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Modelling Locomotor Control: the advantages of
mobile gaze
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and

ROBERT S. ALLISON
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In 1958 JJ Gibson put forward proposals on the visual control of locomotion. Research in the last
50 years has served to clarify the sources of visual and non-visual information which contribute
to successful steering, but has yet to determine how this information is optimally combined under

conditions of uncertainty. Here we test the conditions under which a locomotor robot with a
mobile camera can steer effectively using simple visual and extra-retinal parameters to examine
how such models cope with the noisy real-world visual and motor estimates that are available to
humans. This applied modelling gives us an insight into both the advantages and limitations of

using active gaze to sample information when steering.

Categories and Subject Descriptors: ... [...]: ...

General Terms: Vision, Perception, Action, Cognition

Additional Key Words and Phrases: Robot, Locomotion, Steering, Gaze, Eye Movements, Active
Vision

1. INTRODUCTION

For most animals successful locomotor control is fundamental for survival. For many
predators it is an integral part of catching prey, and likewise, for prey species, it
can be essential for avoiding capture. While the underlying anatomical structures
and perceptual information systems vary dramatically between animal species the
requirements for steering control remain similar: it is generally true that mobile
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2 · Richard M. Wilkie et al.

animals change their physical orientation to be aligned with the steering goal. This
reorientation can sometimes be performed by rotating on the spot before locomotion
begins (e.g. jumping spiders, Land [1971]) but in some situations this has to occur
gradually during locomotion (e.g. bats in flight, Ghose and Moss [2006]). Humans
use both these strategies: when stationary they tend to orient in the direction of
the target before walking a straight-line path, whereas when travelling at higher
speeds (e.g. running or cycling) the direction of motion is adjusted gradually to
align with the target. Humans will initially direct their gaze (eyes and head) in the
direction they wish to steer and then gradually rotate their body so that head and
eyes return to centre [Land 1992; 2004; Wilkie and Wann 2005]. A flying bat is
similar in that there is a tight relationship between the direction of acoustic gaze
(sonar beam direction) and the direction of flight as it searches for and intercepts
insect prey [Ghose and Moss 2006]. The natural locomotor speed of humans would
not usually reach that of a flying bat, however humans have developed vehicles
that significantly increase speed of locomotion (e.g. bicycles and cars.) At higher
speeds gaze direction seems to be particularly important for ensuring successful
and effortless control of steering [Land and Lee 1994; Wilkie and Wann 2005]. The
robust and effective control of high-speed locomotion seems to be supported by
the ability of the visual-motor system to integrate multiple sources of information
even under conditions of uncertainty. The sources of information that humans
use to control active locomotor behaviours have been investigated in tasks such as
walking [Rushton et al. 1998; Warren et al. 2001], driving [Land and Tatler 2001;
Salvucci and Gray 2004; Wilkie and Wann 2002]; and cycling [Wilkie et al. 2008]
and it has now been shown that there are a number of visual and non-visual sources
that inform steering [Rushton et al. 1998; Warren et al. 2001; Wilkie and Wann
2003a; 2005]. The availability of multiple information sources has even been used to
explain the ability of humans to control steering when travelling high speeds when
driving in difficult visual conditions, such as at night [Wilkie and Wann 2002].

Gibson [1958] first put forward a conceptual framework for the control of loco-
motion based on the use of optic flow (the pattern of relative motion between an
observer and surface textures in the world). Gibson suggested that a simple but
effective control strategy would be to ensure that the focus of expansion (FoE) of
the optic flow field emanates from the chosen direction of travel (i.e. aligning ‘head-
ing’ with the goal). Eye movements introduce additional rotation components to
optic flow at the retina [Royden et al. 1992] which results in a ‘retinal flow’ pattern
where the FoE is no longer a simple feature available within the flow field. It is
sometimes assumed that these rotation components need to be removed in order
that the FoE can be recovered, however, we believe there are at least two problems
with this view of locomotor control [Wilkie and Wann 2006]: 1) it presumes that
simply having access to current heading is sufficient for controlling locomotion when
this does not necessarily specify the steering required to reach the goal, and 2) it
treats eye movements as a complication without which steering would be simpler.
We believe that active gaze behaviours are crucial for carrying out effective highly
skilled real-world actions (for a variety of examples see Land and Furneaux [1997])
and we have shown that mobile gaze results in fewer steering errors than when
gaze is fixed [Wilkie and Wann 2003c]. It has even been suggested that mobile
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Modelling Locomotor Control · 3

gaze directed towards the steering target performs an essential transformation to
the retinal flow field that specifies whether current steering behaviour is sufficient
to produce a course that will pass through the fixation point [Kim and Turvey
1999; Wann and Swapp 2000]. Because orienting gaze towards the desired steering
goal supplies non-visual direction information about that target (from the motor
commands to and proprioception from muscles controlling eye and head) it is pos-
sible that a flexible weighted combination of visual and non-visual sources act to
underpin successful steering [Wilkie and Wann 2005; Wilkie et al. 2008]. The exam-
ination of eye movements when steering can, therefore, expand our understanding
of what information is used and when [Land and Hayhoe 2001; Land and Lee 1994;
Robertshaw and Wilkie 2008; Wilkie and Wann 2003c].

