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ABSTRACT 

In the mid-2000s a rail defect that was classified as a “squat” became increasingly 



  

 

common on London Underground’s track.  By 2006 there were about 600 of these and 

they had become the Underground’s single most common rail defect.  This defect 

occurred almost exclusively on lines carrying relatively new rolling stock.  The work 

reported here was undertaken initially to characterize this defect, advise as to whether it 

was indeed a squat and propose a hypothesis that explained its mechanism of formation.  

The paper includes observations and measurements from track and initial results of 

metallurgical analysis.  The hypothesis for formation of the defects is presented, and 

both similarities and differences are discussed between these defects and the classical 

“squat”.  The defect on London Underground appears to be the same as that described 

by Marich and his colleagues in Australia and by Li and his colleagues in the 

Netherlands.  It is evidently not a rolling contact fatigue defect.  In order to avoid 

confusion arising from simple misuse of an established term, it is proposed that these 

defects be given a different name, for which “stud” is proposed.  Evidence to date is that 

the “stud” is a significantly more benign defect than a “squat”. 

Keywords: Squat, stud, rolling contact fatigue, rail, pearlitic steel 

1 Introduction 

A squat is a rolling contact fatigue (RCF) defect in rails whose characteristics are well 

understood as a result of more than two decades of research from the mid-1970s, 

primarily in Europe and Japan e.g. [1,2].  Squats are particularly dangerous defects 



  

 

because if they are allowed to remain in track, the commonly develop into rail breaks.  

For this reason railway systems are concerned about the presence of squats and ensure 

either that rails are ground routinely to prevent small surface breaking cracks 

propagating and to manage rail-wheel contact stresses, or that rails containing cracks 

which have developed too deeply to be ground out are removed.  The fact that squats to 

date have been associated primarily with passenger and mixed traffic railways has 

heightened an awareness of this hazard. 

There is evidence that in the last 10-15 years a defect that shares many characteristics 

with the classical squat has become more prevalent.  The literature on this defect is very 

much less mature than that on squats: Marich and his colleagues in Australia e.g. [3,4] 

and Li et al in the Netherlands e.g. [5] are responsible for most if not all of the published 

work to date.  In order to provide relevant background to the present paper, a 

companion paper [6] summarises the current understanding of the classical squat, the 

very much more limited material on those more recent defects that have been classified 

as squats, and draws attention to a couple of earlier references where the current 

problem may have been discussed without this having been realised at the time.    

The original work described here arose primarily in an attempt to understand and assist 

with these defects, which beset London Underground (LU) in the mid-2000s.  These 

defects, of which there were about 600 on LU’s 840 track km in 2006, were classified 



  

 

by the ultrasonic operators as squats.  They appeared as squats to the naked eye and also 

the signal on their ultrasonic equipment (the conventional and widely used “walking 

stick”) indicated that there was a sub-surface defect of substantially the same character 

as a squat.   The vast majority of these defects occurred on the Jubilee, Northern and 

Central Lines, which had the newest rolling stock on the Underground.  It was noted 

also that the defects were almost absent in tunnels, which was consistent with what was 

known of classical squats. 

Although Tubelines had received advice from several sources that these defects were 

indeed squats, it was proposed that this was not in fact the case.  An initial hypothesis to 

explain their development was proposed and used as a basis for the further 

investigations presented here.  This paper contains initial measurements and 

observations from track in London and elsewhere and also the results of metallurgical 

investigations, which were essential to reveal critical characteristics of the defects.  

Similarities and differences between these defects and squats are tabulated and 

discussed, and a more complete hypothesis is proposed for their development that is 

consistent with research undertaken to date.  It is difficult to be certain that these defects 

are identical to those studied elsewhere [3-5], but the critical characteristics appear to be 

identical insofar as these can be determined from the published literature and otherwise. 

