
promoting access to White Rose research papers

White Rose Research Online
eprints@whiterose.ac.uk

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in ICPS: ACM
International Conference Proceeding Series.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/43424

Published paper

Bratanis, K., Dranidis, D., Simons, A.J.H. (2010) An extensible architecture for
run-time monitoring of conversational web services In; MONA '10 Proceedings of
the 3rd International Workshop on Monitoring, Adaptation and Beyond, 3rd
International Workshop on Monitoring, Adaptation and Beyond, Dec 1st 2010,
Ayia Napa, Cyprus, ICPS: ACM International Conference Proceeding Series
http://dx.doi.org/10.1145/1929566.1929568

http://eprints.whiterose.ac.uk/43424�
http://dx.doi.org/10.1145/1929566.1929568�

ACM Copyright Notice

© ACM, 2010. This is the author's version of the work. It is posted here by permission of ACM for your personal

use. Not for redistribution. The definitive version was published in the proceedings of the 3rd International

Workshop on Monitoring, Adaptation and Beyond, {978-1-4503-0422-1, (2010)}

http://doi.acm.org/10.1145/1929566.1929568

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from

Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

An Extensible Architecture for Run-time Monitoring of
Conversational Web Services

Konstantinos Bratanis
South East European

Research Centre
Research Centre of
the Univ. of Sheffield

and CITY College
Thessaloniki, Greece

kobratanis@seerc.org

Dimitris Dranidis
Department of

Computer Science
CITY College,

International Faculty of
the Univ. of Sheffield
Thessaloniki, Greece

dranidis@city.academic.gr

Anthony J.H. Simons
Department of

Computer Science
University of Sheffield

Regent Court
211 Portobello Street
Sheffield S1 4DP, UK

a.simons@dcs.shef.ac.uk

ABSTRACT
Trust in Web services will be greatly enhanced if these are
subject to run-time verification, even if they were previously
tested, since their context of execution is subject to contin-
uous change; and services may also be upgraded without
notifying their consumers in advance. Conversational Web
services introduce added complexity when it comes to run-
time verification, since they follow a conversation protocol
and they have a state bound to the session of each consumer
accessing them. Furthermore, conversational Web services
have different policies on how they maintain their state. Ac-
cess to states can be private or shared; and states may be
transient or persistent. These differences must be taken into
account when building a scalable architecture for run-time
verification through monitoring. This paper, building on a
previously proposed theoretical framework for run-time ver-
ification of conversational Web services, presents the design,
implementation and validation of a novel run-time monitor-
ing architecture for conversational services, which aims to
provide a holistic monitoring framework enabling the inte-
gration of different verification tools. The architecture is
validated by running a sequence of test scenarios, based on
a realistic example. The experimental results revealed that
the monitoring activities have a tolerable overhead on the
operation of a Web service.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Service-oriented architecture (SOA); D.2.4 [Software En-
gineering]: Software/Program Verification—Reliability ; D.2.5
[Software Engineering]: Testing and Debugging—Moni-
tors

General Terms
Theory, Design, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MONA+ ’10, December 1, 2010, Ayia Napa, Cyprus.
Copyright 2010 ACM 1-23456-78-9/01/23 ...$10.00.

Keywords
Run-time monitoring, conversational Web services, monitor-
ing architecture, validation

1. INTRODUCTION
Web services typically reveal their behaviour only as a

collection of interfaces. This means that state-related be-
havioural errors in Web service implementations are hard to
detect, relying on the skill of the service provider to validate
all the necessary protocols. When this is coupled with the
likelihood that the provider will frequently wish to update
the service and that the context in which the service executes
will also be subject to rapid change, these factors together
become a major source for errors, when a service is being
invoked as part of a service-based application (SBA). The
combination of rapid change and the lack of a behavioural
specification make it extremely likely that a Web service will
deviate from its expected behaviour at run-time.

Furthermore, the introduction of a defective Web service
within an SBA can have a devastating effect that puts the
sustainability of the SBA at risk. Hence, being able to verify
that the behaviour of Web services conforms to their adver-
tised specifications at run-time is considered critical.

A promising solution to the aforementioned issue is to
continuously monitor a Web service for deviations during
run-time. Run-time monitoring could involve a formal verifi-
cation technique for ensuring conformance of the monitored
Web service. The monitors operating in parallel with the
monitored Web service, observe and record the messages ex-
changed between the service and a service consumer in order
to detect inconsistent behaviour. The intended behaviour of
the service needs to be included in the service specification
and expressed in a machine-readable form.

