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Abstract

We introduce a model for a growing random graph based on simultaneous reproduction
of the vertices. The model can be thought of as a generalisation of the reproducing graphs
of Southwell and Cannings and Bonato et al to allow for a random element, and there
are three parameters, α, β and γ, which are the probabilities of edges appearing between
different types of vertices. We show that as the probabilities associated with the model vary
there are a number of phase transitions, in particular concerning the degree sequence. If
(1 +α)(1 + γ) < 1 then the degree distribution converges to a stationary distribution, which
in most cases has an approximately power law tail with an index which depends on α and γ.
If (1 +α)(1 + γ) > 1 then the degree of a typical vertex grows to infinity, and the proportion
of vertices having any fixed degree d tends to zero. We also give some results on the number
of edges and on the spectral gap.
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1 Introduction

In this paper we introduce a new model for a growing random graph based on simultaneous
reproduction of the vertices in the graph, with edges being formed between the new vertices and
each other and between the new vertices and the existing ones according to a random mechanism
conditioned on the pattern of edges between the vertices in the previously existing graph. The
model is a generalisation of the models introduced by Southwell and Cannings [10, 11, 12] and
the Iterated Local Transitivity (ILT) model of [2], introducing stochasticity, which causes the
regular structure found in the graphs of [10, 11, 12] to be lost, and which may make them more
suitable for modelling in areas such as social networks; the authors of [2] particularly suggest
their model as a model for online social networks, mentioning Facebook and Twitter among
other examples.

We will show that our model, which depends on three parameters α, β and γ, which are to
be thought of as probabilities, exhibits a number of phase transitions as the parameters vary;
for example for some values of the parameters we will show that the degree distribution of the
graph converges to a limiting probability distribution, while for other choices of the parameters
the degree of a randomly chosen (in an appropriate sense) vertex in Gn can be shown to tend
to infinity as n → ∞. We will also show that for certain choices of the parameter values the
model exhibits a power-law-like decay of the degree distribution, which is a property reported
for many “real world” networks, and is also associated with other random graph models such as
preferential attachment.

We start with a graph G0, and form a new graph Gn+1 by adding a “child” vertex for every
vertex of Gn. As in [10, 11, 12] we denote the vertices by binary strings, writing v0 for the “child”
of vertex v ∈ V (Gn) and v1 for the continuation of vertex v as a vertex of Gn+1. The edges of
Gn+1 are then obtained according to the following mechanism. For each n define independent
(of each other and of the random variables at other stages of the construction) Bernoulli random

variables a
(n)
{u,v} ∼ Ber(α) for each unordered pair {u, v} of vertices of Gn, b

(n)
u ∼ Ber(β) for

each vertex in Gn, c
(n)
(u,v) ∼ Ber(γ) for each ordered pair (u, v) of vertices of Gn, and connect

vertices as follows:

(a) u1 is connected to v1 in Gn+1 if and only if u and v are connected in Gn, that is existing
edges are retained, and no further edges are formed between existing vertices.

(b) u0 is connected to u1 in Gn+1 if and only if b
(n)
u = 1, so each child is connected to its parent

with probability β.
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(c) u0 is connected to v1 in Gn+1 if and only if c
(n)
(u,v) = 1 and u and v are connected in Gn, so

each child is connected to each of its parent’s neighbours with probability γ.

(d) u0 is connected to v0 in Gn+1 if and only of a
(n)
{u,v} = 1 and u and v are connected in Gn,

so each child is connected to each of its parent’s neighbours’ children with probability α.

The models introduced in [10, 11, 12] have α, β, γ ∈ {0, 1}, so are deterministic. Additionally
the case where α = 0, β = 1, γ = 1 is the ILT model, introduced in [2] as a model for online social
networks. The ILT(p) model introduced in [2] as a stochastic generalisation of the ILT model
adds extra random edges between the child vertices without regard to whether their parents
were connected, and thus cannot be seen as a special case of our model. In addition as defined
in [2] the ILT(p) model always has at least the edges found in the basic ILT model, so is not
suited to producing relatively sparse graphs.

