This is an author produced version of a paper published in Health Policy.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/43420

Published paper

http://dx.doi.org/10.1016/j.healthpol.2011.06.002
Title:
A thematic analysis of the strengths and weaknesses of manufacturers’ submissions to the NICE Single Technology Assessment (STA) process

Authors:
*Christopher Carrolla, Eva Kaltenhaa, Patrick FitzGeralda, Angela Bolanb, Rumona Dicksonb

Address and affiliations:
a Health Economics and Decision Science (HEDS), School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, S1 4DA, UK
b Liverpool Reviews and Information Group (LRiG), University of Liverpool, UK

* Corresponding author:
Christopher Carroll, Research Fellow, HEDS, ScHARR, University of Sheffield, Regent Court, Regent Street, Sheffield, S1 4DA, UK
Email: c.carroll@sheffield.ac.uk
Tel: (0)114 2220864
Fax: (0)114 2724095

Other authors:
e.kaltenha@sheffield.ac.uk
p.fitzgerald@sheffield.ac.uk
a.bolan@liverpool.ac.uk
r.dickson@liverpool.ac.uk
Abstract:

Objectives: The NICE single technology appraisal (STA) process in the UK has been underway for five years. Evidence Review groups (ERGs) critically appraise submissions from manufacturers on the clinical and cost effectiveness of new technologies. This study analysed the ERGs’ assessment of the strengths and weaknesses of 30 manufacturers’ submissions to the STA process.

Methods: Thematic analysis was performed on the textual descriptions of the strengths and weaknesses of manufacturer submissions, as outlined by the ERGs in their reports.

Findings: Various themes emerged from the data. These themes related to the processes applied in the submissions; the content of the submission (e.g., the amount and quality of evidence); the reporting of the submissions’ review and analysis processes; the reliability and validity of the submissions’ findings; and how far the submission had satisfied the STA process objectives.

Conclusions: STA submissions could be improved if attention were paid to transparency in the reporting, conduct, and justification of review and modelling processes and analyses, as well as greater robustness in the choice of data and closer adherence to the scope or decision problem. Where this adherence is not possible, more detailed justification of the choice of evidence or data is required.

MeSH keywords: Review, systematic; Cost effectiveness; Cost Benefit Analysis; Pharmaceutical Industry; Drug approval
INTRODUCTION

The National Institute of Health and Clinical Excellence (NICE) is an independent organisation which is part of the National Health Service (NHS) and responsible for providing guidance on the promotion of good health and the prevention and treatment of ill health to England and Wales. One of the key components of NICE’s work involves technology appraisals which lead to recommendations on the use of new and existing medicines and treatments within the NHS. NICE technology appraisal guidance is mandatory in the NHS in England and Wales giving it the potential to decrease variation in the provision of care across the nations.

The initial processes used to establish NICE guidance on technology appraisals are based on the internationally-accepted models of reviewing clinical and cost effectiveness evidence. These include a rigorous and systematic approach to identifying, evaluating and synthesising the available evidence (clinical and cost data) carried out by groups of academic researchers (assessment groups) aided by submissions from the involved manufacturers of the technologies. The result of this synthesis is then considered by a carefully selected group of clinicians, health economists, statisticians, patients and representatives from the NHS and the manufacturers, who together make up the NICE Appraisal Committee (AC). This is known as the Multiple Technology Appraisal (MTA) process.

A more rapid process became a political imperative and the newer Single Technology Appraisal (STA) process was introduced for England and Wales in 2005.[1] The STA process was specifically designed to appraise a new technology for a single indication, although there may be more than one comparator and the process usually covers new technologies. Most importantly it was designed to provide a more rapid appraisal process than the MTA process so that guidance for new products could be produced as close to their launch into the NHS as possible. However, the MTA process does not always take substantially longer to complete than the STA process.[1, 2, 3] The STA process differs from the MTA process in that the manufacturer submission (MS) to NICE forms the principal source of evidence for decision making. This is similar to the process followed in Scotland.[4] The STA process is divided into stages.[5] Initially, provisional topics are identified through a variety of sources and assessed by the NICE Topic Selection Committee. After formal referral, NICE sets the STA timelines. Manufacturers are invited to prepare their submission to NICE using a standard report template nine weeks after the scope is finalised. The MS is expected to include a systematic review of the clinical effectiveness evidence for the technology under consideration as well as a cost effectiveness analysis. Extensive guidance for manufacturers is provided in the NICE guide to the methods for single technology appraisal.[6, 7] External independent evidence review groups (ERGs), based in academic centres, are then charged with the task of rapidly critically appraising the MS and identifying strengths, weaknesses and gaps in the
evidence presented. This work once again has to be completed within a set timetable (usually 8
weeks) and includes a clarification process, co-ordinated by NICE, in which ERGs can seek answers
to questions of content and method that arise during their assessment of the submission. The
resultant ERG reports form a part of the evidence considered by the AC when making a decision on
the inclusion of the technology in current guidance.