The defects studied here are certainly not squats, insofar as the term was introduced and 



  

 

used by Clayton, Allery and others [1,2].  However, the defects share superficial 

characteristics.  To reduce confusion not only in the text but more importantly amongst 

railway engineers, it is proposed that these defects be referred to by another name, for 

which “stud” is proposed.  If these defects are indeed recognised as a different 

phenomenon with a different cause, this is a first step to devoting resources to solving 

the correct problem.  The potential for confusion is exemplified by the recent 

publication of two “best practice” handbooks on the wheel/rail interface.  In one of 

these the conventional explanation is given of squats as an RCF defect [7] whereas in 

the other, squats are treated as a different type of defect whose characteristics are less 

well defined [8].  This paper suggests that one way of resolving this undesirable state of 

affairs is to consider that there are two significantly different defects.  It is proposed that 

one of these defects (the classical squat) is relatively well understood as a result of 

decades of fruitful research.  On the other hand, research into and understanding of the 

other type of defect (a “stud”) is in its infancy.  

2 Contribution of the current work 

2.1 Observations and characteristics 

The majority of work described here was sponsored by Tubelines Ltd who maintained 

about half of London Underground’s infrastructure in a Public-Private Partnership 

initiative that came to an end in 2010.  In 2006-2007 528 defects were classified by 



  

 

Tubelines staff as “squats” on the 330 track km that they maintained.  Almost 500 of 

these defects were on the Jubilee and Northern Lines, which had new rolling stock.  

Elsewhere on London Underground (LU) these defects had been found only on the 

Central line, which was maintained at that time by Metronet Ltd and which also had 

relatively new rolling stock.  This type of defect existed previously and some 

metallurgical analysis and prior investigations had been undertaken, but by 2006 they 

had become LU’s single most common rail defect problem.  The cost of their removal, 

primarily by rerailing the affected sites, was then about £6 million p.a..  Localised weld 

repair, which is used also elsewhere for this problem, has subsequently been developed 

as a less expensive treatment of studs.   

Examples are shown of studs from the Northern Line and from two other metro lines 

(Figures 1(a)-(c) respectively).  In the first two cases there were several dozen defects 

within a few hundred metres of track.  Defects were observed in curves and also in 

straight track, and in almost all cases had the characteristic appearance of the defects 

shown in Figures 1(a) and (b), with a V-shaped surface-breaking crack whose apex 

pointed to the field side of the rail.  In all cases the stud is more or less in the centre of 

the running band.  In some cases, as in Figure 1 (a), corrugation was present and had 

been exacerbated by the irregularity of the stud.  The stud shown in Figure 1(b) was in 

the high rail of a curve.  This had some gauge-corner cracking (GCC), but there was no 

sign of the stud being associated with surface cracks on the gauge corner.  There has 



  

 

been some spalling from the defect in Figure 1(c), probably as a result of relatively 

recent grinding. 

Defects on LU were concentrated not only on specific lines but also in so-called “hot 

spots” on those lines: 10 sites on the Jubilee and Northern Lines were responsible for 

45% of Tubelines’ defects.  Defects occurred almost exclusively in open rather than 

covered/tunnel sections: this has also been observed by Marich and his colleagues e.g. 

[4].   Both characteristics are apparent from the “map” of defects shown in Figure 2 (for 

the Central Line).  Stations are shown along the middle of the map.  Left and right rails 

on the eastbound and westbound tracks are shown above and below the stations 

respectively.  There are clear concentrations of defects e.g. around 28km on both lines 

and also a gap from about 32km to 48km with very few defects.  The line is 

underground in this area.  Several “hot spots” are on the approach to signals, where 

many trains would first be braking and then under traction.  This characteristic has also 

been observed by the first author on other railway systems.  Marich and his colleagues 

claim to have found no correspondence between defects and signals on RailCorp track 

in Australia [4].  Some hot spots on London Underground are not where a train would 

be expected to stand awaiting signal clearance, but on the straight approaching a signal, 

where drivers may coast at low speed for a signal check then apply traction when the 

signal turns to green.  Other hot spots on the Northern Line and on other metro systems 

are found on the grade rising out of the underground section, where trains would be 



  

 

under consistently high traction.  Some particularly severe areas of studs are associated 

with a combination of the two conditions i.e. signals at the top of the incline from an 

underground section.  