The model differs from duplication graphs, for example those considered in [3, 5], in that in
those models only one vertex, chosen at random, duplicates at any one time step, whereas in
the models considered here and in [2, 10, 11, 12] all vertices simultaneously duplicate.

Our main results concern the degree distribution. We will deal with the cases where β = 0 and
β > 0 separately, as the behaviour of the model when β = 0 is potentially quite different, with
large numbers of isolated vertices.

Theorem 1. Let β = 0. Then, if (1 + γ)(α + γ) ≤ 1, the probability that a randomly chosen
vertex in the graph Gn is isolated tends to 1 as n → ∞, and the proportion of vertices in the
graph with degree zero tends to 1, almost surely. If (1 + γ)(α+ γ) > 1, then the probability that
a randomly chosen vertex in the graph Gn is isolated converges to some value strictly less than
1.

Theorem 2. Assume β > 0, and let p
(n)
d be the proportion of vertices in Gn with degree d. Then

(a) If (1 + γ)(α + γ) < 1 there exists a random variable X such that p
(n)
d → P (X = d) as

n→∞, almost surely.

(b) Under the conditions of (a), the random variable X has a finite pth moment if (1 + γ)p +
(α+ γ)p < 2, and does not have a finite pth moment if (1 + γ)p + (α+ γ)p > 2.

(c) If (1 + γ)(α+ γ) > 1 then p
(n)
d → 0 as n→∞, almost surely.

Note that Theorem 2(b) implies that if (1 +γ)p+ (α+γ)p = 2 the tail of the degree distribution
is asymptotically close to a power law degree distribution with index given by −(p+ 1), in the
sense that qth moments exist for q < p but not for q > p.
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In [2], it is shown that the ILT model exhibits a “densification power law”, which is defined
to mean that, if En is the number of edges of Gn and Vn the number of vertices, then En is
proportional to (Vn)a for some a ∈ (1, 2). The following result shows that our model exhibits a
phase transition in this respect, with the transition occurring where 2γ + α = 1. Note that in
our model, as in the ILT model, Vn = 2nV0 for all n.

Theorem 3. (a) If 2γ + α > 1 then Wn = En
(1+2γ+α)n converges to a positive limit, so that the

model has a densification power law as defined by [2] with exponent log(1+2γ+α)
log 2 .

(b) If 2γ + α < 1 then
En
2n
→ V0β

1− 2γ − α
,

almost surely, as n→∞, so that the number of edges grows at the same rate as the number
of vertices

(c) If 2γ + α = 1 then
En
2nn

→ V0β

2
,

almost surely, as n→∞.

Note that the combination of Theorems 3 and 2 implies that when 2γ+α > 1 but (1+γ)(α+γ) <
1 the process exhibits both a densification power law in the sense of [2] and an approximately
power law limit for the degree distribution.

A further result in [2] on the ILT model concerns the spectral gap. They show that the normalised
graph Laplacian L, as defined by Chung [4], of the ILT model has a large spectral radius, defined
as max{|λ1−1|, |λn−1−1|}, where λ1 is the second smallest eigenvalue (the smallest being λ0 = 0
for any graph) and λn−1 is the largest eigenvalue and thus that the graph has relatively poor
expansion properties. The following results show that the same is also true for our model. We
concentrate on the case β = 1, where the graphs are connected; otherwise λ1 will be zero. The
proofs use the Cheeger constant and its relationship to λ1, as defined in Chapter 2 of Chung [4].

Theorem 4. Let β = 1 and assume that G0 is connected, so that Gn will also be connected for
all n. Let λ1(Gn) be the smallest non-negative eigenvalue of the Laplacian of Gn. Then

(a) If 2γ + α ≤ 1 then λ1(Gn)→ 0 as n→∞.

(b) If 2γ + α > 1 then there exists a (random) Λ, with Λ < 1 almost surely, such that
lim supn→∞ λ1 = Λ.
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Some of the results of Theorems 2 and 3 are illustrated by the phase diagram of the γ–α plane
in Figure 1.

2 Pictures

This section shows a few examples of graphs of this type, which were generated using a script
written with the igraph package, [6], in R. Figure 2 shows examples with n = 7, α = 0 and
β = 1, with γ varying. These show the graph changing as γ increases from a sparse tree-like
graph where most vertices have low degree to a much denser graph where many vertices have
high degree.

