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General optimality of the Heisenberg limit for quantum metrology

Marcin Zwierz,1 Carlos A. Pérez-Delgado,1,2 and Pieter Kok1, ∗

1Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK
2Department of Physics and Astronomy, University of Sussex,Falmer, Brighton, East Sussex, BN1 9QH, UK

Quantum metrology promises improved sensitivity in parameter estimation over classical procedures. However,
there is an extensive debate over the question how the sensitivity scales with the resources (such as the average
photon number) and number of queries that are used in estimation procedures. Here, we reconcile the physical
definition of the relevant resources used in parameter estimation with the information-theoretical scaling in
terms of the query complexity of a quantum network. This leads to a completely general optimality proof of the
Heisenberg limit for quantum metrology. We give an example how our proof resolves paradoxes that suggest
sensitivities beyond the Heisenberg limit, and we show thatthe Heisenberg limit is an information-theoretic
interpretation of the Margolus-Levitin bound, rather thanHeisenberg’s uncertainty relation.

PACS numbers: 03.67.-a, 03.65.Ta, 42.50.Lc

Parameter estimation is a fundamental pillar of science and
technology, and improved measurement techniques for pa-
rameter estimation have often led to scientific breakthroughs
and technological advancement. Caves [1] showed that quan-
tum mechanical systems can in principle produce greater sen-
sitivity over classical methods, and many quantum parame-
ter estimation protocols have been proposed since [2]. The
field of quantum metrology started with the work of Helstrom
[3, 4], who derived the minimum value for the mean square
error in a parameter in terms of the density matrix of the
quantum system and a measurement procedure. This was a
generalisation of a known result in classical parameter esti-
mation, called the Cramér-Rao bound. Braunstein and Caves
[5] showed how this bound can be formulated for the most
general state preparation and measurement procedures. While
it is generally a hard problem to show that the Cramér-Rao
bound can be attained in a given setup, at least it gives an up-
per limit to the precision of quantum parameter estimation.

The quantum Cramér-Rao bound is typically formulated
in terms of the Fisher information, an abstract quantity that
measures the maximum information about a parameterϕ that
can be extracted from a given measurement procedure. One
of the central questions in quantum metrology is how the
Fisher information scales with the physical resources usedin
the measurement procedure. We usually consider two scal-
ing regimes: First, in thestandard quantum limit(SQL) [6] or
shot-noise limitthe Fisher information is constant, and the er-
ror scales with the inverse square root of the number of times
T we make a measurement. Second, in theHeisenberg limit
[7] the error is bounded by the inverse of the physical re-
sources. Typically, these are expressed in terms of the sizeN
of the probe system, e.g., (average) photon number. However,
it has been clearly demonstrated that this form of the limit
is not universally valid. For example, Beltrán and Luis [8]
showed that the use of classical optical nonlinearities canlead
to an error with average photon number scalingN−3/2. Boixo
et al. [9] devised a parameter estimation procedure that sees
the error scale withN−k with k∈ N, and Roy and Braunstein
[10] construct a procedure that achieves an error that scales
with 2−N. The central question is then: What is the real fun-

damental Heisenberg limit for quantum metrology? We could
redefine this limit accordingly to scale as 2−N, but in practice
this bound will never be tight.

In this Letter, we give a natural definition of the relevant
physical resources for quantum metrology based on the gen-
eral description of a parameter estimation procedure, and we
prove the fundamental bound on the mean squared error based
on this resource count. We will show that the resource count
is proportional to the size of the probe system only if the in-
teraction between the object and the probe is non-entangling
over the systems constituting the probe. First, we study the
query complexity of quantum metrology networks, which will
lead to a resource count given by the expectation value of
the generator of translations in the parameterϕ . Second, we
prove that the mean error inϕ is bounded by the inverse of
this resource count. We argue that this is the fundamental
Heisenberg limit for quantum metrology. Furthermore, we
show that it is a form of the Margolus-Levitin bound, as op-
posed to Heisenberg’s uncertainty relation. Finally, we illus-
trate how this general principle can resolve paradoxical situa-
tions in which the Heisenberg limit seems to be surpassed.