1.1 Why build a Locomotor Robot?

Bicho and Schoner [1997] and Murray et al. [1997] have demonstrated the power
of using robotic platforms to examine the problem of locomotor control, and these
studies have helped to shape our understanding of human steering (e.g. Fajen and
Warren [2003]). A considerable body of research accumulated over the past forty
years has centred around how optic flow can be used by humans during locomotion,
with less attention being paid to sources of direction information (with some notable
exceptions, e.g. Llewewllyn [1971]). While recent studies have demonstrated that
both visual direction and extra-retinal direction can influence steering behaviour
(e.g. Wilkie and Wann [2002; 2005]), it can be difficult to directly test the use
of specific informational sources in humans. Here we will be primarily consider-
ing whether steering strategies that have been put forward for human locomotion
[Wilkie and Wann 2002; Wilkie et al. 2008] are able to steer a robot in real-world
settings. There are clear differences in the motor output of a robot in comparison to
a running human, but human steering control readily adapts to a range of contexts
that involve different output devices with varying vehicle dynamics (e.g. on foot,
on a bike, or in a wheelchair.) We feel, therefore, that the differences in the motor
action of a human and a wheeled robot are not critical. For our purposes we only
need a robot with a simple mobile camera to act as an input device, to determine
the requirements for successfully directing motor output. We propose that a simple
robotic platform can be an important test of control models that are suggested to
generalize across a wide range of human locomotor capabilities (in line with Schoner
et al. [1995]). We can take what we believe to be critical parameters for the con-
trol of visually guided action and study manipulations of the camera image in an
unforgiving real-world environment. This introduces real noise, latencies, complex
interactions, imprecision and problems that are sometimes unanticipated. By com-
parison, pure simulations and ideal-observer analyses are totally determined by the
input parameters. In this respect designing a robot that will move autonomously
through the world focuses the issue of what informational variables are critical to
the visual control of locomotion and serves to outline what is necessary and what
is sufficient [Rushton et al. 2002].

1.2 Building a Locomotor Robot

The natural starting point when building a locomotor robot is to mount a single
static camera on a mobile base. The camera provides rich visual information about
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4 · Richard M. Wilkie et al.

the illuminated scene, though not without limitations stemming from a restricted
field of view and finite spatial resolution of the sensor. Having the camera fixed
on the locomotor platform in a known position has a number of advantages: all
transformations to the camera image can be assumed to be due to rotations or
translations of the robot (ignoring for the sake of simplicity other mobile objects)
and therefore the flow of elements on the camera image indicates the locomotor
activity of the robot.
For humans most forms of locomotion align the direction of motion with the

midline of the body, so that when you walk, run, cycle or drive forwards your
shoulders are perpendicular to the direction of travel 1. This is also the case for our
robot since the camera is positioned in the centre of the chassis, so the direction
of travel is aligned with the midline of the camera and the centre of the resulting
image. This means that a target to the right half of the camera image is located
in space in front and to the right of the robot and would require a clockwise turn
to orient towards this target (see Figure 1). The simplest method of reaching the
target would be to simply null the yaw angle between the centre of the image and
the target before inititing locomotion (α nulled; Figure 2, Left Panel), and this
strategy is often used by humans when walking to a single target from a standing
start. When travelling at higher speeds, however, it becomes important to close
down α at a controlled rate (α̇) rather than instantaneously since momentum can
lead to the vehicle overturning.

1.3 Introducing a mobile eye

For the human visual system if a target is in the extreme visual periphery then we
would expect the estimate of α to be more erroneous than when it is close to the
fovea2. One function of mobile gaze in humans is to ensure that the important visual
information lies upon the highest resolution part of the retina. Optical distortion in
the periphery does occur with camera systems, for example when a fish-eye lens or
panoramic mirror is used to increase the field of view, so both biological and machine
vision systems can benefit from mobile gaze (remarkably even the tiny jumping
spider benefits from a pair of mobile principal eyes [Land 1969]). Even when a
camera has an equally distributed resolution across the whole image there is an
advantage for mobile gaze. A sensor that can be rotated in both yaw and pitch has
a larger field of regard because a greater region of the scene can be quickly sampled
without resorting to whole body movements. This is an important advantage of
mobile gaze in biological systems. The disadvantage for locomotion, however, is
that it could complicate the extraction of visual information from the camera/eye
image. Not only would it add rotation components to the retinal flow (as discussed
previously) but any estimate of α would need to be computed from a combined
measurement based on the direction of the target in the camera coordinate frame
of reference, and the relationship of the camera coordinate frame to the robot body.
Thus, uncertainty in the controlled parameter (body-centric α) would depend on

1There are interesting exceptions, for example when snowboarding or skateboarding, that may
require alternative mappings between body orientation and locomotor direction to be learnt.
2When a target is visible in the higher resolution areas of the retina, eye-movements towards it
are more accurate [Gnadt et al. 1991; White et al. 1994]
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Fig. 1. A locomotor robot with either a fixed or mobile camera. The direction of travel is always

fixed relative to the midline of the robot, as is usually the case in humans.

both noise in the ‘retinal’ α estimate derived from the camera image (before the
camera moved) and the ‘extra-retinal’3 sensor reading of the position of the camera.
Noise may therefore propagate through the system, with errors in retinal estimates
of α being compounded by additional noise in the motor output that orients the
camera to fixate the target, as well as further potential inaccuracy in sensing the
final position of the camera. The extra-retinal angle must be estimated relative to
a known midline and because proprioceptive signals are susceptible to bias or drift
and they may require calibration (e.g. Wann and Ibrahim [1992]). If the accuracy
of the retinal signal varies with eccentricity (as in the human visual system as
described above) then reorienting gaze may result in an improved composite signal,
provided the extra-retinal signal is not poorer than peripheral retinal signals. In
all cases of mobile gaze, however, the precision of the controlled variable depends
on both the retinal and extra-retinal signals. It could be argued, therefore, that
a mobile gaze fosters greater opportunities for introducing noise into estimates of
target direction, when compared with fixed gaze. Here we build a robot with a
mobile camera to investigate how well active gaze models of human locomotion
(c.f. Wilkie et al. [2008]) perform under noisy real-world conditions.

