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On the inconsistency of the Camassa-Holm model with the

shallow water theory

Rikesh Bhatt and Alexander V Mikhailov

Abstract

In our paper we show that the Camassa-Holm equation does not represent a long wave

asymptotic due to a major inconsistency with the theory of shallow water waves. We state that

any solution of the Camassa-Holm equation, which is not asymptotically close to a solution

of the Korteweg–de Vries equation is an artefact of the model and irrelevant to the theory of

shallow water waves.

Keywords: Camassa-Holm equation, peakon, long wave asymptotic expansion.

1 Introduction

A partial differential equation

2ω Uy + Uτ + 3UyU − Uτyy − 2UyUyy − UUyyy = 0 (1)

known in the literature as Camassa-Holm equation is a fine example of an integrable system with
many interesting and rather unusual properties. As an integrable equation it was discovered in
Fokas & Fuchssteiner (1980), Fokas & Fuchssteiner (1981), but equation (1) had not been really
noticed until the publication Camassa & Holm (1993) where the authors proposed it as a model
for shallow water waves. Moreover, Camassa and Holm have shown that in the case ω = 0 equation
(1) possesses a peculiar solution with a cusp

U = v exp(−|y − vt|) (2)

which they called a “peakon”. Moreover, they also found exact multi-peakon solutions. The paper
of Camassa and Holm has triggered an enormous avalanche of publications with the developments
of mathematical theory for this new class of integrable systems and speculations about possible
applications of the Camassa-Holm equation to the theory of shallow water waves (including the
problem of tsunami, Lakshmanan (2007)) and other long wave asymptotic theories.

There were a number of publications where authors raised some criticism to the original deriva-
tion and proposed new versions of the derivations starting from the reduction of the Green-Naghdi
model, reduction of the generalised Serre model or a direct multiscaling asymptotic expansion of
the Euler equation (see for example Johnson (2002), Dullin et al. (2003), Constantine & Lannes
(2009), Dias & Milewski (2010) Camassa et al. (1994)). The main concern of these derivations
was to achieve a fine adjustment of the coefficients in the first few terms of the asymptotic ex-
pansion in order to make the equation corresponding to the truncated expansion integrable. The
aim of this paper is to point out that the Camassa-Holm equation does not correspond to any
dominant balance in the asymptotic expansion and thus it does not represent a long wave asymp-
totic for water waves. We have analysed the above derivations and found them inconsistent with
the basic principles of asymptotic theory. Indeed, one cannot keep the first principal asymptotic
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contribution (corresponding to the Korteweg–de Vries theory) together with the next asymptotic
correction, then truncate the expansion and balance these two contributions by a re-scaling. Such
a re-scaling contains the small asymptotic parameter and thus violates the original assumption
about the ratio of the water depth and the characteristic wave length. We have computed the next
(neglected in the above derivations) term of the expansion and have shown that after the proposed
re-scaling it is of the same order as any term accounted in the Camassa-Holm equation. Moreover,
the parameter ω in (1) appears in denominators of the neglected terms and thus cannot be set to
zero (for the existence of peakon solutions) in any long-wave asymptotic theory. Here we should
mention that the fact that the peakon solutions are irrelevant for shallow water waves was well
understood earlier and published in Johnson (2002), Dullin et al. (2003). Using the exact soliton
solution of the Camassa-Holm equation we have shown that the neglected terms are of the same
order as terms accounted in equation (1).

2 Long wave expansion and the Camassa-Holm Equation

In this section, following Whitham (1974), we give a sketch of long wave asymptotic expansion be-
yond the Korteweg–de Vries (KdV) theory . We shall illustrate the derivation of the Camassa-Holm
equation following Dullin et al. (2003), Dullin et al. (2004) and point out where the inconsistency
occurs. Also we will show that the terms neglected in the theory of the Camassa-Holm equation
are of the same order as any term accounted in (1). We claim that the inconsistency cannot be
removed if one uses a reduction of the Green-Naghdi model (which itself is an approximation), or
by choosing the value of the velocity potential inside of the flow (Johnson (2002)) or by any other
method. We shall neglect the surface tension, since it does not affect our argument but simply
makes expressions look more complicated. Also we shall neglect viscosity and compressibility of
water.

