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(Manuscript received 21 April 2009, in final form 23 December 2009)

ABSTRACT

The diurnal temperature range (DTR) of surface air over land varies geographically and seasonally. The

authors have investigated these variations using generalized additive models (GAMs), a nonlinear regression

methodology. With DTR as the response variable, meteorological and land surface parameters were treated

as explanatory variables. Regression curves related the deviation of DTR from its mean value to values of the

meteorological and land surface variables. Cloud cover, soil moisture, distance inland, solar radiation, and

elevation were combined as explanatory variables in an ensemble of 84 GAMmodels that used data grouped

into seven vegetation types and 12 months. The ensemble explained 80% of the geographical and seasonal

variation in DTR. Vegetation type and cloud cover exhibited the strongest relationships with DTR. Shortwave

radiation, distance inland, and elevation were positively correlated with DTR, whereas cloud cover and soil

moisture were negatively correlated. A separate analysis of the surface energy budget showed that changes in

net longwave radiation represented the effects of solar and hydrological variation on DTR. It is found that

vegetation and its associated climate is important for DTR variation in addition to the climatic influence of

cloud cover, soil moisture, and solar radiation. It is also found that surface net longwave radiation is a pow-

erful diagnostic of DTR variation, explaining over 95% of the seasonal variation of DTR in tropical regions.

1. Introduction

Existing research has identified factors such as solar

radiation and cloud cover as influential for diurnal tem-

perature range (DTR) over the global land surface, but

how comprehensively do they account for the observed

seasonal and geographic variation? This study describes

the seasonal and geographic variations in DTR using

empirical regression relationships with a selection of key

meteorological and surface parameters. The aim is to

quantify the relationships they have with DTR, to rank

their importance, and advance understanding of the

physical processes using an analysis of the surface en-

ergy budget.

Differences in DTR between regions are driven by

seasonal and meridional variations in insolation (Geerts

2003). DTR is also modulated by differences in meteo-

rological and surface parameters that exert an asymmetric

influence on daily maximum and minimum temperatures.

Increases in cloud clover, particularly low clouds, reduce

daytime solar radiation reaching the surface, cooling max-

imum temperatures, and in high-latitude winters they trap

longwave radiation and warm nighttime minimum tem-

peratures (Dai et al. 1999). In autumn the relationship

between cloud cover and DTR in the Northern Hemi-

sphere is particularly strong. In September–November,

the highest correlation between cloud cover and DTR

was found for the United States (Karl et al. 1993). The

greatest reduction in DTR associated with cloud cover

was also found in September–November in the United

States and Eurasia (Dai et al. 1999).

Precipitation is inversely correlated with DTR at re-

gional scales (Dai et al. 1997), and the strongest re-

ductions inDTR during the period 1950–2004 have been

found in dry regions with low precipitation (Zhou et al.

2009). Soil moisture, which is replenished by precipita-

tion, also influences DTR. The change from wet to dry

seasons in a Rondonian pasture (Brazil) showed DTR

doubled as the soil dried, while mean temperatures re-

mained largely unchanged (Betts 2004). Atmospheric

water vapor closes the water budget linking soil mois-

ture, clouds, and precipitation, and increased humidity

has been associated with reduced DTR (Linacre 1992).
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Geerts (2003) concluded that afternoon relative humidity

exhibited the strongest relationship with DTR using ob-

servations recorded in January and July for locations

between 658N and 658S.

The advection of air masses can have a large effect on

DTR, especially in Arctic regions where dominant solar

variations are often not diurnal (Przybylak 2000). Linacre

(1982) argued that strong winds reduce DTR. Heat is

transported away from the surface during the day, re-

ducing maximum temperatures, and the nocturnal bound-

ary layer air is mixed with warmer air entrained from

above, limiting the extent of any nocturnal temperature

inversion. Aerosols, which scatter or absorb solar radi-

ation and exert cloud related indirect effects, could also

influence DTR (Hansen et al. 1995). Solar dimming due

to aerosols may, in part, explain the decreasing trend in

DTR over Europe during 1950–85 (Wild et al. 2007).

Weekly variations in the concentrations of aerosols

[Bäumer et al. 2008 (Europe) and Murphy et al. 2008

(United States)] may also contribute to a ‘‘weekend

effect’’ in DTR [Forster and Soloman 2003 (United

States) and Gong et al. 2006 (China)].

In the 30–150-km range, DTR is greater the further

inland one goes and this effect is more pronounced in

the tropics than at higher latitudes (Geerts 2003). Sites

beside large inland lakes or seas experience DTRs lower

than other continental sites. In contrast, the relationship

between DTR and elevation is not so straightforward.

Linacre (1982), in a review using many mountain loca-

tions, concluded that there were widely differing rela-

tionships betweenDTR and elevation. Land use and land

cover can cause significant variations in DTR through

differences in surface albedo, evapotranspiration, and

longwave (LW) radiation (Gallo et al. 1996). Changes

in foliage and the growth of vegetation or crops can also

add a seasonal dimension to DTR variation (Eastman

et al. 2001).

Our study builds on these previous results using re-

gression relationships to describe the climatology of DTR

for the majority of the global land area. We investigate

the relationship between monthly mean DTR and veg-

etation, meteorological, and energy budget parameters.

The physicalmechanisms controllingDTRare interpreted

through analysis of regression curves and the surface

energy budget (SEB). Section 2 describes the datasets

used and section 3 describes our methods. Our results

are presented in section 4. Section 4a describes the

geographic variation in monthly mean DTR, section 4b

describes results from single variable generalized addi-

tive models (GAMs) using meteorological and surface

parameters as explanatory variables. Section 4c describes

results from a multivariate GAM model and section 4d

results from GAM and linear regression models using

SEB terms as explanatory variables. Discussion of the

results and conclusions follow in section 5.