It had been suggested from previous metallurgical analysis that the defects initiated at a 

depth of about 3-5mm and then propagated in both directions i.e. along (and slightly 

down) into the rail, and up to the rail surface.  No initiation mechanism was proposed.  

A typical cross section from a defect that was removed from the Jubilee Line in 2006 

and classified as a squat is shown in Figure 3.   

In some “hot spots” defects developed in about 3 months from laying of new rail (on 

lines carrying barely 20MGT of traffic per annum), which is an order of magnitude 

faster than a classical squat (see e.g. Figure 4 of ref [6]).  Although many defects had 

been detected, these appeared to be relatively benign: few if any rail breaks had been 

directly attributed to these defects.  In 2006, only one broken rail on Tubelines’ system 

occurred in which the crack had initiated at the railhead.  This had all the appearance of 

a classical RCF defect with a crack developing through a highly sheared surface layer, 

then turning down into the rail and resulting in a transverse defect.  This apparently 

more benign characteristic of studs as compared to squats has also been noted by 

Marich et al [4,5].  Nevertheless because cracks exist only a few millimetres below the 

surface (Fig 3), rails are regarded as “ultrasonically untestable”.  If operators had more 



  

 

sophisticated equipment that enabled the rail to be tested from the side as well as from 

the running surface, it would be possible to test the defects in detail and determine the 

depth of cracks, their rate of development and whether other defects were hidden by 

cracks close to the surface.  However, a conventional (and certainly also a safe) 

approach is to consider that a crack that has developed sufficiently deeply in the rail is a 

potential hazard and to schedule this for renewal or repair.   

2.2 Inspection and measurement in track 

An initial hypothesis was proposed that the defects observed on London Underground 

were the product of wheelslip, and that it may accordingly be possible to observe and 

measure features on both left and right rails even if an “ultrasonic defect” had been 

noted on only one rail. Both rails would be affected by wheelslip since they are linked 

by a common axle, although effects may differ because of friction, torsion of the axle 

etc. To test whether this was the case, observations were made in track and later 

supplemented by more detailed metallurgical investigation (Section 2.3).  

Measurements and photographs are shown in Figure 4 from a known “hot spot” on the 

Northern Line where sub-surface cracking had been observed ultrasonically at about 

3.55m and 7.4m on the left and right rails respectively (on the scale in Figure 4) and the 

defects classified as “squats”.   Measurements of irregularities on the rails were made 

with the CAT (Corrugation Analysis Trolley) [9], which is not designed for this purpose 



  

 

but appears nevertheless to have worked satisfactorily.   It is not proposed here that the 

defects arose from wheels slipping at the same time on the same bogie (although this 

could occur).  Spacing of these pairs of defects along the track is therefore irrelevant. 

At the larger defect, on the right hand rail at 7.4m, irregularities were visible almost 

directly opposite one another on both rails.  Their depth was about 0.4mm and 0.1mm 

on right and left rails respectively.  At 3.55m, an irregularity was visible on the left hand 

rail, and was barely 0.1mm deep.  No irregularity was measurable on the right rail, and 

although no defect was visible the surface appeared heavily scuffed.  The surface of 

both rails was relatively smooth, whereas a rail with surface-initiated RCF (such as a 

squat) is rough to the touch in one direction and smooth in the other.  This roughness is 

attributable to the uni-directional accumulation of strain at the rail surface typical of 

RCF initiation.  At the site shown in Figure 4 there were locations with quite distinct 

“blobs” of white phase directly opposite one another on the two rails, but no ultrasonic 

defect had been noted.  Quasi-periodic white phase of this nature is a feature of stud 

sites more generally, and may (for example) occur because of torsional oscillation of 

axles when starting from standstill.  This is discussed further in Section 2.3.4.   It was 

also noted, and is to some extent visible in the photographs, that there was lubrication 

on the gauge face of the rail opposite the defect i.e. the right rail at 3.55m and left rail at 

7.4m.  Evidence of an obvious difference in friction on opposite rails has been noted at 

other sites where studs are present. 