Two dimensional motion of vorticity free fluid is described by the potential Φ(x′, z′, t′) of the
velocity field u(x′, z′, t′) = ∇Φ. In the bulk of the fluid the potential satisfies the Laplace equation

Φx′x′ +Φz′z′ = 0

with the boundary condition Φz′ = 0 at the bottom z′ = 0. At the free surface of the fluid
z′ = h0 +H(x′, t′) there are kinematic and dynamic boundary conditions

Φz′ = Hx′Φx′ +Ht′

Φt′ +
1

2

(

Φ2
x′ +Φ2

z′

)

+ gH = 0,

where g is the acceleration due to gravity and h0 is the undisturbed depth of water.
Long wave asymptotic expansion assumes a small parameter ǫ = h2

0/L
2 where L is a typical

wavelength of the wave. Another dimensionless small parameter of the theory is µ = a0/h0 where
a0 is a typical amplitude of the wave. We shall assume that ǫ ≤ µ ≪ 1. Actually one can set µ = ǫ
and develop the theory with one parameter, but following Johnson (2002), Dullin et al. (2003),
Constantine & Lannes (2009) we shall keep both parameters for better control over the terms.

Introducing dimensionless variables

x′ = Lx, z′ = h0z, t′ =
L√
gh0

t, H = µh0η, Φ = µl
√

gh0φ,
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we re-write the above system of equations in the form:

ǫφxx + φzz = 0 (3)

[φz ]z=0 = 0 (4)
[

1

ǫ
φz − µηxφx − ηt

]

z=1+µη(x,t)

= 0 (5)

[

φt +
1

2

(

µφ2
x +

µ

ǫ
φ2
z

)

+ η

]

z=1+µη(x,t)

= 0 (6)

Starting from here we shall develop asymptotic expansion as a series in ǫnµm, n,m ∈ Z+.
We shall illustrate the derivation the Camassa-Holm equation with corrections in three steps. We
begin with the derivation of the Boussinesq expansion up to the order ǫnµm, n +m = 3. Then,
following Whitham (1974), we make a reduction to the KdV theory describing unidirectional wave
propagation. Finally we transform the equation obtained to the form (1), keeping terms of order
ǫnµm, n+m = 3 to demonstrate that the Camassa-Holm equation does not represent a long wave
asymptotic for surface waves.

2.1 The Boussinesq expansion

The Boussinesq expansion aims to eliminate the dependence on the vertical coordinate z and reduce
(3) - (6) to a system of equations on the elevation η = η(x, t) and the horizontal component of
the velocity field at the bottom w = φ(x, 0, t)x. In this Section we shall follow the construction
presented in detail in Whitham (1974) (Chapter 13.11), but will keep more terms in the expansion.

It follows from the Laplace equation (3) and the boundary condition at the bottom (4) that

φ(x, z, t) =

∞
∑

n=0

ǫn(−1)n
z2n

(2n)!

∂2nF

∂x2n
, (7)

where F (x, t) is the value of the potential φ at the bottom1, and thus w = Fx.
In order to reduce the system (3) - (6) to two equations for functions η(x, t) and w(x, t) we

substitute φ(x, z, t) (7), in (5) and (6), then we differentiate in x the equations obtained from (6)
and replace Fx by w in the both equations. Keeping terms of order ǫnµm, n+m ≤ 3 we get

0 = ηt + wx + µ (ηw)x − ǫ

6
wxxx

−µ ǫ

2
(ηwxx)x +

ǫ2

120
wxxxxx (8)

−µ2ǫ

2

(

wxxη
2
)

x
+

µ ǫ2

24
(wxxxxη)x − ǫ3

5040
wxxxxxxx

and

0 = wt + ηx + µwwx − ǫ

2
wtxx

−µ ǫ

2

(

2wtxη + wwxx − w2
x

)

x
+

ǫ2

24
wtxxxx (9)

−µ2ǫ

2

(

2wwxxη − 2wx
2η + wtxη

2
)

x

+
µ ǫ2

24

(

4wtxxxη + 3w2
xx − 4wxwxxx + wxxxxw

)

x
− ǫ3

720
wtxxxxxx

1In Dullin et al. (2003) the authors use a different geometry, namely the bottom is set at z = −1. Their solution
does not satisfy the boundary condition at z = −1 (presumably due to a misprint). To rectify the misprint one has
to replace z by z + 1 in the right hand side of (2.7),(2.8) in Dullin et al. (2003).
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respectively. First two lines in (8),(9) coincide with equation (2.9) in Dullin et al. (2003)2. For the
purpose of our paper we are keeping the next order in the expansion. There are no obstructions
to find higher order terms if required.