In [8], where we have presented a framework for run-time
verification for Web services, we have classified stateful ser-
vices into the non-conversational and conversational; the for-
mer accept all operations at all states, whereas the later
accept only a specific protocol. We would like to underline
that a conversational service may be implemented as a state-
less interface with stateful behaviour. For instance, a Web
service that exposes an API to access a travel reservation
system. Although, the Web service itself is stateless, the
reservation system maintains a state, and therefore the ser-
vice may accept only a specific sequence of invocations. We
further distinguished Web services w.r.t. their state modi-

fiability to private-state for services that their state is fully
determined by the sequence of previous invocations, and in
shared-state for which the state cannot be determined by the
previous service invocations. Lastly, we classified services
into transient-state for those services that their state is de-
stroyed after the completion of a session, and to persistent-
state for the ones that their state outlast the duration of the
session.

The focus of the paper is not on a particular monitoring
approach, but on the architecture that could be used for
integrating different monitoring approaches. Thus, in this
paper we present an implementation of a monitoring archi-
tecture for conversational Web services. The architecture
is built in a modular way and is vendor-agnostic, so that
different vendor instantiations can be supported. We distin-
guish services in several categories, depending on how the
session information is stored and handled. We validate the
monitoring architecture by performing monitoring on a pri-
vate and transient state service. Additionally we measure
the overhead of monitoring and test the architecture under
stress conditions.

The paper is structured as follows. Section 2 discusses
about the implementation of the monitoring architecture.
Section 3 provides an overview of the modelling formalism.
Section 4 presents the evaluation of the monitoring archi-
tecture based on a realistic conversational Web service used
as an example. Some key findings are discussed in section
5 and this work is contrasted with related work in section
6. In the conclusions we summarise the main points of our
work and provide an outlook for future research.

2. IMPLEMENTATION OF THE MONITOR-
ING ARCHITECTURE

2.1 Extensible and Open Architecture
The necessity for an open monitoring framework which

allows joint monitoring approaches has been also underlined
in [5]. The authors support that there exists a wide range
of methodologies for monitoring Web services and service
orchestrations which are different in the aspects being mon-
itored and the model being utilised. However, most of them
manage to solve small fragments of different monitoring as-
pects and it is therefore necessary to combine the existing
approaches, in order to get the positive aspects of different
solutions and construct more complete monitoring solutions.

One of the primary objectives of the implemented moni-
toring architecture was to provide a platform for integrating
different monitoring approaches for Web services. Although
in this paper we use the architecture for monitoring the pro-
tocol conformance of a conversational Web service, the ar-
chitecture facilitates the embedding for monitoring of other
aspects of a service as well, such as QoS properties (i.e. re-
sponse time), through plugging-in other monitors that may
be more suitable for verifying particular properties.

Towards the aforementioned direction, it is necessary to
classify the existing approaches for implementing a moni-
tor. Thus, during the design of the monitoring architecture,
we have identified two classes of monitors w.r.t their logical
separation:

i) Heavy-weight monitor: A single monitor supports the
monitoring of different aspects of a Web service. An
intercepted request/response message is used for anal-

ysis for different monitored aspects within the same
monitor, i.e. a monitor that is able to keep track of
the responsiveness, availability and conformance of the
conversational protocol of a service. Such a monitor
depends upon a single session for a monitored service.
However, this type is harder to implement, because it
incorporates more complexity. Furthermore, a failure
of the monitor implies inability to monitor any of the
monitored aspects.

ii) Light-weight monitor: A single monitor supports the
monitoring of one aspect of a Web service. Several
light-weight monitors can be used to monitor diversi-
fied aspects of a service, i.e. three different monitors
are required to monitor the same aforementioned prop-
erties. Although such monitors are not so complex to
implement, the intercepted request/response messages
need to be communicated to each monitor. Further-
more, every monitor has to preserve a session for the
monitored service. However, the failure of a monitor
has an impact only on the monitored aspect addressed
by this monitor, thus the rest of the monitors are not
affected.

Based on the aforementioned classification of the logical
separation for monitor construction, we identify two solu-
tions to enable dynamically plug-in and unplug monitors:

i) A single service acting as a message gateway for for-
warding all requests/responses of the monitored ser-
vices to specific monitors, which can be added and
removed at run-time;

ii) A pool of different monitor services that are being at-
tached to the monitored services at run-time.

The first approach offers a standardised way for inter-
cepting messages. However, if a monitor needs more infor-
mation, additional interception is necessary. Therefore, the
message gateway service would have to be adjusted. Con-
cerning the second approach, although monitors operate in-
dependently, the lack of a common gateway for intercepting
request/response messages of the monitored services creates
a barrier, since it will be necessary to configure the intercept-
ing mechanism for each individual monitor. Hence, the first
approach is less intrusive, because of a standardised way for
intercepting, for reducing the necessary configuration over-
head for monitoring a service.