3Extra-retinal is used here to refer to non-visual sensing of the camera pose to stress the analogy

with biological vision where the qualifier ‘extra-retinal’ has been used to refer to non-visual infor-
mation about the position or orientation of the eye such as efference copy or sensory afference from
eye-muscle proprioceptors. In the human system an extra-retinal signal would usually be needed

to keep gaze fixed (to prevent drift), whereas in a robot gaze could usually be fixed without the
requirement for an extra-retinal signal.
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Fig. 2. Steering paths taken when steering to a target (the large open circle) offset by 14◦. Left
Panel: the thick solid black lines indicate the extreme strategies of keeping α constant or nulling

α. The dotted lines represent paths taken by the steering models (open circle symbols = α̇ model;
open square symbols = α̇ + α model). Both models had the damping parameter b = 1; α̇ was
scaled by k1 = 4.7 and α was scaled with k2 = 1 in the α̇ + α model; k1 = 17.7 in the α model.

The thin curved solid paths that terminate at 2m are a series of human trajectories. Two sets of
data are shown: dark lines are trajectories from Wilkie and Wann [2003a] where retinal flow and
extra-retinal direction information was available; white lines are trajectories from six participants
during the night-time condition of Wilkie and Wann [2002] where only extra-retinal direction

information was available. The human paths have been scaled to fit the dimensions of the robotic
environment as detailed in the text. Right Panel: Zones defined when using a variety of values
for k1. The black zone shows the possible stable trajectories of the α model with b = 1. The grey
zone shows the possible stable trajectories of the α̇+α model with b = 1 and k2 = 1. Other stable

trajectories are possible with the α̇+α model by reducing k2 but these trajectories naturally start
to overlap the black zone as α contributes less.
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1.4 Active gaze models of steering

To implement an autonomous steering robot requires clearly identified perceptual
inputs that can be converted into a steering response. The Wilkie and Wann [2002]
model combined information from a number of perceptual variables to provide a
rotation input (α̇) for the steering system. In this model each input provides a
weighted estimate that is correlated with the rate of change of the visual angle of
the fixation target (Equation 1, referred to henceforth as the α̇ model).

θ̈ = k1α̇− bθ̇ (1)

where θ̇ is the rate of current steering response damped by the parameter b, and
k1 scales the combined perceptual inputs (α̇); these terms are used to generate
an acceleration in the steering response (θ̈). Equation 1 is also equivalent to the
steering system proposed in Fajen and Warren [2004] which nulled the rate of
rotation between the goal and instantaneous heading. Wilkie and Wann [2002]
proposed that the perceptual inputs could be made available from the rotation of
the retinal flow field, or a retinal estimate of changing target direction. For the
purposes of our robot, however, this will be supplied by an extra-retinal estimate
of the rate of change of target direction (equivalent to gaze rotation for a fixated
target) which has been shown to provide a powerful source of information when
steering [Wilkie and Wann 2005].
When walking, with only a small amount of forward momentum, it is possible to

turn on the spot. This means that the target angle (α) can be instantaneously
nulled, and a direct path to target can be taken (Figure 2, α nulled). When
travelling at speed it is not safe to instantaneously null α, so the rate at which α is
reduced (α̇) must be controlled. One strategy would be to null α̇, thereby keeping
α constant as shown in Figure 2. This will result in a spiral path that turns towards
and passes close to the target. It would, in principle, never completely intersect
the target, so the final part of the trajectory would need to be taken using a simple
direct path [Lee 1998]. Maintaining a constant target angle is a strategy used by
raptors when approaching prey [Tucker 2000] who break out of the spiral near the
end of the flight to take a rapid straight path to their prey. A constant α model has
also been demonstrated to be effective for controlling a locomotor robot [Rushton
et al. 2002]. In humans, when steering to a target, the rate of steering depends
upon the quality of information that is made available (as discussed later), however
humans tend to follow a course that turns more quickly than merely keeping α
constant or Equation 1 (Figure 2, Left Panel). Steering control effected using
Equation 1 relies upon the α̇ signal which remains small when the steering target
is distant, so most of the steering occurs towards the second half of the trajectory
(when α̇ has increased). Simply increasing the response stiffness (k1) does not solve
this issue, since it makes the model prone to extreme oscillations (Figure 2, Right
Panel). To capture the tighter trajectories taken by humans Wilkie et al. [2008]
proposed an extension to Equation 1, whereby a reduction of the gross angular
offset of the target (α) also contributes to the steering output (Equation 2, referred
to henceforth as the α̇+ α model):

θ̈ = k1α̇+ k2α− bθ̇ (2)

ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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where k1 and k2 are independent scaling factors to control the rate of closure
of the angular terms. A robot steering using Equation 2 will turn more quickly
when the steering target has a large offset than when the target is nearly in front
of it, but the rate of closure of α will still be smoothly controlled4. Figure 2 shows
trajectories when steering to a target offset by 14◦. In the human trials participants
steered towards an eccentric target which was positioned 60m away (though trials
were stopped at 50m to remove performance feedback). To allow comparison of
this human data with the robotic paths we have scaled down the trajectories by a
factor of 24 which then matches the range over which we recorded robotic steering.
Human paths are shown for two visual conditions: i) the dark lines are the paths
followed when both retinal flow and extra-retinal direction information was present
(data from Wilkie and Wann [2003a]); ii) the white lines are paths when only extra-
retinal direction information was present (data from Wilkie and Wann [2002]). We
adjusted the parameters k1, k2 and b in Equation 1 and 2 to ‘best-fit’ the human
paths. For the α̇ model b = 1 and k1 = 17.7, whereas for the α̇ + α model b = 1,
k1 = 4.7 and k2 = 1. We retain these values throughout for both simulated and
robot trajectories.