  

 

2.3 Metallurgical examination 

Several defects were removed from an open section the Northern Line, on ballasted 

track, for detailed metallurgical examination.  Results are given here from a rail 

removed from one of the sites examined (designated site A) at which samples were 

taken close to two visible defects.  One defect was at 370-470mm within the rail section 

removed, and is referred to as being nominally at 430mm, whereas the other was at 

1360-1480mm and is referred to as being nominally at 1450mm.  The rail from site A 

was removed from 65m before a signal.  In view of the hypothesis that studs may be a 

consequence of wheelslip, samples were removed from both rails opposite one another.  

These were aligned in the laboratory using the marks that had been made by the sleepers 

on the railfoot (Figure 5 shows the defect at 430mm aligned with the opposite rail).  The 

ultrasonic defects, which were the reason for removing the rail section, were in the right 

rail (where right and left are defined looking in the direction of traffic). The defect from 

location 430mm is shown in greater detail in Figure 6 and has the characteristic 

appearance of an inverted V, with the apex towards the field side of the rail. The right 

rail defect at 1450mm was in fact a series of defects similar to Figure 1(b). In both cases 

there was visible damage on the opposite (left) rail. 

2.3.1 Surface profile examination 

The surface profile of both left and right rails was measured at the defect location and 



  

 

compared to the profile of a section of rail at which there were no visible defects or 

surface irregularities (Figure 7).  For defect location 430mm the depth of the dip in the 

defective rail is about 400µm, which is similar to that of the defect measured elsewhere 

in track (Figure 4).  The depression spans about 60mm (390mm to 450mm, where the 

scale is that shown by the tape in Figures 5 and 6).  The ridge in the middle of the 

depression (between the two “lobes” of the defect) is barely an inflection in the height 

of the dip, at about 425mm.  On the opposite rail there is a very much shallower 

irregularity with a length of about 30mm (435mm to 465mm) and surface scratches of 

20-50µm depth at about 427mm and 442mm, which are apparent also in Figure 5. This 

irregularity on the ‘opposite’ rail is not greatly different from the background level of 

surface irregularity measured well away from any visible defects.  

For the defect at 1450mm the undulations reflect the multiple defects present.  There are 

also undulations on the opposite rail. On the right rail the peak to trough surface height 

difference is about 100µm, a quarter of the defect depth at the 430mm location. The 

large spike in the right rail profile at 1425mm was caused by a crack mouth in the main 

depression of the series of defects. The spike at 1460mm was caused by a crack mouth 

in the adjacent depression. The small spikes on the opposite rail (1380 and 1460mm) are 

similar to those on the left rail of the 430mm sample.  Inspection of the rail surface 

showed the most likely cause in both cases was damage sustained in removing the rail 

from track. At the 1450mm location damage to the right rail (large visible defect) 



  

 

consists of two depressions of 80-100µm depth, while on the opposite rail there is a 

trough of approximately 50µm depth over a length of about 120mm.  

At both defect locations, the length of surface profile recorded should adequately cover 

the location for both wheels on a single wheelset. Site A was on tangent track, so there 

would be little yaw of the wheelset, and both wheels would be running at approximately 

the same longitudinal location on the rail. Any effect on the surface profile at the left 

and right wheel should have been captured if it had progressed sufficiently to affect the 

surface profile of the rails. The different degree of damage on the ‘opposite’ rail was 

explored further by taking cross-sections and hardness readings as reported below. 