The first approach was employed for the implementation
of the monitoring architecture. The interception of request
and response messages, together with the session manage-
ment, logging and other joint functionality has been incor-
porated into a platform, which supports the deployment of
multiple light-weight monitors that do not require to du-
plicate features, since these features are already provided
by the monitoring platform. Hence, the implementation of
monitors becomes simpler, since each monitor has to ad-
dress only the monitored aspect built for. This way only a
simple interaction is associated with the monitored service,
and thus facilitating less complexity regarding configuration
overhead.

Another benefit of this approach is that a monitor can be
deployed or suspended without interrupting the operation
of the platform. However, it is necessary to bear in mind
that although a fault occurring in a monitor may not affect

Figure 1: The components of the monitoring archi-
tecture.

other monitors, a fault occurring in the monitoring platform
implies failure of all monitors, since every monitor depends
upon the platform for its operation.

Figure 1 depicts the components of the architecture. Han-
dlers, discussed in the next section, are used to intercept
traffic from and to the Web services hosted in a Web ser-
vices container. One or separate handlers can be attached
to each Web service. The handler sends the intercepted
messages to the monitoring framework, deployed on an ap-
plication server, through the Message Gateway (MG). MG
is a Web service that receives and forwards the messages,
intercepted by handlers, to individual monitors, which are
responsible for different monitoring aspects.

2.2 Message Interception
An important aspect of the monitoring architecture is

the method used for intercepting the conversation, the ex-
changed request/response messages, between a service provider
and a consumer. We consider three different approaches for
message interception:

• Handler-based Interception: a handler is attached to
the monitored service. The request/response messages
are forwarded first to the handler, thus a handler is
able to intercept them before reaching the monitored
service and the consumer respectively.

• Wrapper-Based Interception: the monitored service is
wrapped within another service. The resulting ser-
vice has the same interface as the monitored service,
and it delegates the messages to the monitored service.
Thus, it is able to intercept the request/response mes-
sages exchanged between the monitored service and
the consumer.

• Proxy-based Interception: an intermediate node acts
as a network proxy. The proxy is able to intercept the
request/response messages passing over the transport
protocol, before they reach their destination.

Since the presented monitoring architecture uses the Mes-
sage Gateway service for delegating intercepted messages to
monitors, it can support all the three approaches. Although

in the presented approaches the intercepted message is sim-
ply forwarded to the Message Gateway service, they have
significant differences that affect the intrusiveness and the
scalability of the monitoring architecture.

In wrapper-based interception, wrappers are independent
of the underlying technology, in which the monitored ser-
vice has been implemented, since they forward the request
and response to and from the service. Hence, a wrapper ap-
pears as a consumer to the monitored service. Proxy-based
interception is also independent of the technology, since it
operates on the transport protocol of the communication.
This is not the case however in handler-based interception,
because the handler exists in the same Web service stack
that exposes the monitored Web service. Thus, the han-
dler has to be implemented in the same technology as the
monitored service.

Another issue is the intrusiveness and transparency of the
three approaches to the monitored service. The use of a
wrapping service requires that all consumers change their
binding to use the wrapped services. This is not necessary
with a handler or a proxy, since both are transparent to the
consumer.

If handlers are used, the monitored service will have to
become unavailable during the deployment of a handler, be-
cause it would be necessary to change the configuration or
even to recompile the Web service, depending on the under-
lying technology, in order the required handlers to operate
properly. In contrast, the use of a wrapper or a proxy does
not require the monitored service to become unavailable, be-
cause the wrapper is similar to any other consumer accessing
the monitored service, and the proxy is transparent for the
monitored service.

We have selected to explore the handler-based interception
first, since handlers are widely supported by the available
Web service technologies, and therefore require less effort to
integrate with existing service-based applications. We recog-
nise the importance of the other two approaches, wrapper
and proxy based interception, which we plan to explore in
future work.

2.3 Handling of Monitoring Sessions
Monitoring a conversational Web service that is being ac-

cessed concurrently from multiple consumers, requires the
monitor to be able to determine for which session the re-
quest/response messages are processed. In order to address
this issue, session handling facilities were implement in the
monitoring framework.

For each conversation between the monitored service and
a consumer, a new monitoring session is created. Every mon-
itoring session is uniquely identified by a monitoring session
identifier (MSID). The MSID has to be supplied during the
interception and forward of a message to the Message Gate-
way service, in order for the monitoring framework to be
able to identify the monitoring session that the forwarded
message concerns.