While both equations can match the shape of the human paths reasonably well
(Figure 2) there is a particularly close match between the shape of the more direct
human paths and the trajectory taken by the α̇ + α model. Figure 2 shows that
humans are able to steer smoothly curving paths when better quality information
is available (dark lines) but when retinal flow information is not available the tra-
jectories are more direct (white lines). It should be noted that while both sets of
visual conditions result in similar levels of precision, the smoother paths tend to be
biased towards understeer.

To further evaluate the Wilkie and Wann [2002] model (Equation 1) and compare
to the Wilkie et al. [2008] model (Equation 2) we implemented steering control
algorithms on a locomotor robot system that used a mobile camera to sample
visual information and fixate the steering targets present in the world. We were
particularly interested in comparing the use of α̇ with a combination of both α̇ and
α. This evaluation would be very difficult to achieve by testing human participants
since a source of α̇ would invariably supply α. In the robot we were able to retrieve
both sources of information from the potentiometer controlling the mobile camera
and then model steering using either Equation 1 or Equation 2. The scope of the
research project did not extend to performing analysis of flow within the camera
images, but the signals detected from the camera potentiometer do have direct
counterparts in the retinal flow [Wann and Land 2000] and it has been shown that
human steering is robust enough to cope with situations where the information
from flow is attenuated [Wilkie and Wann 2002].

4It transpires that using both the target angle (α) and the rate of change of that angle (α̇) as
control variables maps quite well to “quickened” second-order control systems where a weighted

combination of position and velocity are used to anticipate and control future position [Jagacinski
and Flach 2003].
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2. GENERAL METHOD

We ran a series of six robotic trials, steering towards an eccentric target, with an
underlying steering system based upon either Equation 1 or Equation 2. Objective
motion and path of the robot were captured using an InterSense IS-900 Precision
Motion Tracker (InterSense, Inc., Bedford, MA). The system is a hybrid acoustic-
inertial 6 degree-of-freedom position and orientation tracking system. The room was
configured with ultrasonic acoustic beacon transmitters fixed on a set of ‘Sonistrips’
mounted on the ceiling so that position and orientation could be tracked over the
entire laboratory. An acousto-inertial receiver station was placed on the robot
so that its position and orientation could be recorded continuously at a sampling
rate of 100 Hz. This allowed us to compare the trajectories taken by the models
under noisy real-world conditions when all information available for steering was
retrieved from visual information received via the camera, as well as from non-visual
information from the potentiometer signalling camera orientation. For evaluation,
we compared real robot performance to Matlab simulations that provided ‘ideal’
noise-free perceptual inputs (Figure 4, left panel) or explicitly biased information
sources (Figure 6, left panel).

In order for the robot to identify the steering goal the scene contained colour-
coded steering targets. In the trials for Experiments 1 and 2, a single red target
was placed at a distance of 2.5m offset from the robot midline by 14◦ (equivalent to
a lateral offset of .62m). To recover target position the Image Processing Toolbox
from Matlab was used to filter all colours except red from the camera image. The
corners of the red object were identified and the centroid of the object was taken
as its position in the image, this was converted into an angular direction. The
resolution of the camera limited detection of the angular direction to within 0.2◦,
however we wanted to mimic human localisation which may be less precise than
this. It has already been demonstrated that Equation 1 can effect steering based
on a small number of discrete values (Wilkie and Wann [2003], p378) so here we
limited the localisation accuracy to be within ±1◦, which meant that non-zero α̇
values were limited to a minimum rate of 1◦ per step. When gaze was mobile
the ‘retinal’ location was combined with the angle of the camera and then a motor
command was sent to fixate the target. The centre of rotation of the mobile camera
did not perfectly align with the optical centre, however, we envisaged the steering
model to be robust to such sources of noise.

For trials where we wished the robot to steer via multiple targets (Experiment
3), a range of colours and filters (Red, Green, Blue, Magenta, Orange and Cyan)
were used to uniquely identify targets. The estimated direction of the target was
passed through one of the steering models (either Equation 1 or 2), and the output
was used to specify the amount that the robot turned. There were limitations in
how quickly the robot could acquire and process a single camera image. To identify
the position of targets a well balanced image with distinct coloration of targets was
required. Even small increases in illumination required adaptive changes to the lens
aperture as well as reductions in contrast and gain of the image (equivalent to pupil
contraction of the human eye with accompanying neural adaptation). Because of
the time taken to acquire and process the camera image the movement of the robot
had to be carried out in a series of steps. A larger step would result in fewer attempts

ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.



10 · Richard M. Wilkie et al.

Fig. 3. The robot used was an Evolution Robotics model (ER1) which has two 4-inch diameter

wheels (wheel base = 38cm) driven by stepper motors that were positioned at the front of the
robot with a passive stabilising wheel trailing at the rear. The ER1 has a mount for a single
static camera that we replaced with Logitech Quickcam (320 × 240 pixels that limited resolution
to ∼ ±0.2◦) on a TrackerPod (Eagletron) mobile platform that could be rotated at speeds of up to

100◦/sec within a range of 160◦ pan and 110◦ tilt. The camera position (effective eye-height) was
75cm high and 19cm behind the midpoint of the front wheels, which was the centre of rotation of
the robot.

to localise the target over a trial, and longer straight trajectories, potentially off
target. A variety of step sizes were piloted both in simulation and with the robot
and 10 steps, each step traversing 30cm, were found to produce reasonably accurate
trajectories without making trials too time consuming. After each step a new
snapshot of the scene was taken and the target was refixated (in mobile gaze trials).
If the target could not be found within the camera image then a search routine was
used to scan the camera over its full range, vertically and horizontally, until the
target was re-acquired, at which point steering recommenced. Note that the speed
of locomotion does not directly influence steering in this implementation, but speed
information is not used by either steering model.