2.3.2 Cross-sections through major defects 

Samples were removed from both rails at both defect locations by cutting vertically in 

the longitudinal rail direction along the centre of the running band and through the 

centre of the visible defects. Specimens were etched to show the grain structure and 

extent of plastic deformation, and micrographs were stitched together to show detail of 

the cracks in the defective rail. Figure 8 shows that the defect at 430mm was surface-

breaking on the sectioning plane selected whereas the defect at 1450mm was sub-

surface on this sectioning plane.  The defect at 1450mm broke the surface elsewhere as 

shown by the spike in the surface profile in Figure 7(b).  Figure 8(b) is therefore not an 

indication of completely sub-surface growth, just that the crack was entirely below the 



  

 

surface on this sectioning plane through the rail. Both defects had developed more 

extensively from their shallowest point in the direction of traffic, but also had branches 

running in the opposite direction to traffic. 

 

Although there is superficial similarity between the cracks in Figure 8 and a 

conventional RCF crack, closer inspection reveals that there are also significant 

differences. Close to the surface there is almost no accumulated plastic flow in the rail 

except just above the crack mouth. Minor distortion of the microstructure to a maximum 

depth of about 130µm is present across the sample.  This is far below the ‘ductility 

exhaustion’ level typically seen in RCF crack initiation for which plastic flow 

accumulates in a heavily sheared layer throughout the rail (see e.g. Figure 3 of ref [6]).  

RCF cracks initiate when the ductility of this layer has been exhausted. The only 

location of greater plastic flow (to a depth of 450µm) is in the poorly supported material 

just above the crack.  However, even here the well supported material below the crack 

remains undeformed below 130µm. This localisation of plastic flow indicates that flow 

is a consequence of the crack rather than its cause: the material has become poorly 

restrained due to the crack and has then undergone plastic deformation. The ‘ductility 

exhaustion’ level of plastic flow at the surface needed for crack initiation is not present.  

 



  

 

At depths below 450µm the cracks follow an erratic path crossing grains of pearlite.  

They are not restricted to the softer inter-granular ferrite. There is also no evidence in 

the individual micrographs which make up the composite pictures in Figure 8 of 

corrosion of the crack faces.  It is therefore unlikely that water contributed to crack 

growth. This strongly suggests that fluid entrapment, which is a commonly accepted 

mechanism for propagation of surface-initiated RCF cracks was not active for these 

cracks.  There is also no evidence from the meandering crack faces of the smoothing 

that would have taken place if significant shear displacement with rubbing of the crack 

faces had been responsible for crack growth.  

 

It is improbable that these cracks appeared 'fully formed' or spontaneously.  However, 

the metallurgical evidence presented here does not support either of the commonly 

accepted mechanisms of crack growth.  

 

The two cracks that are apparent in the cross section (Figure 8(a), forward and reverse 

of the surface breaking location) correspond to the two surface depressions in the rail.  

The crack mouth coincides roughly with the ridge at about 420mm in Figure 6(a).    

 

2.3.3 Cross-sections to reveal white etching layer 

Examination of rail cross-sections at just below the running surface revealed patches of 



  

 

white etching layer (WEL) on both right (visibly cracked) and left (opposite) rails. 

Figure 9 illustrates the white etching layers found very close to the main defects on the 

right rail, and in the ‘opposite’ left rail at the same location. The WEL in most cases is 

well attached to the rail surface.  In some locations there were small voids below 

patches of WEL, although these were not observed close to the major defects. Figure 9 

also shows the absence of all but minor plastic flow at the rail surface.  

At location 430mm the WEL thickness was greater on the right rail (70µm depth) than 

on the left rail (18µm depth).  On both rails it was found in patches rather than as a 

continuous layer. From Figure 9(b) it is clear that the pro-eutectoid ferrite has persisted 

within the WEL, and this emphasizes how little plastic damage is present. This strongly 

supports formation of this layer by a thermal mechanism rather than by the plastic work 

mechanism proposed in ref [3] and by Ivanisenko et al [11].  

