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Abstract

This document describes a novel approach to finding localised clusters in spatially

distributed, binary labelled point data. The frequentist spatial scan statistic, in-

troduced by Martin Kulldorff in 1995, was developed into a Bayesian spatial scan

statistic for areal data by Daniel Neill, circa 2006, where computationally expensive

Monte Carlo testing is replaced by the use of historical data and expert judgement.

Following Neill’s approach, I present here my derivation of a Bayesian spatial scan

statistic for binary labelled point data. I have also developed a method for replac-

ing historic data with expert judgement, by using a prior probability distribution

of relative risk. Please note this document describes work in progress, and content

may be subject to revision.

1 Introduction

First introduced by [1] and [2], the spatial scan statistic (hereafter SSS) is widely

used in spatial epidemiology, and other fields. The SSS is an umbrella term for a

range of statistics which share a common purpose and similar method of application,

but vary in the nature of the data to which they can be applied. In this document

I consider the Bernoulli version, applicable to spatially distributed binary labelled

point data, such as that used in a geospatial case control study.



The frequentist version (described in [2]) uses Monte Carlo testing to obtain

statistical inference, which can be computationally expensive for large data sets,

especially if real time surveillance of data is required. [3] developed the Bayesian

SSS, based on the Poisson SSS and suitable for areal data, which obviates the need

for Monte Carlo testing.

In this document I use the Bayesian approach set out in [3], and apply it the the

Bernoulli SSS. Additionally, I show how the use of historic data suggested in [3] can,

with some relatively mild assumptions and approximations, be replaced by expert

knowledge concerning the probability distribution of relative risk level of any cluster

which may occur.

2 Derivation of a Bayesian Bernoulli spatial scan statistic

Preliminaries:

• R = study region.

• D = set of points within R, some of which are cases, some of which are controls.

• N = |D|.

• C = number of cases in D, always ≤ N/2.

• Z = a subset of R. For the SSS there are typically thousands of different Z

generated for a given R, by some automated process.

• Din = the data points in D that lie within Z.

• Dout = the data points in D that lie within R− Z.

• n = |Din|.

• c = numbers of cases in Din.

• H0 = null (no clustering) hypothesis where the probability of any point being

a case (qall) is uniform across D.
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• HA = Alternate hypothesis, where the probability (qin) of any point in Din

being a case is different (usually higher) than the probability (qout) of any

point outside Dout being a control.

As stated in [3], the aim of the Bayesian SSS is to find P (H0|D)1. If it is below a

certain threshold one may wish to declare an anomaly present at whatever Z has

the largest value of P (Z|D,HA).

Using the same starting point as Neill’s derivation in [3] one has (from Bayes’

Theorem):

P (H0|D) =
P (D|H0)P (H0)

P (D)
(1)

and

P (HA|D) =
P (D|HA)P (HA)

P (D)
(2)

Following on from this, I have derived the following. First consider P (D|H0). Al-

though Z is normally only considered in association with HA, we are in fact also

free to consider Z in association with H0 (after all, if H0 is true, the choice of Z is

irrelevant). So we have:

P (D|H0) =
∑
∀Z

P (D|H0, Z)P (Z) (3)

Following [3], we assume a priori that all Z are equally likely, so P (Z) = 1
|Z|

.

Furthermore, as Din and Dout are considered as series of independent Bernoulli

trials:

P (D|H0, Z) =

∫ x=1

x=0

P (Din|qall = x)P (qall = x)dx×

∫ x=1

x=0

P (Dout|qall = x)P (qall = x)dx

(4)

In a real case/control study the ratio of cases to controls is always a parameter,

never a variable (i.e C, as well as N , is a value always given in advance). Hence, as

we are using Bernoulli trials to model D, it seems appropriate to assume qall takes

1This is comparable with the p-value of the frequentist SSS
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a value which maximises the probability of C occurring, i.e. P (qall = x) = 1 when

x = C
N
, 0 otherwise. Thus we have:

P (D|H0, Z) = P (Din|qall =
C

N
)× P (Dout|qall =

C

N
) = (

C

N
)C(1−

C

N
)N−C (5)

and similarly the marginal over all Z is:

P (D|H0) =
1

|Z|

∑
∀Z

P (D|H0, Z) = (
C

N
)C(1−

C

N
)N−C (6)

which is an identical result to the frequentist Bernoulli SSS. Now for P (D|HA), we

also have:

P (D|HA) =
∑
∀Z

P (D|HA, Z)P (Z) =
1

|Z|

∑
∀Z

P (D|HA, Z) (7)

Now as Din and Dout are considered as series of independent Bernoulli trials we

have:

P (D|HA, Z) =

∫ x=1

x=0

P (Din|qin = x)P (qin = x)dx×

∫ x=1

x=0

P (Dout|qout = x)P (qout = x)dx

(8)

Unlike qall, we will permit some variation in qin and qout. It is known that for a

series of independently, identically distributed Bernoulli trials, where the number

of successes is known, the distribution of the probability of success follows the beta

distribution. So we have

P (qin = x) =
xαin−1(1− x)βin−1

B(αin, βin)
(9)

Where the beta function is:

B(αin, βin) =

∫ t=1

t=0

tαin(1− t)βindt (10)

Exactly the same applies for qout, with similar parameters αout and βout. As the beta

functions are independent of x, this leads to:
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P (D|HA, Z) =
1

B(αin, βin)B(αout, βout)

×

∫ x=1

x=0

xαin+c−1(1− x)βin+n−c−1

×

∫ x=1

x=0

xαout+C−c−1(1− x)βout+N−n−C+c−1

Now as these integrals are themselves beta functions, P (D|HA) conveniently be-

comes:

P (D|HA, Z) =
B(αin + c, βin + n− c)B(αout + C − c, βout +N − n− C + c)

B(αin, βin)B(αout, βout)
(11)

Here one has a similar situation to [3], except where Neill has gamma functions with

parameters αin, βin, αout and βout, I have a beta functions. The selection of these

parameters is discussed in the next section.

Regarding the other probabilities required to calculate P (H0|D), P (D) is simply:

P (D) = P (D|H0) +
∑
∀Z

P (D|HA)

We also know that, as they are mutually exclusive, P (H0)+P (HA) = 1. However, as

we have no otherD over which to calculate these marginal probabilities, either P (H0)

or P (HA) must be assumed from expert knowledge (see [3]). Thus, we consider either

P (H0) or P (HA) to be a tuning parameter.

3 Selection of αin, βin, αout and βout

Aside from the selection of the tuning parameter mentioned above, the main chal-

lenge in using the Bayesian approach to the Bernoulli SSS is selecting suitable values

for αin, βin, αout and βout. In [3], the selection of these values comes from fitting the

gamma functions to historic data. In this historic data, it is assumed there is no clus-

tering; thus αin, βin, αout and βout are modified by a variety of arbitrary multipliers

to simulate a clustering situation.
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Here I divert from Neill’s approach. As C is a parameter rather than a variable,

what really interests us about qin and qout is their ratio, rather than their individual

values, as this strongly influences the likely distribution of c (recall, c is the number

of cases in Z, and if c is high in proportion to n it is strong evidence of clustering).

However, the size of n, N and C all influence the likely distribution of c, meaning

that the parameters αin, βin, αout and βout will vary for each different size of Z.

It is entirely reasonable, however, to assume that the prior distribution of relative

risk, i.e. qin
qout

, is the same for all Z, or at the very least not influence by N , C and

n. After all, relative risk is an epidemiological concept relating to real disease

processes, not some artefact of a spatial model, as qin and qout are. So, if we allow

expert knowledge to influence our prior distribution of relative risk (hereafter RR),

we can make a good guess at what parameters αin, βin, αout and βout should be for

any given Z.

To do this, let us consider qin and qout. Assuming both remain in the range 0

to 1, we can allow them vary whilst still maximising the likelihood of obtaining C

cases in total; the same assumption used to work out P (D|H0)). This is expressed

as:

nqin + (N − n)qout = C (12)

So we can express RR explicitly in terms of either qin or qout:

RR =
(N − n)qin
(C − nqin)

=
C − (N − n)qout

nqout
(13)

Now when a variable X follows the beta distribution, the expression X
1−X

follows

a distribution called the beta prime, which has pdf:

P (RR = x) =
xαRR−1(1 + x)−αRR−βRR

B(αRR, βRR)
(14)

where B is again the beta function. Beta prime is used for modelling the distribution

of odds ratios, and is controlled by selection of its two parameters (here I call them

αRR and βRR). The above expressions for RR are both of a very similar form to

X
1−X

, and if one imposes a beta prime distribution on RR, it can be clearly seen
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from plotting qin and qout that they follow distributions very close to beta2 (which

is what is required for use in Expression 8).

Now one can select αin, βin, αout and βout such that qin and qout closely follow the

‘true’ distributions they would have for the chosen beta prime distribution of RR.

In doing so one is, effectively, converting the two beta priors into a single beta prime

prior, upon which real-world expert knowledge can be applied.

Although αin, βin, αout and βout must currently be calculated using a fitting pro-

cess, the ‘true’ distribution is so close to beta that the fitting is very straightforward,

requiring only the mode of the beta prime pdf together with one other point on the

pdf. The process is of linear time complexity, with the estimate converging to four

decimal places in typically less than 10 iterations. Also, the fitting only need be

done once for each unique value of n in the study.

Strictly speaking, as qin and qout are no longer independent one should replace

their values in Expression 8 with formulae including only RR, and integrate over

all values of RR. However, the resulting integral can, so far as I can tell, only be

integrated numerically, which would add significantly to the computational expense.

Allowing qin and qout to remain independent, but following distributions compati-

ble with that RR, appears satisfactory in limited tests conducted so far (not yet

published).

Using the Ω measure defined in [4], the spatial accuracy of the freqentist and

Bayesian Bernoulli SSS have been shown to be compatible for sensible choices of

beta prime (results currently pending publication as a conference paper). I hope to

compare the raw detection capability of the two methods in the near future.

I would very much welcome feedback on the contents of this document from any

interested parties.

2They may in fact be exactly beta distributed, but I have not yet shown this analytically.
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