2. Data

The analysis of seasonal and geographic variations in

DTR was based on monthly mean data averaged over

the years 1983–2002 or a shorter period when data were

not available for the full 20 years (Table 1). The data for

DTR, other meteorological, and land surface parame-

ters were obtained from a variety of sources available in

different formats (Table 1). These data were processed

into 0.58 3 0.58 resolution gridded datasets based on

ClimaticResearchUnit (CRU)TS 2.1 (Mitchell and Jones

2005) covering the global land area excluding Antarctica.

We found that values of DTR recorded in CRU TS 2.1

over Greenland were periodically much greater than

values reported by the Arctic studies of Tuomenvirta

et al. (2000) and Ohmura (1984). Annual mean DTR

in Greenland and its seasonal variation were also sub-

stantially larger than recorded elsewhere over land.

Therefore data for Greenland were removed by exclud-

ing grid boxes north of 608N and bounded between 608W

and 08 longitude. Themonthly mean data were averaged

over all years, giving 12 values for each of the remain-

ing 0.58 3 0.58 grid boxes, one for each month. Data for

monthly mean DTR were calculated from CRU TS 2.1

maximum and minimum temperature data. Data for

monthly mean precipitation, cloud cover, and elevation

were also taken from CRU TS 2.1 (Mitchell and Jones

2005).

Data from sources other than CRU TS 2.1 were not

always available over the same time period or at the

same grid resolution. Data were selected to match as

close as possible the 1983–2002 time period. For data

only available at a lower resolution, point values from

the larger grid were copied without change in value to

the 0.58 3 0.58 CRU grid format. Only land data were

employed from globally gridded datasets. Distance from

the coast was estimated from the center of each CRU

grid cell, using the CRU TS 2.1 land mask and assuming

the earth to be a sphere with radius 6378 km.

The 40-yr European Centre for Medium-Range

Weather Forecasts (ECMWF) Re-Analysis (ERA-40)

(Uppala et al. 2005) was used for data on surface energy

fluxes, cloud height, soil moisture, evaporative flux, wind

speed, dewpoint temperature, and surface air tempera-

ture. ERA-40 data for cloud cover were only used to

interpret our regression results and were not used in the

development of the regression models. ERA-40 surface

air temperature data were used to derive dewpoint de-

pression and not for DTR. All DTR data were from

CRU TS 2.1. Surface albedo was derived from ERA-40
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data for net surface shortwave (SW) radiation and down-

ward surface SW radiation. Bowen ratio was calculated

from ERA-40 surface sensible and latent heat fluxes.

Satellite data were used for aerosol optical depth (Diner

et al. 1998) and top-of-atmosphere (TOA) SW radiation

(Darnell et al. 1992). See Table 1 for details.

3. Methods

a. Single variable regression

Employing the monthly mean data in section 2, re-

gression analysis was used to identify the parameters

that had the strongest relationship with seasonal and geo-

graphic variation in DTR. The meteorological and land

surface parameters were treated as explanatory variables.

A separate regression was performed for each explana-

tory variable. Each model included one regression curve

describing the relationship between deviation of DTR

from its global annual mean value and values of the ex-

planatory variable. The shape of the regression curve was

helpful in interpreting the physical mechanisms by which

the variables influence DTR. We define DTR deviance

explained as the proportion of seasonal and geographic

variation inDTRdata that was explained by a regression

model. The variations in DTR were measured relative to

its mean value. Deviance explained was used as a mea-

sure of goodness of fit and also a measure of the strength

of the relationship between DTR and each parameter.

These results are shown in section 4b.

b. Multivariate model

The next stage was to develop a multivariate regres-

sion model to quantify the relative importance of the

parameter relationships. The gridded dataset was divided

into 84 subsets comprising combinations of seven veg-

etation groups and 12 months. Amultivariate regression

model was fitted individually to each of the 84 data sub-

sets using a stepwise regression approach starting with

no explanatory variables. The parameters were tested in

the regression model one at a time and the parameter

that yielded the largest increase in deviance explained

was retained in the model. This process was repeated

until adding further variables did not lead to an appre-

ciable increase in deviance explained. To validate that

variable selection was optimal, each variable in the final

model was replaced in turn with alternatives to confirm

that the fit to data deteriorated in each case. The results

are shown in section 4c. Colinearity was tested for using

the variance inflation factor for each explanatory variable.

A maximum value of 5 was accepted (see Montgomery

and Peck 2006 for details). If this value was exceeded,

the collinear variable making the least contribution to

deviance explained was removed from the regression

model. Each variable was checked for a p value signifi-

cant at the 0.1% level. In models that had a good fit to

TABLE 1. Sources of data used for explanatory variables in the regression analysis. Grid resolution is shown as longitude 3 latitude.

Description Resolution Time period Source

CRU TS 2.1: monthly mean maximum

and minimum temperatures, cloud cover,

precipitation, vapor pressure,

and gridcell elevation

0.58 3 0.58 1983–2002 Mitchell and Jones (2005)

MISR level 3 global aerosol product

(monthly) (http://eosweb.larc.nasa.gov/

PRODOCS/misr/products/level3.html)

0.58 3 0.58 2000–02 Langley Atmospheric Science

Data Center (ASDC); Diner et al. (1998)

Monthly average TOA insolation derived with

the Quality-Check SW (QCSW) algorithm

of the National Aeronautics and Space

Administration (NASA) World Climate

Research Programme/Global Energy

and Water Cycle Experiment (WCRP/GEWEX)

Surface Radiation Budget (SRB) Project.

Dataset: SRB REL2.5 QCSW MTHLY

(http://eosweb.larc.nasa.gov/cgi-bin/searchTool.cgi?