The WEL on the left rail at location 1450mm was different from that observed 

elsewhere in that it was much thicker.  The boundary between WEL and the underlying 

pearlite was also much less distinct. The patchy nature of the WEL is revealed in this 

sample, with a separation of about 2mm between the centres of WEL patches.  Although 

the bottom of the WEL layer is indistinct, the layer is nevertheless more than 125!m 

thick.  In track this sample was opposite the site of the undulating surface (Figure 7(b)).  

Such a thick layer of WEL strongly suggests that the rail steel was exposed to very high 



  

 

‘flash’ temperatures.  Formation of martensite, which gives the white etching 

appearance, requires that the rail steel reaches a temperature in excess of 727°C 

followed by rapid cooling [12]. Sufficiently rapid cooling occurs because of the high 

thermal inertia of the rail, with heat at the surface rapidly dissipated into the 

surrounding steel [13].   

2.3.4 Rail surface hardness  

Core hardness readings were taken at 23mm and 28mm depth on the defective and non-

defective rails respectively.  The difference was dictated by the size of the samples.  In 

both cases the measurements were made well below the contact surface and any 

accumulated plastic flow.  The core hardness (HV, 10kg, average of 5 readings) was 

232HV on the right (visibly defective) rail and 290HV on the non-defective left rail. 

Since both sets of readings were taken well away from any plastic flow produced by the 

passage of trains, the hardness readings demonstrate a difference in rail microstructure. 

The production year of the right rail was determined from its rolling mark as 1984, but 

unfortunately the left rail section did not have a visible rolling mark. (In view of the 

history of defects at this site, this rail may well have replaced one with defects.) 

Surface hardness (HV with a 1kg indenter) was measured along the running band on 

both left and right rails (Figure 10).  There is some periodicity in the hardness on both 

rails and at both sites with a similar wavelength of about 20-30mm.  At location 



  

 

430mm, where there is a single defect, the peaks in right rail hardness at 390mm, 

420mm and 440mm correspond roughly to the running-off end of that defect, the centre 

and the running-on end respectively (Figures 5,6). At location 1450mm the correlation 

of hardness and features of the multiple defects is less clear.  

The hardness variations are the result of patchy, quasi-periodic white etching layer 

(WEL) on the rail crown. One possible cause of the quasi-periodic WEL is that it was 

established by some periodic behaviour of the wheelset.  A second possible cause is 

short-wavelength rail corrugation associated with the track’s pinned-pinned resonance 

[10].  This is commonly at about 460Hz on London Underground as a result of the small 

rail section and wide sleeper spacing, so a 20-30mm wavelength would correspond to a 

speed of 33-48km/h.  However, in view of the slightly different wavelength of the 

variation in railhead profile (Figure 7), particularly on the undamaged rail, it would be 

desirable to examine other samples to resolve the interdependence of periodicity of 

WEL and corrugation, and to what extent (if any) their periodicity is associated with the 

stud.  In the work of Li et al e.g. [5] it appears that the periodicity of corrugation is 

closely related to the spacing of the two “lobes” of defect, although it is unclear whether 

this is a necessary condition for either the defect or corrugation to exist.  It is quite 

possible that WEL is established in a quasi-periodic manner at some locations whereas 

at others it is initially more continuous and then worn away (or detached) quasi-

periodically by traffic. 



  

 

2.4 Similarities and differences between squats and studs 

Similarities and differences between squats and studs are summarised in Table 1.  

Table 1  Similarities and differences between squats and studs 

Squats Studs  

Not found in tunnels: cracks propagate as 

a result of hydraulic entrapment 

Not found in tunnels: no evidence that 

hydraulic entrapment is required for crack 

propagation 

Apparent as two depressions in rail 

surface, resulting from leading and trailing 

sub-surface cracks 

Apparent as two depressions in rail 

surface, resulting from leading and trailing 

sub-surface cracks 

Found in straights and gentle curves Found in straights and on high and low 

rails in curves (not just gentle) 

Found in locations with high driving 

traction 

Found in locations with high driving and 

braking traction e.g. approach to signals 

Associated primarily with passenger and 

mixed traffic railways i.e. not heavy haul 

Associated with several types of railways: 

metros, heavy haul, passenger and mixed 



  

 

or freight lines.  traffic 

Not associated with a specific type of 

traction.  