3. EXPERIMENT 1: STEERING TO A SINGLE TARGET WITH FIXED OR ACTIVE
GAZE

The first experiment was designed to examine how well Equation 1 & 2 could steer
a robot towards offset targets and how active gaze influenced steering. Firstly we

ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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Fig. 4. Steering paths modelled using the α̇ or α̇ + α steering strategies (these are offset in the

figure for clarity of presentation). The left panel shows robotic paths with mobile gaze (solid black
lines) as compared with software simulated paths (dashed lines). To indicate the variability of
human performance, the data from Figure 2 has been represented as zones of steering that are
superimposed behind the robot and model paths (solid grey region = Wilkie and Wann [2002];

black and white striped region = Wilkie and Wann [2003a]). These trajectories are truncated
because trials were halted before the target was reached. It can be seen that the robotic paths
tend to turn less quickly than the modelled trajectories. The α̇+α model fits well with the human

data (falling centrally within the distribution of trajectories), and the robotic data falls at the
edge of the distribution that tends towards understeer. The right panel shows 6 robotic paths
when gaze (the camera) was mobile (black) or fixed (grey). The same parameter values were used
for both fixed and mobile gaze. Both models had the damping parameter b = 1; in the α̇ + α

model k1 = 4.7 and k2 = 1 ; in the α model k1 = 17.7.

compared how the robot performed in relation to an ‘ideal’ noise-free simulation
with an equivalent number and size of steps as were used by the robot. Secondly
we compared the paths taken by the robot when steering was based on Equation 1
[Wilkie and Wann 2002] versus Equation 2 [Wilkie et al. 2008]. Thirdly, we evalu-
ated the robotic and simulated paths by comparing them to human data collected
under similar circumstances. Finally, to examine whether the use of a mobile cam-
era interfered with steering control, we compared steering when the camera on the
robot was fixed or free.

3.1 Results and Discussion

It can be seen from Figure 4 (left panel) that all robotic paths fail to turn as rapidly
as the ideal simulations, especially over the last 1m of trajectories. The closest
passing distance of the robot was calculated for each trial (see Figure 5 for end-point
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Fig. 5. The final distance of the robot from the target when steering using a model based on α̇ or

α̇+α when the camera was either mobile (black) or fixed (white). A negative steering error shows
understeer resulting from insufficient steering. The grey box indicates the range and maximum
and minimum end errors of human observers steering as shown in Figure 2, which matches the
combined striped and grey zones displayed in the left panel of Figure 4 as originally tested both

within Wilkie and Wann [2002] and Wilkie and Wann [2003a].

errors), and the grand mean of errors (across all robotic conditions) indicates that
understeer caused the target to be missed by ∼ .2m. This understeer did, however,
vary significantly based on which steering model was used (F (1, 3) = 240.9; p <
.001), or whether the camera was fixed or mobile (F (1, 3) = 20.6; p < .05), but
there was no interaction between these two effects (F (1, 3) = .07; p = .81; ns). The
amount of understeer for both simulations and real robotic paths reduced when
using the α̇ + α model in comparison to the α̇ model (Figure 4, left panel). This
supports the suggestion of Wilkie et al. [2008] that α is a crucial variable for the
successful control of steering.
The understeer was reduced with the α̇+α model but the bias did not completely

disappear (mean error = −.16m). To determine whether the mobile camera was
the cause of the understeer mobile camera trials were compared with trials when
the camera was fixed (Figure 4, right panel). When using the α̇ model, mobile
gaze (black lines, SD = .044) caused paths three times as variable compared to
fixed gaze conditions (grey lines, SD = .015). This indicates that fixation of the
steering target added noise to the estimate of α̇ returned from the mobile camera.
Interestingly, the variability of the paths taken by the robot running under the α̇+α
model were no different when gaze was mobile (SD = .016) or fixed (SD = .012)
suggesting that Equation 2 is robust to the noise introduced to α̇ during gaze
fixation because it contributes 3.8 times less to steering than Equation 1. The fixed
gaze conditions did still result in an average error of −.12m. Whilst this was a
small but significant (t(3) = 5.13; p < .05) increase in accuracy compared to free
gaze, it does suggest that the predominant cause of the understeer was unrelated
to mobile gaze.
We re-examined data for human participants steering to an eccentric target when

only extra-retinal information was available [Wilkie and Wann 2002]. When human
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trajectories are scaled to map onto the target distance used in the robotic trials
the end errors are small (root mean squared error = .03m). The variability of
human paths, however, was relatively high, as shown by the spread of light and
dark grey paths in Figure 2, which are also represented by the grey and barred
zones in the left panel of Figure 4. The range of steering errors are represented
in Figure 5 by the grey box (errors: -.1m to +.04m). The only robotic trials that
approached the accuracy of the human data were those using the α̇ + α model
(Figure 5). In Figure 4 (left panel) it can be seen that the trajectories of the
robot under the control of the α̇ + α model seems to ‘hug’ the edge of the zone
of human performance up until ∼ .5m from the target. At this point the human
trajectories would continue to curve towards the target (this final section of human
trajectories were not recorded but extrapolated across the last .5m) whereas the
robotic paths do not turn a great deal over the final .5m. This highlights the
importance of steering sufficiently at an appropriate time-point, since the stage
of steering at which certain information maximally contributes does seem to vary
[Wilkie and Wann 2003b]. Human trajectories tend to be more direct when retinal
flow information is degraded (compare light and dark grey human trajectories in
Figure 2 and see Wilkie and Wann [2003a]. The ‘tighter’ more direct paths result
from increased steering rates when far from the target (when α is large and α̇ tends
to be small). To model more accurately this aspect of human steering would require
a dynamic change in the scaling of α (the k2 term in Equation 2) and link this with
the quality of retinal flow information that provides an estimate of α̇. In this case
the model should increase the weighting of α when retinal flow is degraded and when
the value of α̇ is small. This weighting is subtly different from previous proposals
(e.g. Wilkie and Wann [2002]) that suggested the individual sources of information
that contribute to an estimate of α̇ are weighted based on their variability (the
β values in Equation 4, Wilkie et al. [2008]). In addition to weighting individual
estimates, here we propose that human steering may well involve a flexible and
dynamic combination of α and α̇.
In conclusion the results of Experiment 1 suggest that performance of a robot

running under the α̇+αmodel with a mobile camera compares favourably with trials
when the camera is fixed. Even in a noisy real-world steering situation a mobile
gaze need not be a major source of error and variability and it seems, therefore,
that the benefits of the mobile camera (such as increased field of view for wider
sampling from the scene) may outweigh the problems.