Figure 3 shows examples with α = 0 and γ = 0.366 (this is approximately
√

3−1
2 ), two values

of β and again n = 7. Those with higher β have fewer isolated vertices and have more of the
vertices in the largest component.

Finally, Figure 4 shows examples with β = 1, γ = 0.05 and α varying. These show graphs with
a less-tree like structure with fewer very low degree vertices as α increases.

3 Proofs of Theorems

We start with a lemma on the conditional expectation and variance of the number of edges in
Gn, En. This lemma will be useful for obtaining the mean of the stationary distribution of a
Markov chain which we will use to prove Theorems 1 and 2. We define Fn to be the σ-algebra
generated by the graphs Gm for m ≤ n, and we use the notation Bin(n, p) for the binomial
distribution with n trials and success probability p.

Lemma 5. The conditional expectation and variance of En+1 satisfy

E(En+1|Fn) = (1 + 2γ + α)En + 2nβV0

Var(En+1|Fn) = En(2γ(1− γ) + α(1− α)) + 2nV0β(1− β)

Proof. This follows from the fact that the En+1 can be written En + En+1,1 + En+1,2 + En+1,3

where En+1,1, En+1,2 and En+1,3 are independent, En+1,1 represents the edges between parents
and children of their neighbours and, conditional on Fn has a Bin(2En, γ) distribution, En+1,2
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Figure 1: Phase diagram showing how the limiting behaviour of the graphs in the β 6= 0, as
described by Theorems 2 and 3, case can vary with α and γ. In region (a) the degree sequence
converges to a distribution with both first and second moments finite; in region (b) the limiting
distribution has first moment finite but the second moment not; in region (c) the limiting
distribution has infinite mean; in region (d) there is no limiting degree distribution. In regions
(a) and (b) the graphs are sparse; in regions (c) and (d) they have a densification power law as

described by Theorem 3. The borders between the regions intersect the γ axis at
√

3−1
2 , 1

2 and
√

5−1
2 .
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Figure 2: Example simulations with α = 0 and β = 1. From left to right, top row first,
γ = 0.05, 0.2, 0.49, 0.6.

7



Figure 3: Example simulations with α = 0 and γ = 0.366. The top row have β = 0.4 and the
bottom row β = 0.8.

Figure 4: Example simulations with β = 1 and γ = 0.05. From left to right, α = 0.2, 0.5, 0.9.
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represents the edges between children of neighbouring vertices and, conditional on Fn has a
Bin(En, α) distribution, and En+1,3 represents the edges between parents and their children
and, conditional on Fn has a Bin(Vn, β) distribution. As Vn = 2nV0 the result follows.

3.1 Proof of Theorem 3

We start with (a), the case where 2γ+α > 1. The following approach is based on that in [1] for
multitype branching processes, the idea being that the vertices and edges in the graph Gn can
be thought of as the two types in a population undergoing branching. However the resulting
multitype branching process is not irreducible, so the results in [1] cannot be used directly.

Given an edge in Gm between vertices u and v, there will be an edge in Gm+1 between u1 and
v1, and in addition there will be edges between u1 and v0 and v1 and u0 each with probability
γ and an edge between u0 and v0 with probability α. We can consider these edges as offspring
of the edge between u and v, and thus consider the set of edges in Gn (for n > m) which are
descendants of the edge between u and v in Gm as a generation in a Galton-Watson branching
process with offspring mean 1 + 2γ + α, and where the extinction probability is zero and the
number of offspring bounded. Treating the descendants of a given edge in Gm as a subset of the
edge set of Gn, this shows that lim inf En

(1+2γ+α)n is a positive random variable.

Now define

Wn =
Vn + 2γ+α−1

β En

(1 + 2γ + α)n
.

Then E(Wn+1|Fn) = Wn, so (Wn)n∈N is a non-negative martingale, and thus almost surely has
a non-negative limit W . The above conclusion on lim inf En

(1+2γ+α)n shows that P (W = 0) = 0,
giving the result.