The research reported here formed part of a broader project assessing the STA process, which
involved detailing the process and outcomes for those STAs with documentation for that period
(September 2006 - October 2009) and an analysis of the associated ERG reports and clarification
letters.[2] The STA process was new and evolving at the time and this work was commissioned by
the NIHR Evaluation, Trials and Studies Co-ordinating Centre (NETSCC) in order to detail the
process, identify areas for improvement, and inform the development of a new template and guide
for the production of manufacturer submissions and their assessment by ERGs. The aim of the
particular work detailed in this paper was to analyse the strengths and weaknesses of the
manufacturer submissions (MSs), as detailed by the report of the Evidence Review Groups (ERGs)
assessing those submissions.

MATERIALS AND METHODS

A documentary analysis of the first 30 ERG reports produced for the STA process was undertaken.
These reports were chosen because they were the only reports for which all documentation was
available when the project started (March 2009). Attention was focused not on the context within
which the documents were produced, nor on their subsequent impact on external decision-making
processes, but rather exclusively on the content of the reports. The principal focus was the ERGs
reported conclusions on the strengths or weaknesses of submissions. The criteria by which ERGs
critiqued their respective submissions were not explicitly-defined *a priori*, but rather appeared to
consist of applying the principles of standard methodological checklists such as QUOROM/PRISMA
for the effectiveness review[8], Drummond and Jefferson (1996) [9] for the economic evaluation,
and the basic outline of headings and brief definitions provided by the existing NICE ERG template.
The emphasis may have altered or been adapted according to the scope of the particular technology
being assessed. The 30 ERG reports were anonymised and none is referred to explicitly in this report.

The extraction of relevant data from the ERG reports was conducted by three team members (AB,
CC, PF) using forms developed for this project and piloted on two ERG reports by all three authors.
The aim of the extraction was to retrieve data on an ERG’s critique of the strengths and weaknesses
of a MS. For example, data were extracted on the ERGs comments on whether or not a meta-analysis
or sensitivity analysis (SA) should have been performed, or whether the ERG reported any errors in
the model. Much of these data consisted of text, i.e. statements or summaries by the ERG. Thematic
analysis\cite{10} was the chosen method to analyse these data as it is grounded in the data and therefore
permits the generation of a novel thematic framework reflecting the ERGs’ assessments of the
strengths and weaknesses of manufacturer submissions to the STA process. This method is
interpretive and reductive; the first stage is data reduction, i.e. to reduce statements, comments,
quotations or findings to a single theme, which captures or reflects those data. This interpretive
process was initially performed by one reviewer (CC) on the extractions from a random sample of
ten ERG reports. If any of the primary themes identified in this way was considered to be related
then they were reduced further to a broader, meta-theme that captured them all. Definitions were then
developed for each primary theme in order to produce greater reliability in the coding of data. Two
members of the project team (RD, EK) then independently assessed whether these thematic
interpretations of the data were both credible and appropriate, and whether the themes identified
reflected the data. This led to a small number of revisions: the re-labelling of one primary theme; the
reassignment of some data to different themes; and some further clarification of the themes’
definitions. The extracted, textual data from the remaining 20 ERG reports were then coded using
these agreed themes following a process akin to that described for framework analysis\cite{11}. This was
performed by two reviewers (CC, EK) for the remaining 20 ERG reports.