4. EXPERIMENT 2: STEERING TO A SINGLE TARGET UNDER BIASED CONDI-
TIONS

Experiment 1 suggests that the α̇+α steering strategy supports reasonably robust
steering even in the presence of noise, although there was a consistent tendency
to understeer. To determine what caused the understeer we looked at each of the
processing stages within the steering model. Under ideal conditions the α̇ + α
steering model shows no understeer (Figure 2), so there must be some aspect of
the real-world inputs to (or outputs from) the model to cause this error. The fixed
gaze condition still showed significant understeer which meant the error must be
caused either by a misperception of the target angle, or the production of motor
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output that does not match that required by the model. The centre of rotation
of the camera was positioned 19cm behind the centre of rotation of the robot,
which would have caused the target to be visibly offset by only 13◦ at the start
of trials. In Experiment 2, we investigated the role of the misperception further
by introducing systematic bias to the perceptual inputs to explore how this effects
the accuracy of robotic steering to a fixed target. We introduced a bias into α
while leaving the rate of rotation signal α̇ veridical, which in the human would be
the equivalent of having an imprecise estimate of the absolute gaze-position, but a
good estimate of gaze rotation. We do not know how accurately the absolute gaze
position (eye in head + head on shoulders) is specified in humans. Because of the
properties of the eye motor system the rate of rotation may be more accurately
estimated than the absolute position [Brindley and Merton 1960]. In a human
participant α and α̇ are intrinsically linked, so it is very difficult to manipulate
one source without changing the other. Behavioural experiments have shown that
manipulating potential sources of α̇ at a rate of ±1◦/s is sufficient to directionally
bias steering [Wilkie & Wann, 2002, 2005). Because altering α̇ also changes the
time history of α these experiments could not distinguish between the relative
contributions of these inputs during online steering. Using the robotic platform
we can selectively and independently interfere with either input and examine the
sensitivity of the system to noise in either source. First we simulated α bias in
software to see how the system would respond with noise-free estimates (Figure 6,
Left Panel). We then ran robotic trials where the registration of the visual direction
of the target (α) from the camera orientation was biased (Figure 6, Right Panel).

4.1 Results and Discussion

Simulated paths using an α̇+α steering strategy were not particularly sensitive to
addition of a constant 5◦ bias to the estimate of target direction when veridical α̇
was present (Figure 7). Purely nulling α (as shown in Figure 2) would have resulted
in errors of ±.24m, whereas end point errors were only in the order of .03m. We
can compare the magnitude of bias with that of studies with human participants.
Wilkie and Wann [2002] caused steering errors by systematically biasing the visual
direction of the target by ±1◦/s, and the resulting bias (after being appropriately
scaled as described in Experiment 1) was .06m. While the magnitude of bias is
comparable between the simulation and the human data, we are unable to determine
what proportion of the human error was due to the misperception of α, and what
the additional contribution α̇ played in the biased performance.
In the robotic system it was possible to add bias to the potentiometer signal that

indicated the camera orientation. Adding bias to α at this point is broadly equiva-
lent to biasing the afferent eye-position signal in the human. This bias caused larger
errors than when simulating bias in α and caused errors in the order of ∼ .18m.
For simulated trajectories the pattern of oversteer vs. understeer bias was perfectly
symmetrical (Figure 6, left panel) however this was not the case for the robotic sys-
tem (Figure 6, right panel). Robotic paths overshot by only .11m for +5◦ bias, in
contrast to undershoot of .25m during the −5◦ bias conditions (relative to unbiased
trials; Figure 7). This asymmetry suggests a cause for the understeer observed in
Experiment 1. The understeer could have been due to an underestimate of α (due
to lack of calibration or an offset between the centre of rotation of the camera and of
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Fig. 6. Steering paths modelled using an α̇+ α steering strategy when bias is added to α. Black
traces indicate paths taken when α was unbiased. Dark grey paths are those paths followed when

α was misperceived by 5◦ to the left of the actual target, and light grey paths 5◦ to the right. Left
Panel: Paths simulated in software shows an effect of α bias, despite the veridical α̇ information
that is available. Right Panel: Robotic paths when steering towards a target, with or without α
bias. The bias caused small shifts in steering behaviour similar in size to simulated trials, however

bias caused asymmetric shifts in the robotic paths.

the robot). If this was the explanation, however, then artificially increasing α would
be expected to counteract the understeer. Furthermore if the sole explanation for
robot understeer was a constant error in perceiving α (for instance an inappropri-
ate scaling of the image), then we would still predict a symmetric bias to robotic
paths when a directional bias was added to α. One possibility is that understeer
was caused by erroneous motor output from the robotic wheels despite appropriate
commands being transmitted from the steering model (e.g. due to factors such as
wheel slippage). It may be that in the real-world an increase in gain (controlled
by response rate) is required to offset situations where motor output is attenuated.
The main problem with an increase in gain is the increased likelihood of steering
oscillations, however the low-pass dynamics of the motor action in the real situation
would dampen oscillations somewhat (though with a sequence of discrete steps the
robot may be more prone to this problem).
The results of the biased conditions revealed that the implementation of robotic

steering using the α̇+α model is susceptible to understeer. The asymmetry of our
results shows that it is easier to cause understeer through a reduction in α than it
is to promote oversteer through an increase in α. Increasing the perceived offset
of the target by +5◦ did improve the accuracy of trajectories which suggests that

ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.



