
Santos et al., 2002]. However, in these studies the field
datasets were small and from one geographic area. Here we
examine the PALSAR response to AGB at four different
intensively sampled locations across tropical Africa to test
the consistency of the relationship between backscatter and
AGB. We then examine the efficacy of models derived from
three sites to predict the AGB of measured plots in a fourth
site, thus providing a much better test of the utility of such
data for assessing AGB than has previously been performed.

2. Data and Methods

2.1. Field Data

[8] The field sites were located in Cameroon, Uganda
and Mozambique (Figure 1); in all cases standardized

forestry methodologies were employed. Diameters of all
stems >10 cm diameter at breast height (DBH) were mea-
sured and their species recorded; height was also measured
for �30% of stems in the Cameroon and Uganda sites
using vertex hypsometers (Haglöf, Sweden). None of the
study areas exhibit steeply dissected topography.
2.1.1. Mbam Djerem National Park (MDNP),
Cameroon
[9] MDNP encompasses the transition between savanna

and forest contiguous with the Congo Basin. Eight 1 ha
square plots and ten 0.4 ha transects (8 � 20 m � 200 m
& 2 � 40 m � 100 m) in forest and savanna regions in
three areas of the park near 6�90N, 12�500E were sampled
in 2007, with AGB ranging from 6 – 418 Mg ha�1

[Mitchard et al., 2009]. Transects that covered both forest
and savanna were split into two data-points, giving 24
points in total.
2.1.2. Budongo Forest Reserve (BFR), Uganda
[10] BFR is a remnant patch of tropical forest surrounded

by farmland to the south and east, and savanna to the west
and north. One 1.86 ha square plot and eleven 0.5 ha transects
(20 m � 250 m) were measured in 2008 by E. Mitchard, and
261� 0.04 ha & 335� 0.05 ha circular plots in the savannas
and woodlands to the north of the reserve were measured in
2001 [Nangendo et al., 2005]; these latter plots are small
and highly clustered, and as such were averaged in groups
of 5–6 within 100m� 100m areas, giving a total of 118 data
points (0.2 – 0.3 ha). AGB ranged from 6 – 876 Mg ha�1,
with the plots near 1�520N, 31�390E.
2.1.3. Niassa National Reserve (NNR), Mozambique
[11] NNR is a 23 000 km2 protected area in the north of

Mozambique, dominated by Miombo woodland, with the
woody fraction of vegetation increasing in density from
East to West due to a rainfall and disturbance gradient. Fifty
0.07 ha circular plots distributed across the park were

Figure 1. The location of the field sites is shown on a landcover map for the year 2000 produced by Mayaux et al. [2004].

L23401 MITCHARD ET AL.: CONSISTENT AGB-RADAR RELATIONSHIP L23401

2 of 6



measured in 2004 [Ribeiro et al., 2008] around 12�20S,
37�150E. ALOS PALSAR scenes were available for 42,
ranging in AGB from 2–41 Mg ha�1.
2.1.4. Nhambita Community Carbon Project (NCCP),
Mozambique
[12] NCCP is an area of Miombo woodland in central

Mozambique. It has more influence from humans and is
more regularly burnt than NNR, and has different dominant
species. Data were collected for thirteen 1 ha square plots,
five 0.5 ha circular plots, and thirty-eight 0.25 ha square
plots in 2004-7, with an AGB of 3–120 Mg ha�1, near
18�570S, 34�90E [Williams et al., 2008].

2.2. Conversion to AGB

[13] Field plot data were converted to AGB using the best
available methods for each vegetation type. For MDNP and
BFR no local allometry data exist, so the Chave et al.
[2005] pan-tropical optimum allometric equations were
used, using wood density, height and DBH. The moist
tropical forest equation was used for forest species, and
the dry forest equation for savanna species. Height was
measured for �30% of the stems and used to develop site-
specific height-DBH relationships to obtain AGB [Mitchard
et al., 2009]. Wood density data were taken from the Global
Wood Density Database [Chave et al., 2009]; where spe-
cies-specific data was not present, the average value for
African members of the same genus were used. For NNR an
allometric equation involving DBH alone was used, derived
from similar vegetation and climatic conditions nearby in
Tanzania, taken fromMugasha and Chamshama [2002]. For
NCCP destructive sampling was performed to produce a site-
specific allometric relationship [Ryan, 2009]. All plot AGB
values were then converted to Mg ha�1; it should be noted
that these values are dry AGB, not carbon content, and
exclude woody stems < 10 cm, shrubs, grasses, below-
ground sources and necromass. This exclusion of other
above-ground vegetation will cause an underestimate of
AGB of �5% for forest and dense woody savanna plots
[Mitchard et al., 2009], and the size of this error will increase
for lower biomass plots (it is 12% for NCCP [Ryan, 2009]).
However, the derivation from field data of a local correction
factor should be sufficient to correct for this, as L-band radar
will respond mostly to larger stems [Collins et al., 2009].