RESULTS
The thematic analysis generated a large number of primary and meta-themes (see Figure). Five
meta-themes emerged, under which related primary themes could be meaningfully grouped. These
five meta-themes related to the processes being applied in the manufacturer submissions; the
reporting of the submissions’ review and analysis processes (sometimes strong, sometimes poor); the
submissions’ satisfaction of objectives; the reliability and validity of the submissions’ findings; and
the content of the submission (e.g. the amount and quality of evidence contained in the submission).
Figure: Thematic framework based on analysis of data extracted

<table>
<thead>
<tr>
<th>META-THEME</th>
<th>PRIMARY THEMES</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CONDUCT OF REVIEW</td>
<td>How various methodologies have been applied, e.g. in the performance of the review, e.g. searching, screening, extraction, appraisal; in the modelling, in the meta-analysis, in the performance of the review.</td>
</tr>
<tr>
<td></td>
<td>CONDUCT OF MODELLING</td>
<td></td>
</tr>
<tr>
<td>PROCESS</td>
<td>NO OR INADEQUATE ANALYSIS</td>
<td>Was an analysis performed? May include: failure to include or perform all necessary analyses (e.g. in a model), inadequate conduct of the review or analysis</td>
</tr>
<tr>
<td></td>
<td>INAPPROPRIATE ANALYSIS</td>
<td>Was the analysis method applied appropriate? May include: inappropriate combining of data; inappropriate data being used to populate the model;</td>
</tr>
<tr>
<td></td>
<td>ISSUES WITH DATA USED IN ANALYSIS</td>
<td>Issues concerning data used, especially in the modelling, including costs, parameters and assumptions</td>
</tr>
<tr>
<td>REPORTING</td>
<td>ADEQUATE REPORTING</td>
<td>Provision of sufficient or insufficient details about searching, selection, extraction, criteria, analyses performed and their rationale; descriptions and definitions provided in the Background section</td>
</tr>
<tr>
<td></td>
<td>INADEQUATE REPORTING</td>
<td></td>
</tr>
<tr>
<td>SATISFYING OBJECTIVES</td>
<td>POPULATION ISSUES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTERVENTION ISSUES</td>
<td>Success or failure to answer question(s) set or for the submission to reflect the decision problem and its scope in terms of the target population, the intervention and its dose, relevant comparators and outcomes, and the NICE base case for the model</td>
</tr>
<tr>
<td></td>
<td>COMPARATOR ISSUES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OUTCOME ISSUES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NICE BASE CASE</td>
<td></td>
</tr>
<tr>
<td>RELIABILITY & VALIDITY OF FINDINGS</td>
<td>UNCERTAINTY DUE TO ABSENCE OF EVIDENCE, POSSIBLE BIAS OR EXAGGERATED EFFECT</td>
<td>Excessive uncertainty surrounding results or model due to lack of evidence, bias within or across included trials or potential exaggerated effect of intervention; explicit concerns regarding validity</td>
</tr>
<tr>
<td></td>
<td>RELIABILITY OF FINDINGS</td>
<td>Findings reported as being reliable (as opposed to uncertain as above) and not uncertain</td>
</tr>
<tr>
<td></td>
<td>EXTERNAL VALIDITY</td>
<td>Issues affecting external validity, eg. specified differences between the trials and data and what exists in the UK, including population, dose, comparator, licensing, real world/current practice; future developments which may change key parameters</td>
</tr>
<tr>
<td>CONTENT</td>
<td>AMOUNT OF EVIDENCE</td>
<td>Weaknesses or strengths inherent in the trial evidence: Amount: concerns issues with number of trials included (eg. often only 1)</td>
</tr>
<tr>
<td></td>
<td>QUALITY OF EVIDENCE</td>
<td>Quality: concerns how good the included evidence is, eg. very good, or very poor</td>
</tr>
<tr>
<td>Table: Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Meta-theme</td>
<td>Primary themes</td>
<td>Results</td>
</tr>
<tr>
<td>The clinical effectiveness review process</td>
<td>• Concerns with the quality of the searching, screening or quality assessment (11 reports); and the definition or application of inclusion criteria, especially for indirect comparisons (8 reports); • The complete absence of a formal systematic review at all (2 reports)</td>
<td>“No clinical effectiveness or cost effectiveness reviews of the literature were included in the MS”</td>
</tr>
<tr>
<td>The cost-effectiveness review and modelling process</td>
<td>• Failure to incorporate or capture adequate levels of uncertainty (3 reports); • Calculation errors in the model requiring revision or correction (3 reports); • Other technical, structural or design errors in the model or analyses (11 reports); • Failure to control for confounders or queries over a key assumption, missing data or the absence of a Sensitivity Analysis (SA) or Probabilistic Sensitivity Analysis (PSA) (6 reports)</td>
<td>“Revisions to the model by the ERG render [technologies] as not cost-effective” “The approach taken to model the disease is pragmatic given the available data and previous MS models” “The PSA did not capture all of the uncertainty present in the decision”</td>
</tr>
<tr>
<td>No analysis or inadequate analysis</td>
<td>• Failure to address heterogeneity of trials (1 report); • The presence of errors in or the failure to perform relevant meta-analyses (3 reports); • Failure to control for confounders or perform a key sub-group analysis (3 reports); • Failure to perform a relevant analysis, e.g. a meta-analysis or SA or probabilistic sensitivity analysis (PSA) (8 reports); • No validation of the model (2 reports); • Inadequate analysis of safety outcomes (1 report)</td>