Apparently more prevalent with AC 

traction.  

Plastic deformation (“ratchetting”) of 

surface layer from driving traction is the 

cause of crack initiation.  Unidirectional 

flow of the surface can be detected by 

“stroking the rail”, as is common with 

surface-initiated RCF. 

Studs exist where there is minimal sub-

surface plastic deformation i.e. 

“ratchetting” is not the cause of crack 

initiation.  Unidirectional surface flow 

may be present but is not an essential 

feature. 

WEL is found at sites with squats, but no 

evidence that WEL is a necessary 

condition for squats. 

WEL exists over the crack in all locations 

where studs have been found.  Some 

detachment of WEL was observed, but no 

evidence that detachment is required for a 

stud to initiate.  

Initiates at the gauge corner side of the 

running band. 

Initiates in (or below) the middle of the 

running band. 

40MGT of traffic required for “seed” of Stud can develop within 10MGT of laying 



  

 

squat to develop; about 100MGT required 

for squat to become a defect of concern. 

new rails. 

Crack initiation is consistently at about 

20° to the rail surface.  

Some cracks are at about 20° but there is 

no consistency.  It is unclear whether 

cracks initiate at the surface and propagate 

down or initiate sub-surface and propagate 

both into the rail and up to the rail surface.   

Cracks propagate along the heavily 

sheared inter-granular ferrite. 

Studs develop even where pearlite is not 

heavily sheared: cracks wander around and 

through pearlitic grains.  

Major crack develops in the direction of 

traffic, primarily as a result of hydraulic 

entrapment or shear mode crack growth. 

Major crack develops in the direction of 

traffic but there is no evidence of 

hydraulic entrapment.  Propagation 

mechanism is currently an open question. 

Squat develops under influence of 

hydraulic entrapment to the edge of the 

layer of compressive residual stress (about 

5mm depth), then usually “branches” 

Studs develop in rails in which there is no 

significant plastic work and accordingly 

no significant depth of compressive 

residual stress.  Significant crack is at 3-



  

 

down to form a transverse defect. 6mm depth in rail.  No evidence to date 

that studs form transverse defects.   

No relationship noted between defects on 

one rail and those on the opposite rail. 

Studs on one rail are sometimes associated 

with an irregularity on the opposite rail but 

may also appear on only one rail.   

Squats are a risk because they can form 

transverse defects, and also because the 

rail underneath the squat cannot be tested 

ultrasonically from the running surface 

except using specialist equipment. 

Studs are a risk primarily because the rail 

underneath the stud cannot be tested 

ultrasonically from the running surface 

except using specialist equipment.   

 

2.5 Hypothesis 

The following hypothesis is proposed to explain the features of studs that have been 

observed to date and the circumstantial evidence regarding their appearance.  This is 

substantially the same as that which was advanced in early work with Tubelines in 

2007. 

1. Studs are initiated by thermal damage of the rail. 



  

 

2. Thermal damage results from limited wheelslip, possibly associated with 

localised areas of poor adhesion.  Where studs appear on one rail, there is 

circumstantial evidence that this results from different friction conditions on the 

two rails.  These would cause one wheel to slip preferentially and the other to 

slip as a result of the two wheels being interconnected.  In such circumstances, 

thermal damage would be greater on the rail with greater friction, so the stud 

would initiate on this rail. 

3. Studs are associated with vehicles having AC traction or thyristor-controlled DC 

traction because wheelslip is better controlled than with conventional DC 

traction.  Severe wheelburns are a consequence of gross wheelslip, which may 

be more common on older forms of DC traction because of more basic wheelslip 

control.  More modern traction systems commonly have higher limiting values 

of “traction coefficient” i.e. the ratio of traction : normal load.  This is 

particularly the case with so-called “high traction” locomotives that are widely 

used on the heavy haul systems examined by Marich and his colleagues [3,4].  