16 · Richard M. Wilkie et al.

-0.3

-0.2

-0.1

0.0

0.1

0.2

Simulated Robotic

R
e
la

ti
v
e
 S

te
e
ri

n
g

 E
rr

o
r 

(m
)

-5deg Bias

5deg Bias
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When the target is misperceived to the left of the actual position (-5deg) steering errors indicate
understeer (negative values).

calibration of the camera-orientation could be an important component for ensuring
accurate steering results from using this model.

5. EXPERIMENT 3: STEERING VIA MULTIPLE TARGETS

The experiments so far have examined the case of steering to a single target, but
real-world trajectories are usually constrained to follow paths that are made up
of many waypoints [Wilkie et al. 2008]. We can learn more about the underlying
mechanisms of steering through a cluttered environment by simplifying the repre-
sentation of the scene to comprise a number of distinct targets or waypoints. The
models outlined in Equation 1 & 2 can be used to steer to multiple waypoints if a
mechanism for shifting gaze from one target to the next is specified [Wilkie et al.
2008]. For these models the key to splining together waypoints into a single path
is to smoothly shift gaze from one waypoint to the next at the appropriate time.
The decision to shift gaze can be based upon the concept of immediacy, where the
most immediate target captures attention up until a threshold point, at which point
the next region of interest is fixated upon [Wilkie et al. 2008]. Wilkie et al. [2008]
showed that Equation 2 could successfully model steering to multiple targets when
gaze shifted up to 2 seconds before passing the most immediate target. Here we
test this model using the robotic platform. Having the camera at a fixed height
above a flat ground plane means that when a steering target is fixated, the angle
of declination becomes a useful estimate of target immediacy [Rushton et al. 2002].
The vertical angle of a point on the camera image is directly related to the distance
of that point in the world. In order to steer via multiple waypoints the robot merely
needs to identify the most immediate target to fixate and then steer towards this.
When a target is sufficiently close (in this case the immediacy specified by vertical
angle exceeds a threshold) the next most immediate target is identified, and fixated,
which shapes subsequent steering. In these slalom conditions the camera fixation
switches before the most immediate target is reached in a manner analogous to
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the behaviour observed by Wilkie et al. [2008]. But because the robot moves in a
series of steps the temporal aspects of gaze switching are not directly matched with
human behaviour. The step-wise progression also means there is no momentum
contained within the system and so we expect the robot to turn sooner than would
be predicted from the simulations and the observed human trajectories presented
in Wilkie et al. [2008].

5.1 Results and Discussion

The basic task for the robot was to pass over the waypoints in sequence. The
actual path taken for the robot steering via multiple waypoints shows that it was
successful in following the course (Figure 8). The curvature of the path matches
the offset position of the targets well, and the steering is sufficiently accurate to
ensure the targets stay within the wheelbase of the robot. Ideal steering would
result in the target being centred under the wheel base when passed over, but
we did not expect perfect performance, because of the understeer and momentum
issues already noted. Not only was the vertical angle found to be useful and highly
effective in this robotic situation, but under high-speed locomotor conditions the
rate of change of the vertical angle should usefully specify the speed at which a
fixated target is approaching, and so this could also be used to generate a richer
term of immediacy. In the human system an unmediated optical variable such as
optic expansion may be used to judge immediacy but this was beyond the scope of
our robotic implementation.
A comparison can be made of the robot steering around multiple targets and with

the task given to human participants in Wilkie et al. [2008]. This paper reported
experimental work that examined steering via a series of slalom gates, laid out to
be ∼ 32m (or ∼ 4 sec) apart. The human experiments showed that enforced early
switching (looking to the next gate, when the most immediate gate was still more
than 2 seconds away) resulted in greatly elevated steering errors. Wilkie et al.
[2008] also ran simulated trials using Equation 2 to examine how the model coped
with these fixation requirements, and it was also found that gaze switching > 2
seconds away from the target resulted in elevated errors in modelled paths. In
a manner analogous to the scaled comparison in Experiment 1 & 2, we wished to
determine whether the imprecision in the steering of the robot could be explained by
premature gaze switching. The robot used a vertical gaze angle threshold (∼ 74◦)
which meant that gaze switching occurred ∼ .22m from the target (approximately
half-way towards each target). Whilst a direct comparison with the gaze-switch
time cannot be made, when scaled to be proportional to the distances used in the
human trajectories, this switch zone approximates the region where human errors
start to be made.
The model outlined in Equation 2 does not explicitly represent multiple way-

points, nor does it attempt to differentially represent obstacles. Instead the model
relies upon gaze fixation on unobstructed parts of the environment to guide success-
ful steering. This method is in line with expert motorcycle instruction [Motorcycle
Safety Foundation 1992] that suggests that to avoid hitting an obstacle you look to
the side of it, rather than at it. To steer via a series of slalom gates or in a cluttered
environment the model should ‘look to the gap’. For obstacles (and vehicles) with
a larger extent, it may be necessary to ensure that gaze is far enough away from the
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Fig. 8. Robotic steering through a course of five consecutive targets using Equation 2 (the α̇+ α
steering strategy). The robot used the vertical gaze angle to decide which target was the most
immediate and steered towards it. When the angle of declination of the target exceeded 74◦

(∼ .22m away) a search for the next nearest target was initiated. This routine of steering and
searching continued until the robot was unable to find a target. A mobile gaze system was essential
to sample extensively from the scene, as well as to provide the visual direction of targets.

obstacle to allow safe passage of the vehicle past the edge of the obstacle without
collision. For certain fine manoeuvres (for example squeezing through a tight gap),
this may not square with everyday experience, however these cases tend to occur
at low speeds where a different pattern of eye-movements become invoked.