<td>“There is some heterogeneity between trials and this is not addressed” “subgroup analyses had not been adequately considered” “Model does not reflect real world decisions; parameter uncertainty is not given sufficient consideration” “The [meta]analysis contained a calculation error”</td>
</tr>
<tr>
<td>Inappropriate analysis</td>
<td>• The combination, pooling or comparison of effectiveness data was viewed as being highly questionable (9 reports) • Methods employed for the reported meta-analysis (8 reports) • Methods employed for the reported modelling (4 reports)</td>
<td>“The methods used to pool data are inappropriate” “The conclusions of the indirect comparison are based on a visual not a statistical comparison of efficacy outcomes” “The validity of including unpublished post hoc analysis for two subgroups is questionable as both are likely to be underpowered”</td>
</tr>
<tr>
<td>Issues with data being analysed</td>
<td>• The efficacy data being used in both direct and indirect comparisons (8 reports); • The cost data used (7 reports); • The utility or Quality of Life data in (5 reports); • The data on population, comparators, outcomes or various model parameters (10 reports); • The use of unpublished data (3 reports); • The data being used in the s SA or PSA (2 reports)</td>
<td>“For some model parameters the authors had employed standard deviations (measures of sample dispersion) rather than standard errors” “The second pivotal trial does not disaggregate outcome data for the relevant population, data for all populations are analysed” “The majority of the reference data presented in the MS were not fully published”</td>
</tr>
<tr>
<td>Meta-theme</td>
<td>Primary themes</td>
<td>Results</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Reporting</td>
<td>Inadequate reporting</td>
<td>- Poor descriptions of the searches undertaken, prohibiting replication, for both clinical and cost-effectiveness reviews (8 reports); - Lack of transparency of the clinical review processes generally, both for direct and indirect comparisons (e.g. screening, extraction and quality appraisal) (7 reports); - Concerning the number of included studies and their characteristics for both clinical and cost-effectiveness reviews (8 reports); - Failure to report data and data sources in full (3 reports); - Failure to describe all of the methods being employed in direct or indirect comparisons (8 reports); - Failure to provide adequate descriptions of the analyses more generally (3 reports); - Poor reporting of included studies and data in tables (3 reports); - Background section deemed inadequate and lacking key information (5 reports); - Failure to describe adequately either the parameters or assumptions behind the model, the generation or source of various values, or the impact of bias from (11 reports)</td>
</tr>
<tr>
<td>Adequate reporting</td>
<td>- The searches for the effectiveness review was praised (4 reports); - The description of the model and its data sources praised (5 reports); - Good reporting of statistics, and a well-reported multiple treatment comparison (MTC) process (1 report)</td>
<td>“generally good statistical reporting” “The MS provides a generally accurate and thorough discussion of the background to the disease … and its treatments”</td>
</tr>
<tr>
<td>Content</td>
<td>Amount</td>
<td>- Submission was based on the evaluation of one or two trials only (10 reports); - The absence of any head-to-head trials of relevant technologies (3 reports)</td>
</tr>
<tr>
<td>Quality</td>
<td>- ERGs explicitly report trials as being of good or reasonable quality (9 reports)</td>
<td>“The four included trials were of reasonable methodological quality” “The main RCT in the MS was well-conduced when assessed using the NICE internal validity criteria”</td>
</tr>
<tr>
<td>Meta-theme</td>
<td>Primary themes</td>
<td>Results</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Population</td>
<td>Differences between the population defined in the decision problem and the population being evaluated in the submissions trials (11 reports);</td>
<td>“It is uncertain whether the trial population is sufficiently similar to the UK”</td>
</tr>
<tr>
<td></td>
<td>Differences between the UK population and the trial population based on age, treatment or current practice (6 reports);</td>
<td>“Some potentially relevant populations were excluded from main trial”</td>
</tr>
<tr>
<td></td>
<td>Differences between the licensed population and the trial population (2 reports);</td>
<td>“The trial population does not reflect the licensed population”</td>
</tr>
<tr>
<td></td>
<td>Failure to consider the effect of the treatment on different, relevant subgroups of patients (6 reports);</td>
<td>“There is a subtle but important variation in the description of the target population between the scope and the MS”</td>
</tr>
<tr>
<td></td>
<td>Problems with the definition of the population in the submission (4 reports)</td>
<td></td>
</tr>
<tr>
<td>Intervention</td>
<td>The definition of the intervention was an issue, i.e. the inclusion or failure to include the intervention as combination therapy or monotherapy (5 reports);</td>
<td>“Scope covers both mono-therapy and treatment in combination - the latter is not included in the decision problem”</td>
</tr>
<tr>
<td></td>
<td>Differences between the trial interventions and UK practice (2 reports);</td>
<td>“Definition of the intervention in the MS is in accordance with the proposed marketing authorisation”</td>
</tr>
<tr>
<td></td>