For (b), the case where 2γ + α < 1, Lemma 5 shows that E(En) = V0β
1−2γ−α2n + o(2n) and

Var(En) = 2n−1 V0β

1− 2γ − α
(2γ(1−γ)+o(2n)+α(1−α))+2nV0β(1−β)+(1+2γ+α)2 Var(En−1),

which shows that

Var

(
En
2n

)
= O

((
max

(
1

2
,
(1 + 2γ + α)2

4

))n)
,

which implies the result via Chebyshev’s inequality and the Borel-Cantelli Lemmas.
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For (c), the case where 2γ+α = 1, an iterative use of Lemma 5 shows that E(En) = 2n
(
E0 + βV0

2 n
)

and Var(En+1) = 2n−1nβV0(2γ(1− γ) + α(1− α) + 4) +O(2n). Then

Var

(
En
2nn

)
= O

(
1

n22n

)
,

allowing the Chebyshev/Borel-Cantelli argument again.

3.2 Proof of Theorem 4

We consider some small m, and find the Cheeger constant of Gm. By the definition in [4], this
will be e(Sm, S̄m)/ vol(Sm) for some Sm ⊆ V (Gm), where for two subsets of the vertex set S
and S′ e(S, S′) is the number of edges between a vertex in S and one in S′, and vol(S) is the
sum of the degrees of vertices in S. (Note that vol(S) = 2e(S, S) + e(S, S̄.) Now consider the
descendants of Sm in Gn as a subset Sn ⊆ V (Gn). Then the same arguments as in the proof
of Theorem 3, applied to the subgraphs descending from Sm and S̄m, show that if 2γ + α < 1

then the e(Sn, Sn) and e(S̄n, S̄n) both grow at rate 2n, in the sense that e(Sn,Sn)
2n and e(S̄n,S̄n)

2n

converge almost surely to positive constants as n → ∞, and similarly if 2γ + α = 1 e(Sn, Sn)
and e(S̄n, S̄n) both grow at rate 2nn, and if 2γ + α > 1 e(Sn, Sn) and e(S̄n, S̄n) both grow at
rate (1 + 2γ + α)n.

Next, again as in the proof of Theorem 3, (e(Sn, S̄n))n∈N forms a Galton-Watson branching
process with mean of the offspring distribution 1 + 2γ + α, and extinction probability zero, so

e(Sn, S̄n) will grow at rate (1 + 2γ + α)n. So for 2γ + α > 1 e(Sn,S̄n)
min(vol(Sn),vol(S̄n))

, which by the

definition in [4] is greater than the Cheeger constant of Gn, converges to a constant (less than
1, as vol(Sn) = 2e(Sn, Sn) + e(Sn, S̄n)) and this constant bounds the lim sup of the Cheeger
constant of Gn above.

In the case where 2γ + α < 1

e(Sn, S̄n)

max(vol(Sn), vol(S̄n))
= O

((
1 + 2γ + α

2

)n)
→ 0

as n→∞, and hence so is the Cheeger constant. Similarly if 2γ + α = 1

e(Sn, S̄n)

max(vol(Sn), vol(S̄n))
= O

(
1

n

)
,

and again so is the Cheeger constant.
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Hence by the Cheeger inequality (Lemma 2.1 and Theorem 2.2 of [4]), lim supn→∞ λ1(Gn) < 1
almost surely in the case 2γ + α > 1, and λ1(Gn) tends to zero in the case 2γ + α ≤ 1.

3.3 Proofs of Theorems 1 and 2

The proofs of Theorems 1 and 2 will rely on defining a certain Markov chain whose value Xn

represents the degree of a random vertex in the graph Gn. We construct this by letting v0 be
a vertex of G0 chosen uniformly at random, and then, using the binary string notation for the
vertices described above, for n ≥ 1 let vn = vn−11 with probability 1/2 and letting vn = vn−10
with probability 1/2. We then let Xn be the degree of vn in Gn.

Then
Xn+1 = ξn+1Xn + (1− ξn+1)Wn+1 + Yn+1 + Zn+1, (1)

where, conditional on Gn, Yn+1 ∼ Bin(Xn, γ), Wn+1 ∼ Bin(Xn, α), Zn+1 ∼ Bin(1, β) and
ξn+1 ∼ Bin(1, 1

2), with all these variables being conditionally independent given Gn.