2.3. SAR Data

[14] L-band dual-polarization (HH/HV) satellite radar data
from the ALOS PALSAR sensor in the FBD mode were
acquired over all field sites from 2007 (see Table S1 of the
auxiliary material for scene IDs and dates)1. The data were
provided at a 12.5 m pixel spacing (4 looks per pixel), and
were converted from digital number to sigma0 using the
revised calibration coefficients [Shimada et al., 2009]. The
scenes were warped to Landsat ETM+ data covering the areas
of the field sites, using observable common features such as
islands, road junctions, and permanent vegetation features,
with a RootMean Square Error (RMSE) always <0.6 Landsat
pixels (18 m), and the backscatter values for pixels covering
each field site extracted, with pixels averaged in the power
domain so the arithmetic, not geometric, means were used.
This type of warping is only possible because all the study

areas have little significant topography, so the problem of
layover (where topographic features are distorted, bending
towards the sensor) is minimized. After averaging, power
values were converted back to sigma0 before being regressed
against AGB. All remote sensing analyses were performed
using ENVI 4.6 (ITT, Boulder, USA), and all regression
analyses with Sigmaplot 11.0 (Systat, Chicago, USA).

3. Results

3.1. Plot Level AGB-Backscatter Relationships

[15] Strong relationships between AGB and HV back-
scatter were found at each of the four landscapes (r2 0.61 –
0.76, p < 0.0001), with a clear reduction in sensitivity
(saturation) obvious between 150 and 200 Mg ha�1; rela-
tionships with the HH polarization were less consistent,
though significant positive relationships were still observable
in all cases (Figure S1 and Table S2 of the auxiliary material).1

The fitted models were of the form:

s
0 ¼ aþ b: ln BAGð Þ ð1Þ

s
0 ¼ aþ b: ln BAGð Þ þ c: ln BAGð Þð Þ2 ð2Þ

Where s
0 is the sigma0 in decibels, BAG is the AGB in

Mg ha�1, and a, b and c are constants. Both models were
fitted to the observed data, with equation (2) being preferred
if the log-squared term was significantly different from zero.
These models were chosen as they produced the highest r2

and lowest RMSE values of a number of simple models
tested. Coefficients and uncertainties are shown in Table S2.

3.2. Combined AGB-Backscatter Relationships

[16] Combining the HV sigma0 and AGB values of all
four datasets produced a strong relationship, with an r2 of
0.73 and p < 0.0001 using equation (2), and with some
sensitivity clearly still present in the data up to 150–
200 Mg ha�1 (Figure 2b). There was also a significant
relationship with HH (r2 = 0.56, p < 0.0001), but this was
less consistent, with saturation occurring at 50–100Mg ha�1

(Figure 2a). The HV relationship fitted was:

s
0
HV ¼ �22þ 2:73 ln AGBð Þ � 0:156 ln AGBð Þð Þ2 ð3Þ

which rearranged to:

AGB ¼ EXP
�2:73þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

7:45� 0:623 22þ s
0
HV

� �� �

q

�0:311

2

4

3

5 ð4Þ

allows the prediction of AGB from sigma0 values (Figure S2).
Attempts were made to combine HH andHV data in a general
linear model, but the HH terms were never significant once
the HV terms had been taken into account.

3.3. Testing Consistency

[17] The consistency of the general relationship described
above was tested using the four independent datasets. For
each of the four sites, AGB predictions and resultant RMSE
values were calculated using the site-specific HV equations

1Auxiliary materials are available in the HTML. doi:10.1029/
2009GL040692.

L23401 MITCHARD ET AL.: CONSISTENT AGB-RADAR RELATIONSHIP L23401

3 of 6



(Figure S1 and Table S2). New equations were then calcu-
lated using equations derived from the other three datasets
only, and predictions made again using the HV values. Both
field and predicted values were limited at 400 Mg ha�1, as
all possible sensitivity to AGB will be lost by this point,
and thus making predictions at such high AGB values has
no validity. Predictions for each site obtained by using an
equation developed from the three other sites increased the
RMSE by only 12–30%, and particularly for data points
with AGB < 150 Mg ha�1 the RMSE values remained low
(Table 1). The average AGB predicted using site-specific
equations was within 30% of the field-derived average
AGB values, and this error increased negligibly when the
equations derived from the other three sites were used
(Table 1). However, as the biomass estimation error from
radar depends on the errors associated with both radar and

ground measurements, the true errors could be greater
[Mitchard et al., 2009].