4. Studs appear on open track and not in tunnels because wheel/rail friction is 

lower in open track and conditions exist for wheelslip to occur.  In tunnels, 

limiting friction is commonly (but not always) sufficiently high to sustain high 

traction ratios.   



  

 

5. The mechanism by which studs propagate is unclear, but may be a low cycle 

fatigue mechanism associated with contact stresses, of a similar form to that 

which causes shells to propagate initially parallel to the rail surface [14,15]. 

3 Conclusions 

A type of rail defect has been observed increasingly in the last 10-15 years that bears 

superficial similarities to the so-called “squat”, which is a surface-initiated rolling 

contact fatigue defect that was first identified in the 1970s.  The more recent defect 

which is christened here as a “stud”, appears to those who undertake ultrasonic testing 

of rails to be sufficiently similar to the classical squat for them to classify it as such.  

Although there is no evidence to date that studs break rails, whereas breaks commonly 

develop from squats, the fact that there is a sub-surface crack makes the rail 

“ultrasonically untestable” (at least by conventional means).  The defect must therefore 

be removed or an alternative treatment or inspection method developed.  Studs can be 

extremely common and concentrated within short sections of track: they appear to be 

particularly prolific on the approach to signals and on the incline up from underground 

sections of metro systems, where dozens may exist within a few hundred metres.  Studs 

also develop within about 10MGT, which is almost an order of magnitude more quickly 

than squats. 

Examinations have been made of studs in the field and a detailed metallurgical 



  

 

examination has been made of studs removed from a metro line.  From this work it is 

clear that studs are not a conventional RCF phenomenon, and indeed that they can 

develop (as in the sample considered here) in the absence of significant plastic 

deformation of the rail surface.  White-etching layer (WEL) is closely associated here 

and in some previous work with studs, and it is proposed here that the white-etching 

layer is a fundamental component of the mechanism of thermal damage as a result of 

controlled wheelslip that initiates a stud.  Different forms of damage, such as 

irregularity of the running surface and patches of WEL, have been noted on pairs of 

opposite (left and right) rails in the field and in the laboratory, which is consistent with 

the proposed initiation mechanism by controlled wheelslip. 

Studs appear to be associated with more modern traction control systems, in particular 

AC traction, in which wheelslip is better controlled to permit operation at higher 

traction ratios.  It may correspondingly be the case that wheelburns are less common 

with such traction packages. 

Work is in hand to test the proposed hypothesis more fully and, if it is found to be 

viable, to develop a way of obtaining the benefits of modern traction control systems at 

less cost in rail (and possibly also wheel) damage.  
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Figure captions 

1 “Studs” from three railways (arrows on the rails in (a) and (b) point in direction 

of traffic and towards gauge face; arrows superposed on photos point to the apex 

of the “V” shaped crack) 

2 Defect “map”, showing position of defects on the Central Line   

3 Cross section of defect, showing depth of a few millimetres below rail surface 

and length of about 30mm 

4 Observations and measurements from opposite rails at defect locations 

(classified as “squats” on left rail at 3.55m and on right rail at 7.4m) 

5 Overview of rails at site A 430mm defect 

6 Detail of defect on right rail 

7 Irregularities on defective rail, opposite rail and a reference section of rail. The 

reference data is vertically offset for clarity. (a) Defect location 430mm. (b) 

Defect location 1450mm. 

8 Detail of crack in defective rail, formed using multiple micrographs. (a) 

Location 430mm. (b) Location 1450mm.  



  

 

9 White etching layer on the rail running surface. (a) Location 430mm, left rail. 

(b) Location 430mm, right rail. (c) Location 1450mm, left rail. (d) Location 

1450mm, right rail. All sections are in the rail longitudinal direction, except (b) 

which is from a transverse section. 

10 Variation in surface hardness on defective rail and opposite rail (aligned) for 

locations (a) 430mm and (b) 1450mm. Average of two readings at each position. 
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