2.4 Integration of JSXM Tool as a Monitor
We anticipate that the monitoring architecture presented

in this paper will be of general use to different kinds of stake-
holder involved in the provision and consumption of Web
services, including service providers, service consumers, and
service brokers, as an effective mean to monitor conversa-
tional services during their use. Therefore, the monitoring

architecture was designed to be pluggable, such that it sup-
ports multiple concurrent monitors, which concern different
monitoring aspects. Such an aspect is the behavioural con-
formance of the monitored service to its advertised specifi-
cation during run-time.

In [8], we proposed a verification approach to run-time ver-
ification of behavioural conformance of Web services, which
relies on the publication of a behavioural model for the Web
service, based on the Stream X-Machines (SXM) [9] formal-
ism described in the next section. The approach can be
summarised as follows. A monitor simulates the SXM in
parallel with the live service. The SXM model is animated
with the use of the actual requests arriving at a Web service
as inputs. Consequently, the expected responses are pro-
duced, which are then compared with the actual responses
generated from the Web service.

The JSXM Tool [6] was integrated as a monitor in the
implementation of the monitoring architecture. JSXM is a
model-based testing tool implemented in Java, which is able
to perform model animation, test generation and test trans-
formation using an SXM model specified in an XML file.
A portion of the functionality offered by JSXM is exposed
through an API to support animation of SXM models.

The intercepted request/response messages pass through
a series of transformations, in order to feed the JSXM ani-
mator. The inputs are passed to the JSXM, which animates
the SXM model and generates the outputs for the the given
inputs. The inputs generated as a result of the model an-
imation are compared with the transformed response mes-
sages of the monitored service. If the outputs match, the
monitored service conforms to the SXM model, otherwise a
deviation is detected.

In the aforementioned procedure, the JSXM tool serves
as an oracle for forecasting the expected output of the mon-
itored service. Mismatches are recorded in the monitoring
log. Similarly, other verification tools could be incorporated
as monitors that concern other monitoring aspects.

3. MODELLING CONVERSATIONAL WEB
SERVICES AS SXMS

3.1 Stream X-machines
Stream X-Machines (SXMs) are special instances of the

X-Machines introduced in 1974 by Samuel Eilenberg [9].
SXMs are a computational model capable of representing
both the data and the control of a system. Although they
utilise a diagrammatic approach of modelling control flow
similar to the finite state machines, SXMs are capable of
modelling non-trivial computation by embedding memory
attached to the state machine. In addition, processing func-
tions are used for representing transitions between states,
instead of simple input symbols. Processing functions con-
sume input symbols and read memory values, and generate
output symbols while updating memory values. The intro-
duction of the memory construct facilitates the reduction of
the state explosion, since the number of states is reduced
to critical states for the correct modelling of the system’s
abstract control structure. Some of the complexity is en-
capsulated in the transition functions, which can be later
decomposed to simpler SXMs. This “divide-and-conquer”
approach to design allows a top-down construction of the
model.

A (deterministic) SXM [11] is defined as the tuple
(Σ,Γ, Q,M,Φ, F, q0,m0) where:

• Σ and Γ are finite sets, called the input alphabet and
the output alphabet respectively;

• Q is the finite set of states;

• M is a (possibly) infinite set called memory ;

• Φ, which is called the type of the machine, is a finite
set of partial functions (called processing functions) φ
that map input-memory pairs to output-memory pairs,
φ : Σ×M → Γ×M ;

• F is the next state partial function that given a state
and a processing function from the type Φ, provides
the next state, F : Q× Φ→ Q;

• q0 and m0 are the initial state and initial memory re-
spectively.

The most significant advantage of SXMs is a testing method
[11], which allows the verification of the conformance of a
system’s implementation against its specification. Under the
test hypothesis that the system is made of fault-free com-
ponents and the satisfaction of some well defined design-for-
test conditions [11], it is ensured that the system behaviour
is functionally identical to that of the implementation, if
the application of a finite test set, which is generated by the
aforementioned method, produces the same results both in
the specification and the implementation.

For testing purposes the model is used both for test gen-
eration (producing the inputs to test against) and as an
oracle for providing the expected outputs. For the purpose
of run-time monitoring the model is only needed to be used
as an oracle, since the inputs are provided by the monitored
system.

3.2 SXM Models for Web services
Conversational Web services can be easily modelled as

SXMs, since they both consume inputs and generate out-
puts, while they modify their internal state.