2.2 Reduction To Unidirectional Waves. The KdV theory with higher

asymptotic corrections

System (8),(9) describes waves propagating in both direction. There are many ways to reduce it
to unidirectional wave propagation. In order to be consistent with Dullin et al. (2003) we employ
the method proposed in Whitham (1974). Namely, we shall assume

w = η +

∞
∑

k=1

k
∑

n=0

µnǫk−nfkn[η]

and request that equations (8),(9) coincide upon this assumption, that would enable us to determine
the coefficients fkn[η]. Keeping terms with k ≤ 3 we get

w = η − µ

4
η2 +

ǫ

3
ηxx

+
µ2

8
η3 +

ǫ µ

16

(

3 η2x + 8 ηηxx
)

+
ǫ2

10
ηxxxx

− 5µ3

64
η4 +

µ2ǫ

32

(

4 η2ηxx + 3 ηη2x + 6D−1
x

(

η3x
))

+
µ ǫ2

1440

(

504 ηηxxxx + 1091 ηxηxxx + 652 η2xx
)

+
61 ǫ3

1890
ηxxxxxx . (10)

Here D−1
x denotes integration. Assuming η3x → 0 rapidly enough as x → −∞ one can set

D−1
x

(

η3x
)

=
∫ x

−∞ η3x dx. The first line of the expansion (10) one can find in Whitham (1974),
terms f2n were derived in Marchant & Smyth (1990) and Johnson (2002), here we extend the
expansion to the terms f3n of order µnǫm, n+m = 3.

Substitution of (10) in either (8) or (9) leads to equation

0 = ηt + ηx +
3µ

2
ηxη +

ǫ

6
ηxxx

− 3µ2

8
η2ηx + ǫ µ

(

5

12
η ηxxx +

23

24
ηxηxx

)

+
19ǫ2

360
ηxxxxx

+
3µ3

16
η3ηx + ǫ µ2

(

23

16
η ηxηxx +

5

16
η2ηxxx +

19

32
ηx

3

)

+ ǫ2µ

(

1079

1440
ηxxxxηx +

317

288
ηxxηxxx +

19

80
ηxxxxxη

)

+
55ǫ3

3024
ηxxxxxxx. (11)

The first line of this expansion is the standard Korteweg–de Vries equation, corrections in the
second line is the well known result (see Marchant & Smyth (1990), Johnson (2003)). For the
purpose of our paper we proceed to the terms of order µnǫm, n+m = 3.

2In Dullin et al. (2003) in the first equation (2.9) there is a misprint in the sign at the term proportional to δ4

(in our paper it is the term proportional to ǫ2 in (8)).
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2.3 Asymptotic near-identity transformation

Following Dullin et al. (2003) we shall apply the Galilean and asymptotically invertible near-
identity transformations to equation (11). The purpose of these transformations is to bring the
first two lines of equation (11) in the form, which can be re-scaled to equation (1).

First we apply the Galilean transformation

X = x− δt, T = t, (12)

where δ is a constant which will be determined later. Then we perform the Kodama transformation

η(X,T ) = u+ µ
(

α1u
2 + α2uXD−1

X (u)
)

+ ǫβuXX (13)

to a new dependent variable u = u(X,T ). And finally we apply the Helmholtz operator H =
1− ǫγ∂2

X to the equation obtained.
In the Galilean transformation and the Helmholtz operator we set δ = 9/19 and γ = 19/60 in

order to vanish the coefficients at the terms uXXX and uXXXXX respectively. The choice α1 =
7/20, α2 = −1/5, β = 1/30 excludes the term u2uX and guarantees (see details in Dullin et al.

(2003)) that the first line of the resulting equation

0 = uT +
10

19
uX +

3µ

2
uuX − 19 ǫ

60
uTXX − µǫ

120
(38 uXXuX + 19 uXXXu)

+
223 ǫ3

151200
uXXXXXXX − 3µ3

100
uXXD−1

X (u)
(

u2 − 2 uXD−1
X (u)

)

+
µ2ǫ

2400

(

976uuXuXX − 48uuXXXXD−1
X (u) + 48 uXX

2D−1
X (u) + 680uXXXu2

+2765 uX
3
)

+
µǫ2

3600
(903 uXXXXuX + 316uXXXXXu+ 305uXXuXXX) (14)

can be re-scaled to (1).
Until this stage the asymptotic theory is consistent and equation (14) is asymptotically equiva-

lent to the KdV expansion. The first line of (14) was derived in Dullin et al. (2003), our contribution
is in the retaining of the next corrections in the asymptotic expansion (the last three lines in (14)).

3 Derivation of the Camassa-Holm equation and its incon-

sistency with the asymptotic expansion

Analysing the publications with derivations of the Camassa-Holm equation as a long wave asymp-
totic expansion we notice that they have a similar pattern. Starting from the Euler equation or
a certain well established model of water waves (the Green-Naghdi model, the generalised Serre
model, etc) the authors arrive to the equation similar (up to an inessential re-scaling with constant
coefficients) to the first line of (14). Then they truncate the expansion at this level and re-scale it
to the form (1). We shall do the same re-scaling, but accounting the next correction.