Dataset5SRB_REL2.5_QCSW_MONTHLY)

18 3 18 1984–2002 Langley ASDC; Darnell et al. (1992)

Primary vegetation, secondary vegetation, and soil type 18 3 18 Varies Wilson and Henderson-Sellers (1985)

ERA-40 reanalysis data: cloud cover level

(low–medium–high), soil moisture; surface shortwave

and longwave radiation, latent heat, sensible heat,

evaporation, wind speed, dewpoint temperature,

and surface air temperature

(http://www.ecmwf.int/research/era/do/get/era-40)

2.58 3 2.58 1983–2001 ECMWF data (http://badc.nerc.ac.uk/

data/ecmwf-e40/); Uppala et al. (2005)
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DTR data the sensitivity of results to changes in pa-

rameters in the curve fitting process was checked. The

residuals were inspected to confirm, first, that their dis-

tribution was approximately Gaussian with zero mean

and second, that they exhibited no clear relationship

with the explanatory variables or fitted values.

c. Surface energy budget

To aid interpretation of the physical processes by

which the explanatory variables influence DTR, the re-

lationships between monthly mean DTR and surface

energy budget terms were investigated using regres-

sion analysis. The results are shown in section 4d. Each

model included one regression curve describing the re-

lationship between deviation of DTR from its global

annual mean value and values of the explanatory vari-

able. The explanatory variables were net surface SW and

LW radiation, surface sensible heat, and surface latent

heat fluxes. A separate regression relationship was de-

veloped for each explanatory variable because the strong

correlations between surface energy budget terms would

make interpretation of a multivariate regression difficult.

It was also for this reason that energy budget and mete-

orological parameters were not combined in a multivari-

ate model.

Geographic variation in the relationship between net

LW radiation and DTR was investigated further using

linear regression. DTR was treated as the response vari-

able. The regression was applied separately in each grid

cell using 12 monthly mean values for DTR and net LW

radiation.

d. GAMs

GAMs (Hastie and Tibshirani 1990) were used for the

nonlinear regression calculations. GAMs have proved

useful for representing nonlinear meteorological relation-

ships in investigations in to atmospheric pollution like,

for example, nitrogen dioxide concentrations (Carslaw

and Carslaw 2007), benzene, and 1,3-butadiene (Reiss

2006). GAMs have also been used to identify an associ-

ation between increased DTR and increased acute mor-

tality from respiratory and cardiovascular conditions in

Shanghai, China (Kan 2007).

In the GAM regression, the relationship between DTR

and the explanatory variables was described by a con-

stant term and a separate regression curve for each ex-

planatory variable. The constant term represented the

mean DTR over the data subset used. The regression

curves (Figs. 2, 6, and 7) represented how DTR varied

away from this mean level (on the y axis) with values of

the explanatory variable (on the x axis). The shape of

each regression curve was interpreted qualitatively to

gain insight into the relationship with DTR.

GAM regression curve fitting was performed using

tensor product regression curves (Wood 2006), which

were found to perform well with the large quantity of

data employed. Thin plate regression splines were used

when an increase in degrees of freedom improved the fit

to the data. Each individual regression curve was fitted

with between 4 and 9 degrees of freedom in both the

single variable GAMs and the multivariate GAM. The

statistical software R (version 2.5.0 for Windows; R De-

velopment Core Team 2007) was used for all calculations

and the integrated mgcv package (version 1.3–23) was

used to fit the regression curves.

Great care was exercised when interpreting the re-

gression curves. Emphasis was placed on prominent fea-

tures derived from large amounts of data that could be

related to known physical processes. Spurious features

in the regression curves could come from many sources

including the lack of independence in explanatory var-

iables, the influence of the tails of the curves where there

is greater uncertainty, paucity in data over parts of the

range of observed values, and small-scale peaks and

troughs in curve shape from overfitting data. Just as

importantly, variables not included in the regression

analysis could have been responsible for the variation

in DTR.

4. Results

a. Monthly mean DTR

Figure 1 shows the geographic pattern of monthly

mean DTR for the months of January, April, July, and

October. Tropical regions and particularly deserts had

the highest DTR values and coastal areas had relatively

low values that were presumably due to the influence of

the marine environment. DTR had its smallest annual

cycle in the equatorial rain forest regions and the Sahara

Desert. This contrasted with the high latitudes where

there was large seasonal variation in DTR.

b. Single variable regression

Monthly mean DTR was regressed against each pa-

rameter in turn and the deviance explained recorded as

a measure of the strength of the relationship (Table 2).

All regression models included a constant term equal to

the global annual mean DTR (11.08C). Deviations of

DTR from this mean value are shown on the y axes of

the regression curves. Large deviations from the mean

DTRmay indicate an influential relationship with DTR.

The monthly mean temperature less the dewpoint tem-

perature (dewpoint depression, DPD) had the largest ex-

plained deviance (Table 2). The regression curve (Fig. 2a)

shows greater DPD to be associated with greater DTR
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consistent with Linacre (1992). However, it is a temper-

ature parameter closely related to DTR and therefore

does little to help understanding. Cloud cover, soil mois-

ture, and distance inland were included in the multivari-

ate GAM and are described in section 4c. The regression

curve for latitude matches the mean latitudinal distri-

bution of DTR (Fig. 2b). Twin maxima at 308N and 308S

reflect the high DTR of the subtropical high pressure

zones. Latitude was not used in the multivariate GAM

because monthly mean downward TOA solar radiation

provided a better fit to the seasonal variation in DTR.

Vegetation group, elevation, and downward TOA solar

radiation were included in the multivariate GAM and

are described in section 4c. The regression curve for

maximum temperature (not shown) showed larger max-

imum temperatures associated with larger DTR. Maxi-

mum temperature was not used in the multivariate GAM

because of its high correlation with downward TOA

solar radiation. The regression curve for albedo (Fig. 2c)

showed larger albedo was associated with greater DTR

up to an albedo of ;0.25. Beyond an albedo of 0.25,

larger albedo was associated with smaller DTR.