The construction of a SXM model for a Web service re-
quires that SXM inputs and outputs are created from the
SOAP request and SOAP response messages of the service
respectively. The transition functions of a SXM are spec-
ified based on the Web service operations. Although the
transitions are derived directly from the Web service oper-
ations, each operation may map to one or more transitions
(processing functions) dealing with different branches of the
computation that depend on state (and indirectly on in-
puts). For more detailed explanation about modelling Web
services as SXMs refer to [7, 12].

4. VALIDATION

4.1 The Web Service example
During the implementation of the monitoring architec-

ture, several examples have been constructed for the eval-
uation of the implemented architecture. In this paper we
present the TravelAgency, a service that offers functionality
for booking complete travel packages. The TravelAgency
service is an example of a private-transient state conversa-
tional service, since it has been implemented in such a way

Figure 2: The state-transition diagram (associated
automaton) of a SXM representing the TravelA-
gency service.

that its local state cannot be modified by an external com-
ponent, and its state is initialised at the beginning of each
session and destroyed upon completion.

The described service utilises transport-related session man-
agement techniques to manage concurrent consumers, by re-
lying on the underlying HTTP session in order to associate
the state information for each consumer accessing the ser-
vice. Thus, the travel package prepared by a consumer is
stored in the HTTP session. For convenience, we use di-
rectly the HTTP session token as the monitoring session
identifier (MSID). We would like to stress that the service
has been implemented in such a way in order to achieve
a conversational behaviour. In a real system, the Trave-
lAgency service will be a stateless interface which provides
access to the operations of a complete booking system.

Figure 2 illustrates the associated state transition diagram
of the SXM model for the TravelAgency service. The ser-
vice operates as follows: First, a travel package is created
that will store all the travelling preferences of the consumer.
Next, different travelling destinations can be fetched in or-
der to choose a preferred destination. After a destination
has been selected, the available airlines, hotels, and cars can
be fetched in order to customise the travel package. In order
to checkout, an airline and a hotel need to be selected. Op-
tionally the consumer can also select a car. At this stage, the
travel package can be cancelled, modified or booked. Book-
ing the travel package ends the interaction with the service.

Each processing function, presented in Figure 2, has been
specified in the complete SXM specification of the TravelA-
gency service, using the approach that has been presented
in [8]. The complete SXM specification is beyond the scope
of this paper and thus is not included.

4.2 Evaluation Setup
An evaluation of the monitoring architecture was per-

formed using the TravelAgency service. The aim of this
experiment was to evaluate scalability of the monitoring ar-
chitecture w.r.t performance.

The evaluation scenario involves many consumers access-
ing the TravelAgency service concurrently. Multiple execu-
tions were done with the monitor enabled and disabled, and
with an increasing number of concurrent consumers. The
TravelAgency and the consumers were hosted by different
computers located in the same local network, so that the
measurements would not be affected by long network de-
lays.

Table 1 presents four interaction scenarios. Each scenario
contains different sequences of operation invocations for the
TravelAgency service, in order for it to be possible to observe
different behaviours. For instance, scenario 1 books a travel
package successfully, therefore it completes successfully the
interaction with the TravelAgency service, whereas scenario
4 fails to book a travel package, because it attempts to invoke
the book() operation, without first invoking the checkout()
operation.

Table 1: Interaction scenarios containing different
execution sequences.

Scenario Effect Execution

1 Booked Succeeds
2 Booked with car Succeeds
3 No hotel is selected Fails
4 No checkout is done Fails

The TravelAgency service has been implemented as a state-
less session Enterprise Java Bean (EJB), which has been ex-
posed as a Web service using JAX-WS annotations [3]. A
handler has been attached to the service, in order to inter-
cept request/response message and then forward them to
the Message Gateway.

JBoss Application Server (JBoss AS) [2] was used for the
deployment of the involved components. JBoss AS embeds
a JAX-WS Web service stack with the use of JBoss WS.
The hardware configuration of the server machine, used for
hosting JBoss AS, was an Intel Core 2 Quad Q8400 with
4GB of ram at 1066MHz running openSUSE 11.2. Both the
TravelAgency service and the monitoring framework were
deployed in the same JBoss AS, resulting in provider-based
monitoring scenario.

In order to produce more accurate and realistic results, we
used profiling techniques that utilise dynamic analysis of a
program, The Eclipse Test and Performance Tools Platform
(TPTP) [1] was used to perform execution time analysis and
thread analysis of the consumers accessing the service.

4.3 Experimental Results
A series of test runs was carried out, by instantiating mul-

tiple consumers, which were accessing the TravelAgency ser-
vice concurrently. Before initiating a test run, a restart of
the JBoss AS was performed, in order to avoid the test run
execution being affected from previous trials. In addition,
each test run was performed three times and the average
measurement was considered, in order to produce more ac-
curate results.