The most general re-scaling of variables that transforms the first line of equation (14) into (1)
is

u = AU, y =
2

19

√
285√
ǫ

X, τ =
1

19

µA
√
285√
ǫ

T, (15)

where A is an arbitrary constant and ω = 10/(19Aµ). The re-scaling (15) balances the terms in
the the equation by eliminating the small parameters ǫ and µ (except the the term with ω). It is
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Figure 1: (From left to right) The soliton shape (c = 1, ω = 0.2), the value of UUyyy term evaluated
on this soliton solution, the value of the correction (16).

easy to see that after this re-scaling the small parameters disappear from the correction (the last
three lines in (14)), which takes the form

12

361ω2
UyyUy

(

D−1
y (U)

)2 − 6

361ω2
U2UyyD

−1
y (U) +

2440

361ω
UyUUyy

+
2765

722ω
(Uy)

3 +
24

361ω
(Uyy)

2D−1
y (U)− 24

361ω
UUyyyyD

−1
y (U) +

340

361ω
U2Uyyy

+
1806

361
UyUyyyy +

610

361
UyyUyyy +

632

361
UUyyyyy +

446

2527
ω Uyyyyyyy . (16)

One can also demonstrate that the small parameters disappear from all higher corrections.
One could hope that for the exact soliton or peakon solutions the correction term (16) and all

higher corrections vanish. It is obviously not the case for peakons, moreover the constant ω, which
has to be set zero (for the existence of peakons) is in the denominator. It does not happen with
solitons either. To show that we used the exact soliton solution of equation (1) taken from Johnson
(2003):

U(y, τ) =
(c− 2ω)

1 + 2ωc−1 sinh2(θ)

where c is an arbitrary constant satisfying condition c > 2ω and θ is a function of y− cτ implicitly
given by equation

y − cτ =
2θ√

1− 2ωc−1
+ ln

(

cosh
(

θ − arctanh
√
1− 2ωc−1

)

cosh
(

θ + arctanh
√
1− 2ωc−1

)

)

.

Taking c = 1, ω = 0.2 we compared a contribution from one of the terms of the Camassa-Holm
equation with the value of the correction (16). It is shown on Fig.1 that the correction (16) is much
bigger then a contribution from the term of the equation (1) evaluated on the soliton solution with
this choice of parameters and this fact does not depend on the choice of the term.

The re-scaling (15) is a basic error, which leads to the inconsistency with the long wave asymp-
totic theory. Indeed, suppose we have started from equation (1) and have found its solution of a
size or characteristic wavelength λ ∼ 1. Re-scaling this solution to the variable X we find from

(15) that the size in this variable is Λ = 19
√
ǫ

2
√
285

λ ≈ 0.56
√
ǫλ. Since the Galilean transformation

(12) does not change the scale, the wave has the same size in the variable x. Coming back to the
physical dimensional variable x′ we realise that the size of the wave is λ′ = LΛ ≈ 0.56λh0 which is
in contradiction with the long wave assumption h2

0/(λ
′)2 ≈ 3.2/λ2 ≪ 1.
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One can consider solutions of (1) of an extremely large characteristic length λ ≫ 1, but with
the same accuracy such solutions can be described by the Korteweg–de Vries equation with the
first correction (11) (whose integration is not much different from the KdV itself ,Kodama (1985),
Hiraoka & Kodama (2009)). For λ ≫ 1 it follows from Dullin et al. (2004) that equations (1) and
(11) are asymptotically equivalent, but the theory of the latter is much simpler and well developed.

4 Conclusion

The Camassa-Holm model for shallow water waves does not represent the long-wave asymptotic.
Any solution of this model, which is not asymptotically close to a solution of the Korteweg–de
Vries equation is an artefact of the model and irrelevant to the theory of shallow water waves. In
the literature there are many papers with implicit criticism of various aspects of the derivation
of the Camassa-Holm model and its validity as well as attempts to rectify them, but they only
contribute further to the confusion. Serious concerns about the asymptotic sense of the Camassa-
Holm equation as a water wave theory has been raised in Johnson (2002). In our paper we put
an end to desperate attempts to justify the Camassa-Holm model using the long wave asymptotic
theory. Based on our consideration it is not difficult to conclude, that neither the Camassa-Holm
model nor the Degasperis-Procesi equation (Degasperis & Procesi (1999)) can represent a long
wave asymptotic in problems of Hydrodynamic, Physics of Condensed Matter, Plasmas, etc, and
that the peakon solutions are irrelevant for the long wave asymptotic theory.

Having said so, we do not want to undermine the mathematical value of equation (1). It is a
fine example of an integrable multi-Hamiltonian system with interesting associated spectral theory,
unusual properties, etc. It may have other applications due to the discovery by Misiolek (1998) (see
also Khesin & Misiolek (2003)) that equation (1) is the Euler equation for the geodesic flow on the
Virasoro group with respect to the right-invariant Sobolev H1 -metric. As a mathematical object,
the class of integrable equations discovered by Fuchssteiner and Fokas is a valuable contribution
to the theory of differential equations.
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