Vapor pressure (Fig. 2d) explained only 14.3% of the

variance in DTR. Above 15.0 hPa, greater vapor pressure

was associated with smaller DTR, explained deviance

improved to 33.1%, and vapor pressure was positively

correlated with cloud cover (10.50). Therefore, at these

high vapor pressure levels humidity appears to be coupled

with cloud cover in influencing DTR. Increasing pre-

cipitation was associated with decreasing DTR (Fig. 2e)

although deviance explained was low (14.1%). Precipi-

tation exhibited positive correlations with water vapor

pressure (10.63), surface evaporation (10.63), and cloud

cover (10.45).

Aerosol optical depth (AOD) explained only 6.7% of

the variation in DTR and the nature of the relation-

ship is unclear (Fig. 2f). This weak relationship maybe

genuine or because the effect of AOD is confounded

FIG. 1. Monthly mean DTR for January, April, July, and October. DTR data were from CRU TS 2.1 and averaged over the years

1983–2002.
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with other parameters and/or there are significant AOD

measurement uncertainties associated with the Multi-

angle Imaging SpectroRadiometer (MISR) data (Diner

et al. 1998). Evaporation, longitude, and scalar wind speed

each accounted for 3% or less of the variation in DTR.

c. Multivariate model

Five explanatory variables were selected to maximize

deviance explained: cloud cover, downward TOA SW

radiation, distance inland, elevation, and soil moisture.

As stated in section 2, the data were divided into 84 sub-

sets comprising combinations of seven vegetation groups

and 12 months. Regression models were fitted separately

for each of the 84 subsets. Each regression model had a

constant term representing the monthly mean DTR for

the month and vegetation group in question and five re-

gression curves with between 4 and 9 degrees of freedom

each. The combined results are referred to as GAMdtr.

All regression curves in GAMdtr were significant at

0.1% except for the elevation curve during March for

the inland water–bog–coastal-vegetation type. This re-

gression curve was not significant, and removing it from

the GAM had a negligible effect on the results. Com-

bined results from the 84 models produced an unbiased

estimate of the global annual mean DTR and deviance

explained of 79.7% (80.3% for the Northern Hemi-

sphere and 72.5% for the Southern Hemisphere). The

largest errors in estimated monthly mean DTR were

20.18C for the Northern Hemisphere and 10.48C for

the Southern Hemisphere with both maxima occurring

in September. Deviance explained varied systematically

by month and was greatest during October in the North-

ernHemisphere (86.7%) and during June in the Southern

Hemisphere (74.0%). The lowest deviance explained was

found for April in the Northern Hemisphere (68.4%) and

for March in the Southern Hemisphere (62.8%). De-

viance explained was lowest for the inland water/bog/

coastal vegetation type (68.2%) followed by vegetation

types for grassland (70.7%), evergreen forest/wood

(71.2%), mixed deciduous forest/wood (71.6%), semiarid

and shrub (76.1%), and cropland (82.1%) and largest for

barren land (87.6%).

To validate GAMdtr, bootstrapping with a 50% sam-

ple of data was used to calibrate the GAM and predict

values that could be compared against the remaining

data. This process was repeated 100 times and the results

shown in Fig. 3. The predicted mean DTR was unbiased

at 11.58C based on data points with complete data for

the explanatory variables. The root mean squared error

(RMSE) was 1.58C. Predicted DTR values exceeded ob-

servations in central and southeastern China, the north of

India, and the Arabian Peninsula. Predicted DTR values

were less than observations in parts of the United States,

Mexico, the Buenos Aires region of Argentina, and the

Sakha region of Russia.

The five explanatory variables selected for GAMdtr

were not unique in producing a close fit to theDTRdata.

Replacing soil moisture with precipitation in GAMdtr,

while retaining the other four explanatory variables and

the vegetation and month subdivisions, increased devi-

ance explained by 0.3%–80.0%. Soil moisture was pre-

ferred over precipitation because its correlation with

other explanatory variables was lower.

To assess the individual contributions of vegetation

group, month, and the five explanatory variables toward

explaining the variation in monthly mean DTR, each

variable was removed in turn from GAMdtr and the

deviance explained recalculated (Table 3). The reduc-

tion from 5 to 4 explanatory variables or the reduction

of data subsets from 84 to 7 (removing month) or to 12

(removing vegetation group) reduced deviance explained.

The larger the reduction in deviance explained the greater

the contribution made toward explaining the variation

in monthly mean DTR. Vegetation made the greatest

contribution. Cloud cover also ranked highly. The effect

of adding a sixth regression curve to GAMdtr was also

tested and found to make little difference.

Figure 4 shows the geographic location of the seven

vegetation types. Regions with high mean DTR values

(e.g., shrub and semiarid) were typically in dry sunny cli-

mates where daytime insolation and limited evaporative

cooling would be expected to contribute to the high DTR.

Inland water/bog/coastal was found to have low DTR and

damped seasonal variation. In these regions there is

TABLE 2. Deviance explained, the proportion of the variation in

DTR explained individually by each variable using a GAMmodel.

The variation in DTR is the variation of monthly mean CRU

gridcell values from the global annualmeanDTR.These results are

described in section 4b.

Variable name Deviance explained (%)

Dewpoint depression 56.2

Percent cloud cover 42.2

Soil moisture 24.6

Distance inland 23.9

Latitude 23.8

Mean daily maximum temperature 21.9

Vegetation group 21.3

Elevation 19.8

Downward TOA SW radiation 18.9

Surface albedo 16.1

Vapor pressure 14.3

Precipitation 14.1

Aerosol optical depth 6.7

Evaporation 3.0

Longitude 2.2

Scalar wind speed 0.6
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plentiful surface water, which presumably cools maxi-

mum temperatures more than minimum temperatures

because of daytime evaporation. The effect of grouping

data by vegetation type in GAMdtr was compared to

randomized grouping; deviance explained reduced from

79.7% to 73.7% when randomized vegetation groups

were used. The significance of vegetation was tested by

rerunning GAMdtr without vegetation groups. The re-

siduals were grouped according to vegetation type and

compared to a normal distribution with mean zero. A

null hypothesis that the residuals were normally distrib-

uted was rejected at the 0.1% significance level for all

seven vegetation types. Therefore, vegetation type, or its

associated climatology, is strongly related to DTR even

after important climatic parameters have been allowed for.