Here, ξn+1 = 1 if our vertex in Gn+1 is a parent and 0 if it is a child, Wn+1 represents child-child
connections (so does not appear if ξn+1 = 1), Yn+1 represents connections between a child and
its parents’ neighbours, and Zn+1 represents the connection between the child and its parent.

As defined above, (Xn)n∈N is a discrete time Markov chain on the natural numbers (including
zero if β < 1). It is irreducible and aperiodic if β > 0, α < 1 and γ < 1. (If β = 0 then zero
is an absorbing state, and if either α or γ is 1 then Xn is increasing in n and so the chain is
certainly not irreducible, but otherwise P (Xn+1 = 1|Fn) is always positive.)

Proposition 6. If 2γ + α < 1 the distribution of Xn converges in the Wasserstein-1 metric to
a unique fixed point with finite mean 2β

1−2γ−α .

Proof. Note that if we have another random variable X̂n with a different distribution on N0, we
can apply (1) to it by defining, conditional on X̂n, Ŷn+1 ∼ Bin(X̂n, γ) and Ŵn+1 ∼ Bin(X̂n, α)
using the same set of Bernoulli trials as for Yn+1 and Wn+1 respectively, and letting

X̂n+1 = ξn+1X̂n + (1− ξn+1)Ŵn+1 + Ŷn+1 + Zn+1.

Then, conditional on Fn, if X̂n > Xn we have

X̂n+1 −Xn+1 = ξn+1(X̂n −Xn) + (1− ξn+1)(Ŵn+1 −Wn+1) + Ŷn+1 − Yn+1,
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where Ŵn+1 −Wn+1 ∼ Bin(X̂n −Xn, α) and Ŷn+1 − Yn+1 ∼ Bin(X̂n −Xn, γ), and similarly, if
X̂n < Xn we have

Xn+1 − X̂n+1 = ξn+1(Xn − X̂n) + (1− ξn+1)(Wn+1 − Ŵn+1) + Yn+1 − Ŷn+1,

where Wn+1−Ŵn+1 ∼ Bin(Xn−X̂n, α) and Yn+1− Ŷn+1 ∼ Bin(Xn−X̂n, γ). Combining these,
we can see that

E(|Xn+1 − X̂n+1||Fn) =
1

2
(2γ + α+ 1)|Xn − X̂n|,

so that we have a contraction in the Wasserstein metric if 2γ + α < 1. Hence in this case there
is convergence in the Wasserstein-1 metric of the degree distributions to a unique fixed point
with finite mean.

We can calculate the mean of this distribution by using Lemma 5: letting m = 2 we get

E(k
(n+1)
2 ) = (2γ + α+ 1)k

(n)
2 + 2nβv0,

where v0 is the number of vertices in the initial graph, and solving this we find that the expected
number of edges in Gn is

βv0(2n − (1 + 2γ + α)n)

1− 2γ − α
,

so (as the number of vertices in Gn is 2nv0) the expected average degree is

β(2n − (1 + 2γ + α)n)

2n−1(1− 2γ − α)
,

which converges to 2β
1−2γ−α as n→∞.

To go further than this we use Foster-Lyapunov techniques, as described in Meyn and Tweedie [8]
in the more general case of an uncountable state space. The following lemma on the conditional
moments of Xn+1 (including negative and fractional moments) will be useful.

Lemma 7. Let p ∈ R. Then as x→∞,

E
((

1 + x+ Yn+1 + Zn+1

1 + x

)p
|Xn = x

)
→ (1 + γ)p,

and

E
((

1 +Wn+1 + Yn+1 + Zn+1

1 + x

)p
|Xn = x

)
→ (α+ γ)p.
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Proof. In the case where p < 0 this is a special case of Theorem 2.1 of Garćıa and Palacios in [7].
When p > 0, the result follows from convergence in distribution of the conditional distributions
of 1+x+Yn+1+Zn+1

1+x and 1+Wn+1+Yn+1+Zn+1

1+x given Xn = x to 1+γ and α+γ respectively as x→∞,
together with the fact that they are positive and bounded above by 2.