6. GENERAL DISCUSSION

The experiments outlined in this paper show that it is possible for a robot to use
simple perceptual inputs such as α and α̇ to steer effectively to single and multiple
targets. Estimates of the noise in the detection of these variables did not need to
be factored into the contribution of each perceptual input in order to steer effec-
tively, though some improvement in performance may have resulted from weighting
each term based on the variability. Furthermore a mobile camera, mimicking the
mobile head and eye of the human, has been shown to be an effective way of in-
creasing field-of-view as well as supplying useful perceptual inputs (both yaw and
pitch) without excessive compromise on steering accuracy. Although use of a single
extra-retinal information source for estimating α and α̇ may have limited preci-
sion (compared to multiple unbiased sources available to the human) the level of
understeer observed was not out of line with human performance when steering
under similar impoverished conditions [Wilkie and Wann 2002]. One notable char-
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acteristic of paths taken by humans when steering to a single target is that the
trajectories become more direct under limited cue conditions (see Figure 3, Middle
panel of Wilkie and Wann [2002] and Figure 9 of Wilkie and Wann [2003a]). This
‘tightening’ of behaviour could be modelled by dynamically changing the weighting
of α to increase the influence of this input when the target is far away and/or in-
formation from other cues is limited. When travelling at higher speeds the relative
influence of α̇ would naturally increase, however, the human gaze fixation system
usually compensates for locomotor speed and directs gaze to a zone 1-2s ahead
[Land and Horwood 2005; Wilkie et al. 2008]. We did not examine how locomotor
speed influences these steering models implemented within the robotic platform,
but this would be a natural next step.

Though understeer was exhibited by both the steering models, this was reduced
markedly for the α+ α̇ model compared to using α̇ alone. Understeer would most
likely have been reduced by recalibrating the camera before each trial, however it is
not clear how often and at what level humans perform equivalent calibrations. In
terms of identifying the locomotor midline, flow field would provide highly useful
information for continuously recalibrating a mobile system [Held and Bossom 1961].
For the robot, the camera was positioned so that returning the camera to zero
aimed the camera approximately straight-ahead, however motor slippage may have
caused this to change and may well have contributed to understeer. Calibration
and learning are essential aspects of locomotor control that have not been examined
in this work.

The Wilkie et al. [2008] model uses active gaze to shape a steering response
through a cluttered or high risk environment. Although the steering system does
not require any explicit internal representations it does provide a route for cognitive
learning to influence steering performance via priority scheduling of gaze fixations
(see Figure 10, Wilkie et al. [2008]). The steering model outlined in Equation 2 was
effective with a relatively näıve robot, with no compensatory mechanisms or internal
representations. This suggests that decoupling gaze from steering, for example when
a human driver looks away from their desired path to a road sign, need not be
problematic for the control model. Under high-speed high-risk conditions, where
changes to the scene occur very rapidly, we would expect a very tight coupling
between gaze and steering, whereas at slower speeds steering can be carried out in
a series of steps with gaze uncoupled from steering for the majority of the time. One
aspect that this work highlights is the need to determine when the gaze fixation
becomes critical for the safe control of locomotion.

As well as inform models of human locomotor guidance, experiments such as
those presented here could provide a foundation for biologically-motivated algo-
rithms for autonomous robots in the field. Currently, many remotely piloted ve-
hicles are teleoperated based on visual displays transmitted to the operator. This
allows the operator to make navigation decisions but autonomous operation is often
preferred. In some cases, such as Mars rovers, the communications delay is several
minutes and the link is only available at certain times in the Martian day, preclud-
ing teleoperation. Planners must upload an entire days worth of motion plans to
the rover. The ability to act autonomously is thus a key factor in the amount and
type of exploration that can be accomplished [Bajracharya et al. 2008]. Similarly
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autonomous operation of vehicles on earth has been touted as a means to oper-
ate in hazardous environments, reduce labour costs or improve high-safety. The
challenges in achieving such visions come to the fore in events such as the Darpa
Grand Challenge/Urban Challenge [Darms et al. 2009]. State-of-the-art engineer-
ing has led to notable successes in these contests including autonomous navigation
of difficult desert terrain and urban streets. While impressive, these systems relied
on suites of sensors such as RADAR and LIDAR and moved relatively slowly and
deliberately. For instance, the Boss system from Carnegie Mellon University that
won the 2007 Urban Challenge detected obstacles near an intersection with a 10
s delay and negotiated them at reduced speed [Darms et al. 2009]. In contrast,
humans usually avoid such obstacles easily almost entirely using vision. LIDAR
and RADAR are very useful in such situations but are active (emit radiation that
can be detected) and can be expensive, physically large and consume power making
passive vision sensing preferable for small vehicles or stealth operation [Bansal et al.
2008]. Human vision provides a model for such systems and simple algorithms such
as those tested in the present paper could allow for low-complexity implementation
in software or hardware. This could prove useful for small robotic systems con-
strained in power and computational budget. The Mars Exploration Rovers use
their mobile cameras to track and guide the robot to the target in a closed-loop
fashion [Kim et al. 2009]. Interestingly computational delays require the rover to
move in discrete steps and perform the tracking at the stops much as we do in
the present experiments. In one mode the rover uses position control of the target
position tracking (essentially controlling α). The models evaluated in the present
paper could be easily adapted for algorithms on such a platform.
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