Seasonal variation in DTR is depicted in Fig. 5 with

the largest DTRs in spring (April in the Northern Hemi-

sphere and August in the Southern Hemisphere) and the

smallest DTRs in autumn (November andMarch for the

Northern and Southern Hemispheres, respectively). As

expected seasonal variation in DTR is muted in coastal

regions and the equatorial zone (Geerts 2003).

Each of the five explanatory variables in GAMdtr has

84 regression curves. Figure 6 shows the mean regres-

sion curve for each explanatory variable and the 95%

confidence intervals. The relative performance of each

parameter in the overall model is described in the re-

mainder of this section.

Greater cloud cover was strongly associated with

smaller DTR in a relationship that was almost linear

(Fig. 6a). Low-level clouds were more influential for

DTR than higher-level clouds (Table 4). Generally, in-

creased TOA solar radiation was associated with in-

creased DTR (Fig. 6b). However, at solar radiation

higher than ;350 W m22, DTR decreases and then in-

creases again beyond solar radiation levels of 425W m22.

This dip is associated with equatorial grid points and is

likely due to solar radiation having a smaller surface

FIG. 2. Regression curves for (a) dewpoint depression (8C), (b) latitude (8), (c) surface albedo, (d) vapor pressure

(hPa), (e) precipitation (mm), and (f) aerosol optical depth. Variation in DTR from its mean value is shown on the

y axes. Variations in the explanatory variables are shown on the x axes. Confidence intervals at 95% are shown,

although they are not clearly visible where they track the regression curves very closely. Two vertical dashed lines

show the 1st and 99th data percentiles. Gray shading shows the distribution of a random sample of the underlying

data.
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influence because of attenuation by the deep, moist,

and cloudy atmosphere. This result is supported by the

regression curve for latitude (Fig. 2b), which has the

same shape over each hemisphere.

Greater distance inland was associated with larger

DTR (Fig. 6c). At distances larger than 2000 km the re-

sult may not be robust as there were progressively fewer

data and local influences associated with continental Asia

become increasingly dominant.

Larger elevations above sea level were associatedwith

larger DTR (Fig. 6d). Elevation was partially correlated

with distance inland (10.36) and the correlation was

particularly strong for China (10.80). The correlation

coefficients for other parameters, which may contribute

to this elevation effect included water vapor pressure

(20.23), cloud cover (20.14), and soil moisture (10.03).

The regression curve between soil water volume and

DTR showed no relationship from 0.0 to 0.2 m23 (m23)21

of soil moisture (Fig. 6e). Soil water volume of up to

0.2 m23 (m23)21may be required to overcome resistance

to evapotranspiration from stomata and the soil surface

(Camillo and Gurney 1986). Above 0.2 m23 (m23)21

increases in soil moisture were associated with decreases

in DTR. This might be expected because of increased

daytime cooling from evapotranspiration, although the

correlation of soil moisture and evaporative flux above

the soilmoisture level of 0.2 m23 (m23)21was only10.16.

d. Surface energy budget

Monthly mean DTR was regressed against each SEB

component with data for vegetation types and months

aggregated. Most terms in the SEB were highly corre-

lated, rendering them unsuitable for multivariate analysis.

Deviance explained is shown in Table 5 and regression

curves in Fig. 7. All regression models included a con-

stant term equal to the global annual mean DTR 11.08C.

FIG. 3. Mean residuals (observed less predicted) from the prediction of DTR using 100 iterations of GAMdtr using 50% of the data to

calibrate the model and then predict the remaining 50% of the data: (top) (left) January and (right) April; (bottom) (left) July and (right)

October.

3212 JOURNAL OF CL IMATE VOLUME 23



With respect to energy fluxes, a positive (negative) sign

represents a flux toward (away from) the surface.

Net surface LW radiation was highly correlated with

DTR (20.74) with a greater flux away from the surface

associated with greater DTR. This relationship was also

reflected in the high deviance explained (57.3%), which

improved (62.0%) when separate regression curves were

used for upward and downward surface LW radiation.

At fluxes less negative than2100 W m22, the regression

curve (Fig. 7a) was approximately linear. At fluxes more

negative than 2100 W m22, the regression curve was

roughly flat, indicating a break in the relationship with

DTR. Using this GAM to estimate the observed seasonal

and geographic pattern of DTR yielded an unbiased

estimate with RMSE of 2.18C. DTR was overestimated

in January, April, July, and October in the southern part

of the Arabian Peninsula, the Tamanrasset region of the

Sahara Desert, and southeastern China. In the Sakha

region of eastern Russia, DTR was overestimated in

January while it was underestimated in April and July.

Other regions where the model underestimated DTR

included parts of the United States, Mexico, northern

Angola, southern Peru, and the Himalayas.

Larger sensible heat fluxes from the surface were as-

sociated with larger DTR (Fig. 7b), and over commonly

experienced flux values the relationship was broadly lin-

ear. At levels more negative than;280 W m22, greater

sensible heat fluxes did not contribute to greater DTR.

The Bowen ratio is the ratio of sensible to latent heat

flux (Bowen 1926). It was found to have a similar de-

viance explained as sensible heat flux (Table 5). Less

than a Bowen ratio of zero, the data are from mid- to

high-latitude locations mainly for the winter, spring, and

summer seasons. Between a Bowen ratio of zero and

four, DTR has a broadly linear relationship with Bowen

ratio, with larger ratios associated with greater DTR

TABLE 3. Change in deviance explained by adding or removing

individual variables from GAMdtr. The deviance explained by

GAMdtrwas 79.7%. The variation in DTR is the variation from the

mean for eachmonth and vegetation data subgroup. The results are

described in section 4c.