<td>Differences between the licensed intervention and the trial intervention (1 report);</td>
<td>“There is uncertainty regarding the dose used in the key trial”</td>
</tr>
<tr>
<td></td>
<td>Dose being evaluated was reported as an issue (1 report)</td>
<td></td>
</tr>
<tr>
<td>Comparators</td>
<td>Failure to consider one or more of the comparators designated in the decision problem, or the submissions’ use of a combination of comparators not admitted in the decision problem (13 reports);</td>
<td>“This evidence cannot be used directly to answer the questions raised in the decision problem because in the main trial [technology] was not compared to a relevant comparator”</td>
</tr>
<tr>
<td></td>
<td>Comparator being evaluated was not in use in the UK or that a non-optimal dose of the comparator was being assessed (3 reports);</td>
<td>“The MS did not clearly state which technologies were the key comparators”</td>
</tr>
<tr>
<td></td>
<td>Lack of definition for the chosen comparator (2 reports);</td>
<td>“The choice of comparator reflects the comparator in the [trial] rather than possible relevant comparators in an NHS context”</td>
</tr>
<tr>
<td></td>
<td>Non-optimal treatment duration for the comparator in the model (1 report);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mixed-treatment comparison (MTC) conducted using comparators other than the principal comparator named in the scope (1 report)</td>
<td></td>
</tr>
<tr>
<td>Outcomes</td>
<td>Uncertainties regarding the appropriateness of the outcome being measured (6 reports);</td>
<td>“appropriate and clinically meaningful outcomes”</td>
</tr>
<tr>
<td></td>
<td>Lack of clarity on how Quality of Life was being measured (2 reports);</td>
<td>“MS does not specify how three outcomes are to be measured”</td>
</tr>
<tr>
<td></td>
<td>Inadequacy of the safety measures presented (1 report);</td>
<td>“Inadequate consideration of safety (greater toxicity and long term side effects of [technology])”</td>
</tr>
<tr>
<td></td>
<td>Concerns about a trial’s lack of power to detect the secondary outcomes being presented (1 report)</td>
<td></td>
</tr>
<tr>
<td>NICE base case</td>
<td>Multiple deviations from the base case, or reported specific deviations in relation to either the calculation of utilities or the comparator (8 reports)</td>
<td>“The [cost effectiveness analysis] is in accordance with the NICE reference case and the scope”</td>
</tr>
<tr>
<td>Meta-theme</td>
<td>Primary themes</td>
<td>Results</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Reliability and validity</td>
<td>Uncertainty due to absence of evidence, possible bias or exaggerated effect</td>
<td>• Possible exaggerated effect of the technology in the analysis especially the relative efficacy of the technology versus relevant comparators (12 reports); • Uncertainty concerning the safety of the technology (1 report); • Uncertain levels of risk for different populations (1 report); • Uncertainties due to issues with the parameters or values in the model (10 reports); • Exaggeration or over-estimate of benefits or costs (7 reports); • Excessive extrapolation from the data (4 reports); • Uncertainty due to the model’s high degree of sensitivity to values or assumptions within the model (6 reports); • Uncertainties regarding relative efficacy of technologies as no head-to-head trial had been performed or because the findings were based on only a single trial (4 reports)</td>
</tr>
<tr>
<td></td>
<td>Reliability</td>
<td>• The submission was deemed to offer a convincing case for the technology, an unbiased estimate of treatment effect or a fair interpretation of the trial data (9 reports); • The submission was deemed to present a reasonable estimation of the cost-effectiveness of the technology versus relevant comparators, that the modelling of the costs of the technology appeared sound, or that the model was superior to previous published models (3 reports)</td>
</tr>
<tr>
<td></td>
<td>External validity</td>
<td>• Differences between the trial and UK populations (6 reports), including sub-groups of UK patients likely to receive the treatment (1 report); • Differences between the treatment practices being evaluated in trials and clinical practice in the UK or Europe (7 reports); • Differences between the trials and “real world” clinical practice generally (2 reports) • Criticised for use of non-UK sources of data for the model (2 reports)</td>
</tr>
</tbody>
</table>
Process
The meta-theme of process reflected the primary themes of how well or how badly the manufacturer conducted the review and the modelling processes; the inadequacy of the analyses or the appropriateness of the analyses performed and reported in the submission; and the ERGs’ reported concerns with the data that were used in the analyses. On many occasions, elements of the systematic review process, such as searching and data extraction, or the structure of the model, prompted positive comments from an ERG. However, more than half of the ERG reports explicitly criticised the conduct of the clinical effectiveness review and/or the model (see Table). The analyses performed by the manufacturers and reported in the submission constitute another element of the effectiveness review process that was frequently critiqued by the ERGs, but it was not simply the failure to perform a necessary analysis, but rather the performance of an inappropriate analysis also that generated criticism in a majority of ERG reports. Finally, two thirds of ERG reports (20/30) contained criticisms relating to the data being used in analyses and models.