Proposition 8. If (1 + γ)(α + γ) < 1, the Markov chain is positive recurrent, and thus the
distribution of Xn converges to a stationary distribution.

Proof. This uses Theorem 11.0.1 of [8].

We choose p ∈ (0, 1) such that (1+γ)p+(α+γ)p < 2. Because d
dp((1+γ)p+(α+γ)p) is negative

at p = 0 if log(1 + γ) + log(α+ γ) < 0, it will be possible to find such a p if (1 + γ)(α+ γ) < 1.

We now let V (x) = xp. In [8], the drift ∆V (x) is defined as

∆V (x) = E(V (Xn+1)− V (Xn)|Xn = x),

and by Theorem 11.0.1 of [8] the chain will be positive recurrent if (for some V ) ∆V (x) ≤ −1
for x large enough. Now

E(Xp
n+1|Xn = x) =

xp

2

(
E
((

1 +
Yn+1

x
+
Zn+1

x

)p
|Gn

)
+ E

((
Wn+1

x
+
Yn+1

x
+
Zn+1

x

)p
|Gn

))
≤ xp

2
((1 + γ)p + (α+ γ)p) + o(xp)

(by Lemma 7),

so

∆V (x) ≤ xp
(

(1 + γ)p + (α+ γ)p

2
− 1

)
+ o(xp),

which will be less than −1 for x large enough, giving the result.

We now investigate the tail behaviour of the stationary distribution, in the case where Proposi-
tion 8 shows one exists.

Proposition 9. Let p > 0. If (1 + γ)p + (α + γ)p < 2, then a random variable X with the
stationary distribution of the chain has finite pth moment E(Xp), and we have convergence of
pth moments, E(Xp

n)→ E(Xp) as n→∞.
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Proof. Again this uses a Foster-Lyapunov type technique, in this case Theorem 14.0.1 of [8]
which states that if, for a given function f ≥ 1, we can find V such that ∆V (x) < −f(x) for
x large enough then f has a finite integral with respect to the stationary distribution and that
E(f(Xn)) converges to this integral. We will set f(x) = xp + 1.

Let V (x) = kxp, where k is chosen so that

k

(
(1 + γ)p + (α+ γ)p

2
− 1

)
< −1.

Then, by Lemma 7,

∆V (x) ≤ kxp
(

(1 + γ)p + (α+ γ)p

2
− 1

)
+ o(xp),

and so ∆V (x) ≤ −f(x) for x large enough, giving the result.

Proposition 10. Let p > 0. If (1 + γ)p + (α + γ)p > 2, then a random variable X with the
stationary distribution of the chain does not have finite pth moment E(Xp).

Proof. As Zn+1 ≥ 0, we have

E(Xp
n+1|Xn = x) ≥ xp

2

(
E
((

1 +
Yn+1

x

)p
|Xn = x

)
+ E

((
Wn+1

x
+
Yn+1

x

)p
|Xn = x

))
,

so by Lemma 7

E(Xp
n+1|Xn = x) ≥ xp

2
((1 + γ)p + (α+ γ)p) + o(xp).

Hence the pth moment of Xn tends to infinity as n → ∞, so by Theorem 14.0.1 of [8], again
applied to f(x) = xp + 1, the stationary distribution cannot have a finite pth moment.

Proposition 11. If β > 0 and (1 + γ)(α+ γ) > 1 the Markov chain is transient.

Proof. By (1) and Lemma 7,

E ((1 +Xn+1)p |Xn = x)

(1 + x)p
→ (1 + γ)p + (α+ γ)p

2
, (2)

so we apply Theorem 8.0.2 (i) of [8] with V (x) = 1 − (1 + x)p for some p < 0 such that
(1 + γ)p + (α + γ)p < 2. With this choice of V , (2) shows that ∆V (x) > 0 for x large enough,
and as V is bounded and positive on the natural numbers Theorem 8.0.2 (i) of [8] gives the
result.
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The case where β = 0 is something of a special case as the chain is not irreducible. However we
can show that when (1 +γ)(α+γ) ≤ 1 the probability that a randomly chosen vertex is isolated
tends to 1, while there is positive probability that a randomly chosen vertex is not isolated when
(1 + γ)(α+ γ) > 1.