Ten test runs were carried out during the experimenta-
tion phase. In each test run the consumer population was
growing linearly, in order to simulate increased traffic on the
TravelAgency service. The consumer population consisted
of all four consumer types. In the first test run only 10 con-
sumers were instantiated, while in every following test run
another 10 consumers were added, resulting in a total of 100
consumers at the final test run.

Instead of measuring the overhead that the monitoring
introduces in a single invocation of a service method, we
decided to measure the overhead at the interaction level, in
order to produce a more realistic evaluation for the impact of
the monitoring activities during the operation of the service.

Figure 3: Average execution time per consumer
complete interaction for each test run.

Figure 4: Average total execution time for all con-
sumer complete interaction for each test run.

Thus, for each test run two measurements were performed.
First, the time required for a consumer to complete the in-
teraction with the service was measured. Second, the total
time required for all consumers to complete their interaction
with the service was measured. Both measurements were ex-
ecuted once while the service was not being monitored, and
once with the service being monitored.

Figure 3 shows the recorded measurements concerning the
execution time required for a consumer to complete the in-
teraction with the TravelAgency service, with and without
the monitor. The execution time of each consumer linearly
increases as the consumer population increases.

Figure 4 depicts the recorded measurements regarding the
execution time required for all consumers to complete their
interaction with the TravelAgency service, with and with-
out the monitor. The total execution time increases linearly
also. The comparison of Figure 4 to Figure 3 reveals that
even if all consumers begin their execution almost simulta-
neously, they also finish executing at the same time.

The measurements presented so far demonstrate that there
is a noticeable increase in the time required for concur-
rent consumers to complete their execution. Although the
overhead appears to be significant, it worth noticing that
the monitor achieves to handle all monitored services in a
timely fashion. The overhead was generated due to thread
synchronisation within the handlers used to intercept re-
quest/response messages. The thread synchronisation caused
the consumers threads to suspend at different points of the
execution.

4.4 Error Discovery
Within the scope of the experiment, we observed the abil-

ity of the monitor to detect errors. We evaluated the error
discovery ability of the JSXM monitor w.r.t. behavioural
conformance of the monitored service to its specification.

The first phase of the evaluation concerned consumers fol-
lowing a different interaction protocol (e.g. ClientBookNoCheck-
out), which was not supported by the specification of the
TravelAgency service. In the next phase, we used consumers
following the interaction protocol described in the specifica-
tion. However, we altered the implementation of the Trave-
lAgency service, so that it follows a different interaction pro-
tocol. For instance, allowing it to perform checkout without
having selected a hotel, which is different from the specifi-
cation that requires both an airline and a hotel to be chosen
before continuing to checkout. In both cases the monitor was
successful in detecting the errors in the interaction protocol.

Currently, the monitoring framework lacks the ability to
detect lost (dropped) SOAP request/response messages. The
lack of this knowledge may lead to false conclusions that a
service is behaving faulty. A more sophisticated diagnosis
approach based on the aggregated observations from differ-
ent monitors (e.g. timeout monitors) would produce joint
conclusions explaining the cause of the mismatch.

5. DISCUSSION
The monitoring architecture is designed to support effort-

less integration in a service-based application. The moni-
tor can be deployed on the same or a different application
server from the monitored services, and thus execute inde-
pendently. Additionally, the monitor is compatible with any
underlying technology that supports Web services, since it is
agnostic of the particular programming languages used for
implementing the actual service.

The three presented message interception approaches, handler-
based, wrapper-based, and proxy-based interception can be
used within the monitoring architecture, thus, the integra-
tion of the monitoring activity into SOA infrastructures ap-
pears easier. Also, the separation of the interception mecha-
nism from the monitors, allows the monitors to be hosted by
a third-party trusted by both the service provider and the
service consumer for verifying properties of Web services un-
der monitor.

At the current state, we have integrated a monitor (JSXM)
which concerns the monitoring of the functional aspect of
a conversational Web service. The integration of a mon-
itor that concerns the non-functional aspect could reveal
new requirements for the presented monitoring architecture.
Therefore We plan to investigate the integration of non-
functional monitors in further work.

The experimental results have indicated a linear increase
in execution time that depends on the number of concurrent
consumers. It is worth noticing that in a production envi-
ronment interaction is often driven by people, and therefore
it is not realistic that 100 users would complete a 5-turn
transaction in 12 seconds. Nevertheless, in order to improve
the efficiency of monitoring the monitors could execute asyn-
chronously from the monitored service. This solution which
would introduce concurrency and thread synchronisation is-
sues is going to be investigated in future work.