Reporting
This meta-theme was derived from explicit comments made in ERG reports on the quality of the manufacturers’ description of the conduct of both the reviewing and the modelling. Only in a small number of cases did ERGs make explicit, positive comments on the description of the technology or processes within manufacturers’ submissions. Nine ERGs commented on the accuracy and adequacy of the background section provided in the submission, albeit in four cases stating that further information would still have been useful. It was far more common however for ERGs to perceive as inadequate the reporting or description of the processes being undertaken or the sources of data being used. A total of 27 out of 30 ERGs reported some form of inadequacy in the reporting of a submission.

Satisfaction of objectives
This theme emerged from issues surrounding the relationship between the decision problem and the scope issued by NICE, and whether or how far the elements of these were satisfactorily addressed in the manufacturer submissions. The five primary themes that generated this meta-theme relate to the objectives determined by the decision problem, i.e. the population, intervention, comparator, outcomes and the NICE base case.

Twenty of the thirty ERG reports did raise issues with the trial populations being presented and considered in the submission. The second major disparity between submissions and the requirements of the decision problem concerned the comparators. Twelve ERG reports found nothing to criticise in this regard, but eighteen did raise various issues with the comparators
considered in submissions. The principal issue, raised in thirteen reports, involved a submission’s failure to consider one or more of the comparators designated in the decision problem, or the submissions’ use of a combination of comparators not admitted in the decision problem. By contrast, few ERGs commented on a submission’s failure to satisfy the intervention or outcome elements of the decision problem. Twenty-one ERG reports reported no problem with the intervention being evaluated in the submission. Twenty-one reports also did not have any criticism to make of the outcomes presented in the submissions. The principal issue in six of the remaining reports concerned uncertainties regarding the appropriateness of the outcome being measured. The vast majority of the issues relating to the satisfaction of objectives were raised in the appraisal of the clinical effectiveness evidence. Very few, for example, only those relating to the measurement of Quality of Life as an outcome, were issues raised principally or exclusively in the cost-effectiveness sections of the reports. In relation to satisfying objectives, the principal focus of the cost-effectiveness section concerned the submissions’ failure or otherwise to satisfy the requirements of the NICE base case when developing the economic model. The majority of submissions appear to have adhered to the NICE base case scenario and prompted no criticism: only eight ERGs reported any issues.