Proposition 12. If β = 0, then

1. if (1 + γ)(α+ γ) ≤ 1 then almost surely Xn = 0 for n sufficiently large, and the proportion
of isolated vertices in Gn tends to 1 almost surely as n→∞;

2. if (1 + γ)(α+ γ) > 1 then there is q > 0 such that the probability that Xn →∞ as n→∞
is q and the probability that Xn → 0 as n→∞ is 1− q.

Proof. We note that (Xn) follows a Smith-Wilkinson branching process in random environment,
[9]. The environmental variables which determine the random environment are the random
variables ξn, with the offspring distribution of the branching process at time n having mean
1 + γ if ξn+1 = 1 and α + γ if ξn+1 = 0. Hence, by Theorem 3.1 of [9], the branching process
dies out with probability 1 if 1

2 log(1 + γ) + 1
2 log(α+ γ) ≤ 0, i.e. if (1 + γ)(α+ γ) ≤ 1, and the

branching process dies out with probability strictly less than 1 otherwise, hence there is positive
probability that Xn →∞ as n→∞. To see that the proportion of isolated vertices tends to 1
almost surely when (1 +γ)(α+γ) ≤ 1, note that the proportion of isolated vertices is increasing
(as if a vertex v is isolated in Gn both v0 and v1 are isolated in Gn+1) and therefore must
converge to some value, which cannot be less than 1 as the degree of a random vertex converges
to zero almost surely.

Proposition 13. (a) If β > 0 and (1 + γ)(α + γ) < 1, the degree distribution of the graph

converges to the stationary distribution of the Markov chain in the sense that if we let p
(n)
d

be the proportion of vertices in Gn with degree d, and let X be a random variable with the

stationary distribution of the Markov chain, then p
(n)
d → P (X = d) as n → ∞, almost

surely, for all d ∈ N0.

(b) If β > 0 and (1 + γ)(α+ γ) > 1 then p
(n)
d → 0 as n→∞, almost surely, for all d ∈ N0.

Proof. The graph at stage r contains 2rv0 vertices. We then consider the edges of Gr+s in
two sets: those which are between descendants of the same vertex in Gr, and those which are
between descendants of different vertices in Gr. For the former, the appearance of edges between
descendants of one given vertex is independent of what happens to the descendants of the other
vertices, so we can model these edges of Gr+s as consisting of 2rv0 independent copies of G̃s,
where (G̃n)n∈N represents the process as evolved from a single vertex with no edges, G̃0. Then,
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by Chebyshev’s inequality and a Borel-Cantelli argument, as r → ∞ proportions of vertices in
Gr+s with degree d excluding connections to descendants of different vertices in Gr converge,
almost surely, to P (Xs = d). In the (1 + γ)(α + γ) > 1 case we know that P (Xs = d) → 0 as
s → ∞ for all d, and the actual degree of a vertex is bounded below by the degree excluding
some connections, so this is enough to prove (b).

To complete the proof of (a), we need to consider edges between vertices which are descendants
of different vertices in Gr. We couple the process, starting from Gr, with a process with β = 0
by removing all edges between a vertex and its offspring, and all edges descended from such
edges. The edges thus removed from Gr+s will all be between vertices descended from the same
vertex in Gr, so all edges between vertices descended from different vertices in Gr are present in
the β = 0 version. But by Proposition 12 the proportion of vertices in Gr+s which have non-zero
degree in the β = 0 version tends to zero as s→∞, and so this also applies to the proportion of
vertices in Gr+s which have edges connecting them to vertices with a different ancestor in Gr.

Hence as both r and s →∞ the proportion which have degree d converges to P (Xs = d).

Finally we can put the Propositions above together to deduce Theorems 1 and 2.

Proof of Theorem 1. Theorem 1 follows from Proposition 12; in the supercritical case where
(1 + γ)(α+ γ) > 1 the probability that a randomly chosen vertex in the graph is isolated tends
to 1− q < 1.

Proof of Theorem 2. Theorem 2 follows immediately from Propositions 8, 9, 10 and 13.
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