Change in deviance

explained (%)

Removing

Vegetation group 26.5

Monthly grouping 26.2

Cloud cover 25.1

Distance inland 24.1

Downward TOA SW radiation 24.0

Elevation 22.9

Soil moisture 22.4

Adding

Precipitation 2.2

Vapor pressure 2.2

Evaporation 0.9

Aerosol 0.5

Scalar wind 0.5

FIG. 4. Geographic distribution of the seven vegetation groups.
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(Fig. 7c). However, the deviance explained over this

range (34.2%) is less than over the full range of data, so

the significance of the linear relationship is interpreted

cautiously. Above aBowen ratio of four, the data largely

come from the subtropics.

The regression curve for net surface SW radiation

(Fig. 7d) shows greater SW radiation roughly linearly

associated with greater DTR except at SW values greater

than ;275 W m22 where the relationship flattens out.

This is consistent with the regression curve for downward

TOA SW radiation (Fig. 6b).

The regression curves for net surface LW radiation,

surface sensible heat flux, and net surface SW radiation

have broadly linear relationships with DTR. As these

energy budget terms are expressed in the same units, the

slope of a linear regression betweenmonthlymeanDTR

and each of these SEB terms provides a measure of the

relative importance of these parameters (Table 6). DTR

exhibits significantly greater variation with net surface

LW radiation than it does with changes in surface sen-

sible heat or net surface SW radiation.

The surface energy balancing term represents the ef-

fects of ground fluxes, changes in ground heat capacity,

vertical or horizontal heat transport, and anomalies due

to inaccuracies in ERA-40 flux calculations. The regres-

sion curve (Fig. 7e) shows both positive and negative

values (up to 100 W m22) associated with smaller values

of DTR.

The regression curve for latent heat flux (Fig. 7f) sug-

gests greater latent heat flux is associated with smaller

DTR over the range of fluxes commonly experienced.

The low deviance explained suggests a weak or highly

confounded connection. In support of this result, a GAM

of DTR against evaporative water flux produced a de-

viance explained of only 1.4%.

The strong relationship between DTR and net LW

radiation was analyzed using linear regression applied to

the 12 monthly values of DTR and net LW radiation for

each separate grid cell. TheR2 values for the regressions

were skewed toward 1 with a median value of 71.2%.

The fit of the linear regression for net LW radiation was

better than for the other surface energy budget terms

FIG. 5. Monthly mean DTR (8C) for (a) inland water, bog, and

coastal areas; (b) evergreen forest–wood; (c) mixed deciduous forest–

wood; (d) grassland; (e) cropland; (f) semiarid areas and shrub;

and (g) barren areas. Triangles represent values for the Southern

Hemisphere and circles values for the Northern Hemisphere.
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where the median R2 values were 45.2%, 42.9%, 38.6%,

32.7%, and 29.9% for sensible heat, net SW radiation,

LW radiation down, latent heat, and LW radiation up,

respectively.

The geographic pattern of correlation between the

12 monthly values of DTR and net LW radiation (Fig. 8)

shows that highest correlations were located in moist

tropical regions. Regions with the weakest correlations

were located along the coasts and at high latitudes. The

driving influence of solar radiation is reflected in the

zonal pattern of the correlations, although there are clear

regional departures. Some of the factors responsible for

geographic variations in the correlation between DTR

and net LW radiation are shown in Fig. 9. Grid cells with

high correlations between DTR and net LW radiation

have greater TOA SW radiation, higher mean maximum

and minimum temperatures, greater precipitation, and

greater humidity. These factors all contribute to greater

fluxes of latent heat, LW radiation up and LW radiation

down. The linear regression ofDTRand net LW radiation

had a mean slope of 20.19 6 0.05 K (W m22)21 aver-

aged over all grid cells. Variations in the slope between

grid cells were most closely related to variations in an-

nual mean cloud cover and soil moisture, with correla-

tions of 20.52 and 20.57, respectively.

The variations in linear regression between DTR and

net LW radiation were investigated by selecting a num-

ber of cells as case studies (Fig. 10). The grid cell located

at 19.758N, 94.758EhadR2 of 99.0%and slope of20.136

0.004 K (W m22)21. This cell had monthly changes that

were almost linear, with DTR increasing from a mini-

mum in June–August to a maximum in January–March.

This is a monsoonal location in Southeast Asia approxi-

mately 150 km inland. Typical of regions where the cor-

relation of DTR and net LW radiation was strong, it had

high specific humidity, high annual mean precipitation,

high maximum and minimum temperatures, and was lo-

cated away from the coast.

FIG. 6. Regression curves for (a)

cloud cover (%), (b) SW radiation

down TOA (W m22), (c) distance

inland (km), (d) elevation (m), and

(e) soil moisture [m23(m23)21].

Variation in DTR from its mean

value is shown on the y axes. Varia-

tions in the explanatory variables are

shown on the x axes. Confidence in-

tervals at 95% are shown, although

they are not clearly visible where

they track the regression curves very

closely. Vertical dashed lines show

the 1st and 99th data percentiles.

Gray shading shows a random sam-

ple of the underlying data.

TABLE 4. Deviance explained by separate GAM regression

models between DTR and cloud cover at 3 different heights. DTR

data are from CRU TS 2.1 and includes monthly mean data for all

months and vegetation groups. The variation in DTR is the vari-

ation of monthly mean CRU gridcell values from the global annual

mean DTR. Cloud cover is from ERA-40 reanalysis data.

Cloud cover level Deviance explained (%)

Low 50.2

Medium 22.5

High 20.7
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The grid cell located at 68.258N, 133.758E had lower

R2 (71.6%) and a slope of 20.30 6 0.06 K (W m22)21.