The implementation of long-running transactions requires
the use of persistent-state services, which are able to store

and restore the state of the consumer session, so that a con-
sumer can interrupt service usage and continue at a later
point in time. In order for the monitoring architecture to
support persistent-state services, it is necessary that the
state of each monitor for the monitored service is stored.
Furthermore, additional identification information is needed,
since the underlying transport session will expire, and thus
client identification will not be possible. In addition, main-
taining concurrent monitoring sessions for multiple persistent-
state services is resource intensive, and it is therefore neces-
sary to use caching techniques for the monitoring sessions, in
order to be able to suspend and resume a monitoring session.

The JSXM monitor needs to convert the actual request
and response messages to concrete inputs and outputs com-
patible with the SXM specification. This means that the
request/response messages need to pass a transformation,
in order to be lifted (abstracted) to a usable representation
for the JSXM monitor. We believe that the need for ab-
stracting or transforming request/response messages would
concern other types of monitors that could be implemented
in the future. Hence, information could be provided to the
monitor in order to perform the necessary transformations.
These information could be either provided as a configura-
tion in the monitor, or published together with the Web
service description using SAWSDL. Towards similar direc-
tion in [14], we have presented an algorithm to convert in-
puts, outputs, preconditions and effects (IOPE), published
through SAWSDL, for constructing a stateful EFSM speci-
fication of a service for verification.

6. RELATED WORK
Significant effort has been directed toward the creation

of a viable monitoring framework for Web services. Dif-
ferent methodologies have been developed, in order to pro-
vide monitoring facilities for the functional and the non-
functional aspects of Web services.

Li et al [13] proposed a framework for monitoring run-time
interaction behaviour of Web services. Validation of prede-
fined interaction constraints is performed using finite state
automata. Our work differs since we attempt to support
multiple monitoring techniques under a common framework.
Furthermore, the message interception that they employ is
bound to the particular server used for deploying Web ser-
vices. Our monitoring architecture supports message inter-
ception independent of the underlying infrastructure.

Zulkernine et al [17] proposed a framework for perfor-
mance monitoring of Web services, which is part of a greater
middleware solution. They also use handlers to intercept
messages and measure the responsiveness of a service. They
present an evaluation of the framework where they measure
the overhead of the monitor w.r.t. the response time of
the service. However, their evaluation is limited to 10 con-
current consumers only, and it appears that the overhead
introduced is significantly greater than in our approach in
some cases. The overhead reported in that work increases
at approximately twice the rate as in our approach.

Simmonds et al [15] proposed a more complete monitor-
ing framework for checking behavioural correctness of Web
service conversations. They use UML 2.0 Sequence Dia-
grams as a property specification language, which are then
transformed to automata by multiple monitors that check
the validity of safety and liveness properties. They inter-
cept messages with the use of handlers. Although they have

implemented a similar approach to interception and han-
dling of messages, their proposal appears to be specific to
the used application server, since they utilise an event mech-
anism provided by that server.

Alodib and Bordbar [4] proposed an approach for mon-
itoring by employing Workflow Graphs as the underlying
specification language, for generating monitors that are ex-
posed as Web services. However, they do not suggest a uni-
fied architecture of monitors, but rather a methodology for
deriving and using individual monitors. The experimental
results reported are similar to the results of our work.

Guinea et al [10] proposed a monitoring framework that
integrates three different monitoring approaches. The frame-
work is able to report and monitor functional requirements
and quality of service constraints for BPEL processes. This
approach leverages data collection, including message inter-
ception. for monitoring. Although this work aligns with
our objectives w.r.t. the extensibility of the architecture, it
appears to be more applicable for orchestrator-based moni-
toring, since the approach requires internal inspection of the
monitored process.

Wetzstein et al [16] proposed an approach to event-based
monitoring of process metrics across participants in a chore-
ography. Their work is related to Business Activity Moni-
toring (BAM) within Service-Oriented Architectures (SOA).
The authors use a monitoring agreement written in XML to
specify what should be monitored. Our monitoring archi-
tecture is less intrusive, since it does not require any modi-
fication to the execution container as the one in [16].

In contrast with the presented related work, the main con-
tribution of this paper is not the particular monitoring tool
(JSXM), but a monitoring architecture that can be used for
integrating different monitoring approaches or tools. We en-
vision the presented monitoring architecture as a platform
for deploying several monitoring tools, which monitor the
functional as well as the non-functional aspects of conversa-
tional Web services.

7. CONCLUSION
Monitoring conversational Web services involves a variety

of issues such as message interception, session management,
and concurrency. In order to support the integration of dif-
ferent monitoring approaches, it is important to create a
holistic monitoring architecture, which offers the common
facilities required for monitoring of Web services, such as
message interception and session handling.