Reliability and validity

The reliability and validity theme emerged from four primary themes that were interpretations of ERG comments on the robustness or limitations of the submissions’ findings. These themes were: uncertainty due to the possibility of bias or an exaggerated estimate of effect; uncertainty due to the absence of evidence; the reliability (rather than uncertainty) of the findings; and external validity, i.e. how far the ERG considered the submission to be externally valid for the intended population and service. The level of uncertainty surrounding the findings presented by the submission was a frequent cause of criticism in ERG reports. Twenty-seven out of thirty ERG reports stressed the presence of bias within the analyses, thus highlighting the lack of certainty surrounding the results presented in the submissions. Uncertainties within the clinical effectiveness analyses impacted on the models, which were also subject to other biases, such as uncertainties due to issues with the parameters or values in the model. By contrast, few ERG reports stated that it was the lack of evidence rather than the quality of the evidence or its analysis that generated uncertainty in the submissions’ findings. ERG reports did sometimes also explicitly comment that the findings of the effectiveness or cost-effectiveness analyses were strong and reliable, but this was relatively infrequent. Finally, seventeen ERG teams explicitly queried the external validity of the submissions’ findings.
Content

The ERGs often commented on the amount and quality of the trial evidence that formed the basis for the submission as this affected both the internal and external validity of the submission and its reviews. However, unlike the other themes, this issue is not addressed readily by the improved conduct of reviews, analyses, modelling or reporting of the processes used. Nevertheless, it is an element of the submission that attracted comment from ERGs and so is represented in this analysis. The limited amount of relevant trial evidence, for example, the fact that the submission may be based on the evaluation of a single RCT, or perhaps two such trials only, was sometimes explicitly raised as a point by ERGs, as was the quality of the included trials was also often commented on by ERGs, as this had implications for the validity of the review, model and submission. However, the included trials, even if there was only one, were more often explicitly reported as being of good or reasonable quality. Small sample sizes in trials, and limited follow-up, were other factors affecting the amount and quality of the evidence that drew comments from three ERGs.

DISCUSSION

The role of the ERG team is to critically appraise the MS, so emphasis is on identifying aspects where there are concerns rather than highlighting occasions where something has been undertaken appropriately. More than half of the ERG reports explicitly criticised the conduct of the systematic review within the MS. Other criticisms covered both failure to perform a necessary analysis and the performance of an inappropriate analysis. However half of all ERG reports did pass positive comments on the appropriateness of the structure of the economic model presented or the reasonableness of the modelling.

It may be argued that new technologies may often be unable to provide extensive data for analysis. However it is possible to address issues raised by the absence for example of sufficient direct comparison trial data by using available multiple treatment or indirect comparison methods, such as network meta-analysis. The findings indicate that manufacturers often chose inappropriate methods or did not provide sufficient detail for the ERG to understand the approaches being used. Two thirds of ERG reports also contained criticisms related to the data being used, especially the data employed in the cost-effectiveness model. The NICE requirements for the economic model and analyses, such as probabilistic sensitivity analyses, may be deemed “excessive”, but manufacturers are aware of these requirements and there is prior evidence that industry can be optimistic in their cost analyses.[12, 13].
There were major issues regarding poor reporting of processes used in manufacturer submissions. These included poor descriptions of literature searching, and lack of transparency in the description of the processes used for both the clinical and cost effectiveness sections of the submissions, with reporting of the cost effectiveness model being the most common criticism by ERGs. The population and comparator represented the key items in the decision problem that ERGs’ assessed as being either poorly or inadequately addressed by manufacturers. It is also an issue with implications for the ERGs’ critique. A lack of concordance between the scope and the published and unpublished research does not make the decision problem inappropriate: the question posed is valid for policy-makers; and the manufacturers’ trials will have been conducted in particular contexts and jurisdictions for particular reasons. A lack of “fit” between the question and the available research may therefore be unavoidable in some cases, but it does have implications for the external validity of the results and how far they can be said to apply to the context of interest, i.e. the UK NHS. For this reason, the failure to satisfy the objectives is important. It is important to note that this analysis is based on what was reported in the ERG reports after the clarification letter stage, in other words, after the manufacturers’ have already had the opportunity to respond to any criticisms highlighted by the ERG. Indeed, manufacturers may have satisfied many requests for information at this interim stage. The ERG reports described here therefore represent the final critique.