The relationship followed linear trajectories from January

to March and from August to January, driven by chang-

ing net solar radiation. Breaks in this pattern were found

to be associated with the thawing and freezing of sur-

face moisture and snow. The reduction in DTR from

April to May coincides with the transition of maximum

temperatures from below to above freezing point. The

increase in DTR from May to June coincides with the

transition ofminimum temperatures frombelow to above

freezing.

The grid cell located at 62.758N, 66.258W on a penin-

sula approximately 50 km from the coast hadR2 of 5.2%

and a regression slope of 20.02 6 0.02 K (W m22)21.

Changes in wind direction between continental north-

easterly winds and oceanic southwesterly winds, seasonal

changes in the surface albedo from over 0.60 in spring to

less than 0.15 in summer, and the freezing/thawing of

surface moisture and snow are likely to have disrupted

any linear relationship. DTR also varied over a narrow

range of values typical of many coastal locations.

Net LW radiation was strongly correlated with cloud

cover and soil moisture in regions where there was also a

strong correlation between net LW radiation and DTR.

Where the correlation coefficient between net LW ra-

diation and DTR was less than 20.98, the correlation

coefficient between cloud cover and net LW radiation

was 0.94 and between soil moisture and net LW radiation

it was 0.95. These results point to cloud cover and soil

moisture exerting an influence onDTR through changes

in upward and downward surface LW radiation.

5. Discussion and conclusions

The near linear relationship between DTR and net

surface LW radiation (Fig. 7a) is consistent with results

using ERA-40 data for the Madeira River basin in the

Amazon (Betts 2004). High correlations of cloud cover,

soil moisture, and precipitation with net surface LW

radiation are in agreement with the conclusions of Dai

et al. (1999) that clouds combined with secondary effects

from soil moisture and precipitation exert a strong in-

fluence on DTR. Our results, however, show that the

effect of clouds on DTR is more clearly described by

changes in net LW radiation rather than by changes in

surface solar radiation.

Net LW radiation explained 62% of the variation in

monthly mean DTR observed over global land (exclud-

ing Greenland and Antarctica). Greater net LW fluxes

away from the surface were associated with larger

DTR values except for net fluxes more negative than

2100W m22where the relationshipwithDTRweakened.

Linear regression of the 12 monthly values for each sep-

arate grid cell demonstrated that the relationship be-

tweenDTR and net LW radiation was robust throughout

the annual cycle. The median deviance explained was

71.2% increasing to over 95% in moist tropical regions.

The linear relationship between DTR and surface net

LW radiation varied geographically. It was strongest in

tropical locations that had high maximum and minimum

temperatures, high specific humidity and precipitation,

and that were located inland. An active hydrological cy-

cle with relatively high surface latent heat fluxes appears

to define these locations. Away from the tropics diver-

gences from linearity in the DTR–net LW relationship

were caused by soil moisture freezing–thawing and ad-

vection. The importance of this has previously been illus-

trated by Viterbo et al. (1999) in the context of modeling

stable boundary layers. Schwartz (1996) concluded that,

in addition to the loss of snow cover contributing to the

discontinuity in DTR trends in midlatitude regions dur-

ing Northern Hemisphere spring, more frequent south-

erly winds and increased cloud ceiling heights could also

be contributory factors. While our regression analysis

did not rank highly the influence of wind speed or wind

direction onDTR, these variables could still have played

a minor role within the results and changes in cloud

height were not investigated in our analysis. Betts (2004)

found the slope of the linear regression between DTR

and net surface LW radiation decreased by approxi-

mately 20% on moving from the tropics to higher lati-

tudes. We did not find a clear trend between the slope

and latitude but found variation in the slope to be most

closely related to annual mean cloud cover and soil mois-

ture. Further detailed observations and/or modeling cal-

culations would be necessary to provide deeper insight.

The GAM regression model found DTR to have a

strong relationship with vegetation type. Removing veg-

etation groups fromGAMdtr reduced deviance explained

TABLE 5. Deviance explained by GAM models between

monthly mean DTR (response) and the surface energy budget

terms. The variation inDTR is the variation ofmonthlymeanCRU

gridcell values from the global annual mean DTR. The results are

described in section 4d.

Surface radiation and

heat fluxes Deviance explained (%)

Net LW radiation 57.3

Sensible heat 40.2

Bowen ratio 37.2

Net SW radiation 27.3

LW radiation down 15.7

Balancing term 14.5

LW radiation up 14.3

Latent heat 2.9
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by 6.5% compared with 5.1% when cloud cover was re-

moved. While close coupling of vegetation and climate

means that the physical effects of vegetation cannot be

isolated by regression alone, the strong connection with

DTRwas found even after allowing for the effects of key

climatic parameters such as cloud cover and solar radi-

ation. The likelihood of a strong relationship between

vegetation and DTR is also widely supported in current

literature. For example, irrigation of cropland has been

found to reducemaximum temperatures (Mahmood et al.

2006; Sen Roy et al. 2007), net SW radiation is influ-

enced by surface albedo (Myhre and Myhre 2003), night-

time temperatures are increased by reduced vegetation

and lower soil emissivity in the Sahel region of Africa

(Zhou et al. 2007), differences in vegetation cover influ-

ence the daytime latent heat flux and nighttime stability

(Collatz et al. 2000), differences in the diurnal cycle of

biomass heat and biochemical energy storage by dif-

ferent vegetation types affects DTR (Gu et al. 2007), and

urbanization reduces DTR (Gallo et al. 1996; Kalnay and

Cai 2003). A modeling study of the role of plant physi-

ology in the diurnal and seasonal progression of DTR,

especially its impact on surface albedo and moisture

fluxes, could clarify the physical contribution from plants.

Use of more detailed vegetation classifications could

improve diagnosis of the role of vegetation in DTR.