This work presented an extensible architecture for run-
time monitoring of conversational Web services. The ar-
chitecture has been designed and implemented to facilitate
integration with the existing service-oriented architectures,
and to allow the use of different monitoring approaches. The
experimental results revealed that the monitoring activities
have a tolerable overhead on the operation of a Web service.

As future work the efficiency of monitoring will be im-
proved by resolving concurrency issues. Moreover, we will
expand the monitoring framework to support persistent-
state services. The wrapper-based and proxy-based inter-
ception approaches will be implemented and evaluated. Fi-
nally, we plan to investigate how the presented monitoring
architecture could be extended to a generic framework sup-
porting the integration of monitors for both non-functional
and functional aspects of conversational as well as non-conve-
rsational Web services.

8. REFERENCES
[1] Eclipse test & performance tools platform project,

http://www.eclipse.org/tptp/.

[2] Jboss application server,
http://www.jboss.org/jbossas.

[3] JSR 224: JavaTM API for XML-Based web services
(JAX-WS) 2.0. Technical report, Java Community
Process, http://jcp.org/en/jsr/detail?id=224, 2009.

[4] M. Alodib and B. Bordbar. A Model-Based approach
to fault diagnosis in service oriented architectures. In
2009 Seventh IEEE European Conference on Web
Services, pages 129–138. IEEE, 2009.

[5] L. Baresi, S. Guinea, M. Pistore, and M. Trainotti.
Dynamo + astro: An integrated approach for BPEL
monitoring. In Web Services, IEEE International
Conference on, volume 0, pages 230–237, Los
Alamitos, CA, USA, 2009. IEEE Computer Society.

[6] D. Dranidis. JSXM: A Suite of Tools for Model-Based
Automated Test Generation: User Manual. Technical
report, Technical Report WPCS01-09, CITY College,
2009, 2009.

[7] D. Dranidis, D. Kourtesis, and E. Ramollari. Formal
verification of web service behavioural conformance
through testing. Annals of Mathematics, Computing &
Teleinformatics, 1(5):36–43, 2007.

[8] D. Dranidis, E. Ramollari, and D. Kourtesis.
Run-time Verification of Behavioural Conformance for
Conversational Web Services. In 2009 Seventh IEEE
European Conference on Web Services, pages 139–147.
IEEE, 2009.

[9] S. Eilenberg. Automata, languages and machines.
Academic Press, New York, A, 1974.

[10] S. Guinea, L. Baresi, G. Spanoudakis, and O. Nano.
Comprehensive monitoring of BPEL processes. IEEE
Internet Computing, Nov. 2009.

[11] M. Holcombe and F. Ipate. Correct Systems: Building
Business Process Solutions. Springer Verlag, Berlin,
1998.

[12] D. Kourtesis, E. Ramollari, D. Dranidis, and
I. Paraskakis. Discovery and Selection of Certified
Web Services Through Registry-Based Testing and
Verification. IFIP International Federation for
Information Processing, Pervasive Collaborative
Networks. Springer, 2008.

[13] Z. Li, Y. Jin, and J. Han. A runtime monitoring and
validation framework for web service interactions. In
Proceedings of the Australian Software Engineering
Conference, pages 70–79. IEEE Computer Society,
2006.

[14] E. Ramollari, D. Kourtesis, D. Dranidis, and
A. Simons. Leveraging Semantic Web Service
Descriptions for Validation by Automated Functional
Testing. The Semantic Web: Research and
Applications, pages 593–607, 2009.

[15] J. Simmonds, Y. Gan, M. Chechik, S. Nejati,
B. O’Farrell, E. Litani, and J. Waterhouse. Runtime
monitoring of web service conversations. IEEE
Transactions on Services Computing, 99(1):223–244,
2009.

[16] B. Wetzstein, D. Karastoyanova, O. Kopp,
F. Leymann, and D. Zwink. Cross-organizational
process monitoring based on service choreographies. In

Proceedings of the 2010 ACM Symposium on Applied
Computing - SAC ’10, page 2485, Sierre, Switzerland,
2010.

[17] F. H. Zulkernine, P. Martin, and K. Wilson. A
middleware solution to monitoring composite web
Services-Based processes. In Proceedings of the 2008
IEEE Congress on Services Part II, pages 149–156.
IEEE Computer Society, 2008.

	WRRO_43424.pdf
	Bratanis_et_al._-_2010
	ACM Copyright Notice
	Bratanis et al. - 2010 - An Extensible Architecture for Run-time Monitoring