Some of the themes also relate either directly or indirectly to one another. An ERG’s assessment of the deficiencies in the processes performed in a submission, e.g. the failure to perform an appropriate analysis, the presence of bias within analyses, or issues with the data used, all also directly impact on its assessment of the reliability and validity of the findings of the submission, another key theme. In the same way, the failure of submissions to address or satisfy the objectives as outlined in the decision problem directly influenced ERGs’ assessments of the external validity of the findings as they related to clinical practice in the UK. This suggests that if a submission addresses issues relating to the processes being used, and presents clear rationale for the choices being made, and any unavoidable limitations of evidence or analysis, then ERG assessments of the reliability and validity of the submissions’ findings will be positively affected also.

The only other previously published analysis of similar submissions, the economic analyses submitted to the Australian Pharmaceutical Benefits Scheme, identified some similar problems: uncertainties surrounding the estimates of effect, and issues with the parameters, values and structure of the economic models, and errors within the models.[14] Choice of
comparator was also highlighted as an issue. This earlier, Australian evaluation reported that
approximately two thirds of the problems were deemed to be avoidable. These findings have
some strong similarities with the results of the present analysis. It has also been commented
elsewhere that transparency of both the methods required and the criteria by which the
submissions are to be judged should improve manufacturer submissions.[3] The findings of
this paper suggest however that manufacturers do not always satisfy these criteria as they are
outlined in the methods guide and templates.[6, 7] What may be required is even greater
definition of these criteria, and greater stress on the need to prepare submissions with the
methods guide and template in mind. Finally, eighteen of the thirty STAs discussed here
were approved at the Final Appraisal Determination (FAD). A further three were approved
after appeal; one was terminated and the remaining eight were not approved. This indicates
how technologies may be approved even when there are issues with the submission either
because those issues might not be deemed “vital”, because they have been adequately
addressed by the ERG, or because other variables also help to shape the decisions. However,
the ERGs’ assessments were obviously also instrumental.

The limitations of this study are that it focuses on ERG perceptions of the weaknesses of the
manufacturers’ submissions, as critique was the function of the ERGs and their reports.
Although certain appraisal criteria were being followed, these were not standardised or
absolute. Consequently, not every ERG therefore always reported the presence of a problem
that was reported by another ERG. The issues deemed the most important by the ERGs
doubtless attract the most comment. The appraisal process was and is still evolving. This
analysis therefore offers a map of the key issues raised by ERGs’ evaluation of submissions,
rather than a highly specific analysis focusing on, for example, the modelling approaches
adopted. There may be value in such future work. However, the internal validity of the
findings reported here is enhanced by the consistency with which the identified themes
emerged from across substantial numbers of the reports. Given that the number of STAs now
total around one hundred [15], there may also be some value in conducting a similar
assessment of a sample of more recently completed ERG reports to compare findings. The
results may be the comparable however because no changes have been made yet to the
methods guide or criteria.[6, 7] Alternatively, as individual manufacturers also garner more
and more experience of both the process and the focus of ERG criticisms, then the perceived
“quality” of some submissions may indeed have changed.
CONCLUSION

The ERGs appear to be performing an intensive evaluation of manufacturers’ submission to the STA process using the NICE methods guide and template, and applying standard principles of critical appraisal for systematic review and cost-effectiveness models. The ERG criticisms may be reduced if manufacturers address the issues raised by this analysis of assessments of previous STA submissions, i.e. transparency in the reporting, conduct and justification of review and modelling processes and analyses, as well as greater robustness in the choice of data and closer adherence to the scope or decision problem. In cases where this is not possible, more detailed justification of the choice of evidence or data might also temper the criticism of submissions. The responsibility on both parties is substantial given the potential implications for health services provision that emerge from the process.

Acknowledgements

This work was funded by the UK NIHR Health Technology Assessment programme and elements of this paper are published in the Health Technology Assessment journal series. The views and opinions expressed therein are those of the authors and do not necessarily reflect those of the UK Department of Health. We would like to thank Diana Papaioannou for the FAD approvals data cited in this paper.
REFERENCES