4. Discussion

[18] We have found that PALSAR HV backscatter
responds strongly to AGB in a consistent manner across
four African sites widely separated in space and differing
greatly in their vegetation structure. The relationship derived
does contain significant prediction errors (±�20% for plots
<150 Mg ha�1). These are partly because L-band SAR does
not respond directly to AGB, but to aspects of vegetation
structure [Saatchi and Moghaddam, 2000], partially due to
spatial variability in structure [Saatchi et al., 2009], and
partially due to radar calibration and orthorectification
[van Zyl, 1990] and field estimation errors propagating
through the analysis [Chave et al., 2004]. In addition,

Figure 2. ALOS PALSAR (a) HH and (b) HV backscatter (s0) are plotted against field-measured AGB (Mg ha�1) for all
four sites combined, with the x-axes shown with conventional and log10 scales. Second order log regression lines are fitted.

Table 1. Average AGB and RMSE for Field Plots Predicted From HV Data and a Site-Specific Model Versus a Model Derived From the

Three Other Sitesa

Site n

Average AGB (Mg ha�1) RMSE (Mg ha�1)
RMSE for Points
< 150 Mg ha�1

Ground Data Site-Specific Other-Three Site-Specific Other-Three Site-Specific Other-Three

MDNP Cameroon 24 114.7 115.5 82.1 61.5 67.5 37.4 22.3
BFR Uganda 129 137.2 176.8 174.0 67.1 74.9 48.8 69.42
NNR Mozambique 42 17.28 19.0 20.2 8.3 12.8 8.3 12.8
NCCP Mozambique 58 40.7 44.6 37.1 19.2 25.2 19.2 25.2

aAll AGB values were limited at 400 Mg ha�1
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backscatter responds differently to differing soil and vegeta-
tion moisture conditions, and the surface topography, adding
to observed prediction errors. For a detailed discussion of the
errors and uncertainties involved in this type of analysis see
Mitchard et al. [2009]. Despite these factors, our analysis
shows that AGB can be predicted using radar data for large
areas dominated by differing vegetation types with useful
accuracy. Notably, errors do not increase dramatically when a
continental PALSAR HV-AGB equation, rather than one
based on local biomass plots, is used to estimate local AGB.
[19] The better relationship between AGB and the HV

rather than HH polarization, and its higher congruence
among sites, is to be expected, as this polarization is much
less influenced by soil and vegetation moisture than HH
[Collins et al., 2009]. HV is also less influenced by topog-
raphy [van Zyl, 1993], though in areas of substantial topo-
graphical change significant inaccuracies in estimation and
geolocation will still arise.
[20] These results have a higher saturation point and less

noise than found in previous studies using L-band HV data,
[e.g., Lucas et al., 2000; Santos et al., 2002; Viergever et al.,
2007]. This could be due to structural features of African
savannas, or that the data were acquired during the dry season
where errors associated with moisture are minimized. More-
over, FBD data is collected at a low incidence angle (34.3�)
compared to airborne radar sensors used by the above
studies, allowing the radar signal to penetrate deeper into the
vegetation canopy. This, in turn, improves the sensitivity of
HV backscatter to AGB and reduces the sensitivity of HH
backscatter to AGB because of impacts of soil moisture
and roughness. The large number of good quality, well-
geolocated field plots in relatively flat areas that were
obtained for this study could also be a factor, producing
more accurate results than other studies by increasing the
signal-to-noise ratio.
[21] When applying equation (4) to any PALSAR scene

over African woodlands and savannas errors of 20–30% are
to be expected (Table 1), probably increasing by another
10% when uncertainties in allometries are included [Chave
et al., 2004; Williams et al., 2008]. Local calibration with a
network of field plots will remain essential at least for
validation, and for estimating a ‘correction factor’ for adding
the AGB of grasses and stems <10 cm. However, this finding
of a consistent response to AGB in these widely separated
and quite different ecosystems from an operational satellite
SAR sensor offers the potential of rapid, accurate, high
resolution, and low cost mapping of the lower biomass
woody vegetation of Africa, and potentially other regions
in the world. Moreover, the 46-day repeat cycle will allow
sufficient images to be captured during the year to negate any
effects of seasonality and soil moisture, and allow the
monitoring of landscapes for any changes in AGB. This
finding suggests that utilization of PALSAR data should be
essential for projects involving the mapping and monitoring
of woodland and savanna biomass, thus having important
implications for carbon-credit projects, such as those under
proposed REDD schemes.
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