FIG. 7. Regression curves for (a) net surface LW radiation, (b) surface sensible heat flux, (c) Bowen ratio, (d) net

surface SW radiation, (e) energy budget balancing term, and (f) surface latent heat flux. Variation in DTR from its

mean value is shown on the y axes. Energy fluxes are shown on the x axes with positive values representing fluxes

input to the surface and negative values fluxes away from the surface. Confidence intervals at 95% are shown,

although they are not clearly visible where they track the regression curves very closely. Vertical dashed lines show

the 1st and 99th data percentiles. Gray shading shows a random sample of the underlying data.

TABLE 6. Slope and R2 for separate linear regression models

between DTR (response variable) against each surface energy

budget term using data for all months and vegetation groups.

R2 (%)

Slope

[K (W m22)21]

Net LW radiation 92.8 20.16 6 5.2 3 1025

Net SW radiation 84.2 10.07 6 3.5 3 1025

Sensible heat flux 56.2 20.04 6 3.8 3 1025

LW radiation up 91.7 20.03 6 9.8 3 1026

LW radiation down 88.4 10.03 6 1.4 3 1025
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The diurnal cycle of solar radiation drives DTR, and

increased insolation is associated with larger DTR values

(Rebetez and Beniston 1998). Greater cloud cover and

soil moisture are associated with smaller DTR values

(Dai et al. 1999), and low-level clouds are more influ-

ential for DTR than medium- or high-level clouds (Karl

et al. 1993; Geerts 2003; Dai et al. 1999). Up to 150 km,

distance inland shows the ameliorating effects of sea

breezes on DTR in coastal regions (which cool daytime

temperatures) and also the influence of cloud cover

changes (Geerts 2003). The increase in DTR with in-

creasing distance inland beyond 150 km, while statis-

tically significant, is not explainable in terms of local

meteorology or geography. Higher elevation was asso-

ciated with greater DTR and is consistent with the mul-

tiple linear regression DTR model of Linacre (1992).

While this conclusion is valid on a global scale, local

terrain, land–sea breezes, and atmospheric circulation

could be influential and would dominate on smaller geo-

graphic scales. This was demonstrated by Geerts (2003)

who identified places where DTR increased with eleva-

tion (e.g., western United States 1.98C km21 in July) and

also areas where DTR reduced with elevation (e.g., parts

of the Alps 2.18C km21).

GAMdtr identified cloud cover, soil moisture, distance

inland, downward TOA SW radiation, and elevation as

important in the geographic and seasonal variation in

DTR. These results supplement the earlier findings dis-

cussed above by quantifying and ranking the sensitivity of

DTR to each parameter. To provide a more complete

description of the geographic and seasonal variation in

DTR, the regression models would need to include fac-

tors that cause step changes in the monthly progression

of DTR, for example, soil moisture freezing, snowmelt/

accumulation, and advection of heat andmoisture by the

atmosphere.

Variations in DTR left unexplained by GAMdtr

(20.3%) reflect both random variation and uncertainty

in the results. If regression curves are overfitted, random

variation would be confounded with model predictions,

although there was no clear evidence of this in the pre-

dictions of GAMdtr. Uncertainty could arise from the

influence of meteorological and surface parameters not

considered in this research. Relationships between ex-

planatory variables were not explicitly modeled, as they

can be difficult to interpret and computationally ex-

pensive. Nevertheless, they could be a further source of

uncertainty in these results. Measurement errors in tem-

perature readings are a source of variation in DTR ob-

servations that the GAMdtr predictions do not represent.

Data quality procedures applied in the preparation of

CRU TS 2.1 should help to minimize this error.

FIG. 8. Geographic pattern of the correlation coefficient between DTR and net LW radiation calculated using the

12 monthly values for each grid cell.
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Combining data from ERA-40 and CRU TS 2.1 may

have increased the uncertainty in our analyses. There

were gaps in the completeness of some ERA-40 data

fields (e.g., soil moisture). These cells were ignored in the

regression calculations. Limitations in the physical pa-

rameterization of the ECMWF model used for ERA-40

will have introduced bias in the reanalysis data (Betts

et al. 2006). Bias inCRUTS2.1 is likely to be enhanced for

grid cells based on a limited number of underlying ob-

servations (e.g., Sahara Desert). CRU TS 2.1 data were at

a resolution of 0.58 3 0.58, but ERA-40 and satellite data

were at a coarser resolution. While ERA-40 data were

available at 18 3 18 resolution, the coarser resolutionwas

favored because a longer time series of data was avail-

able at 2.58 3 2.58 and this resolution was considered

suitable for analysis of global-scale influences on DTR.

The modeled data were autocorrelated both spatially

and between months. For DTR predictions, this was

implicitly captured in the model fitting process. The

p values used to assess the statistical significance of re-

gression curves were inflated and the statistical signifi-

cance of GAM results overstated. This was allowed for

FIG. 9. Annual mean values for SW TOA, maximum temperature (Tmax), minimum temperature (Tmin), pre-

cipitation, humidity, and surface latent heat flux calculated for each separate grid cell. The median is shown by the

bold bar, first and third quartiles by the boundaries of the shaded box, and data outliers by individual points. The

annual mean values have been grouped according to the value of the correlation coefficient between net LW radi-

ation and DTR for each grid cell.
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in part by the use of 0.1% significance level and was not

regarded as a major drawback as the focus was on using

regression curves to interpret the relationships withDTR.

Future application of this GAM methodology on re-

gional scales using bespoke explanatory variables could

enhance understanding of more localized influences on

DTR. Sensitivity to vegetation and cloud cover may be

particularly relevant to investigations of the causes of

the global downward trend in DTR in the second half of

the twentieth century. As identifying cause and effect

in regression analysis is difficult, climate modeling could

be used to investigate the physical processes underpin-

ning the close relationships of DTRwith surface net LW

radiation and vegetation.
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