The most general parameter estimation procedure is shown
in Fig. 1a). Consider a probe system prepared in an ini-
tial quantum stateρ(0) that is evolved to a stateρ(ϕ) by
U(ϕ) = exp(−iϕH ). This is a unitary evolution when we in-
clude the relevant environment into our description, and itin-
cludes feed-forward procedures. The Hermitian operatorH

is the generator of translations inϕ , the parameter we wish
to estimate. The system is subjected to a generalized mea-
surementM, described by a Positive Operator Valued Mea-
sure (POVM) that consists of elementŝEx, wherex denotes
the measurement outcome. These can be discrete or con-
tinuous (or a mixture of both). The probability distribution
that describes the measurement data is given by the Born rule
p(x|ϕ) = Tr[Êxρ(ϕ)], and the maximum amount of informa-
tion aboutϕ that can be extracted from this measurement is
given by the Fisher information

F(ϕ) =
∫

dx
1

p(x|ϕ)

(

∂ p(x|ϕ)
∂ϕ

)2

. (1)
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FIG. 1: a) General parameter estimation procedure involving state
preparationP, evolutionU(ϕ) and generalized measurementM with
outcomesx, which produces a probability distributionp(x|ϕ). In
terms of quantum networks, the evolution can be written as a number
of queries of the parameterϕ. b) Example forN = 4 of the usual
situation described byHGLM , where each system performs a single
query, and the number of queries equals the number of systems(the
grey box representsO j (ϕ)); c) for HBFCG the number of queriesQ
does not always equal the number of systems: any two systems can
jointly perform a single query, and the number of queries then scales
quadratically with the number of systems; d) forHRB all possible
subsets of systems perform a single query. The number of queries
scales exponentially with the number of systems.

This leads to the quantum Cramér-Rao bound [3, 5]

δϕ ≥ 1
√

TF(ϕ)
, (2)

where (δϕ)2 is the mean square error in the parameterϕ ,
andT is the number of times the procedure is repeated. The
SQL is obtained when the Fisher information is a constant
with respect toT, and the Heisenberg limit is obtained in a
single-shot experiment (T = 1) when the Fisher information
scales quadratically with the resource count. TheSQL and the
Heisenberg limit therefore relate to two fundamentally differ-
ent quantities,T andF, respectively. We need to reconcile the
meaning of these two limits if we want to compare them in a
meaningful way.

To solve this problem, we can define an unambiguous re-
source count for parameter estimation by recognising that a
quantum parameter estimation protocol can be written as a
quantum network acting on a set of quantum systems, with
repeated “black-box” couplings of the network to the system
we wish to probe for the parameterϕ [11]. A black-box is
a function that can be univariate or multi-variate. When the

function is multi-variate, aqueryto the black-box must take
the form of multiple input parameters. Likewise, when the
operator that describes the fundamental “atomic” interaction
between the queried system and the probe is a two-body inter-
action on the probe, then a query can consist only of precisely
two input bodies. The scaling of the error inϕ is then deter-
mined by thequery complexityof the network. The number
of queriesQ is not always identical to the number of physical
systemsN in the network.

In Fig. 1b-d) we consider three examples. The quantum
network with univariate black-boxes in b) was analysed by
Giovannetti, Lloyd, and Maccone [11]. Suppose that each
grey box in Fig.1 is a unitary gateO j(ϕ) = exp(−iϕH j),
where j = 1, . . . ,N denotes the system, andH j is a positive
Hermitian operator. It is convenient to define the generatorof
the joint queries asHGLM = ∑ j H j , because allH j commute
with each other. The number of queriesQ is then equal to the
number of terms inHGLM , or Q = N. In Fig. 1c) the black-
box is bi-variate. This is a type of Hamiltonian considered by
Boixo, Flammia, Caves, and Geremia [9], and takes the form
HBFCG = ∑N

k=1 ∑k
j=1H j ⊗Hk. A physical query to a black-

box characterized byO jk = exp(−iϕH j ⊗Hk) must consist of
two systems, labeledj andk. Since each pair interaction is a
single query, the total number of queries is

(N
2

)

= 1
2N(N−1).

Finally, in Fig.1d) we depict the network corresponding to the
protocol by Roy and Braunstein [10]. It is easy to see that the
number of terms in the corresponding generatorHRB is given
by 2N−1, and the number of queries is thereforeQ= 2N−1.

A similar argument can be made to find the correct number
of queries for all types of networks. The key principle is that a
physical query to a quantum system consists of probe-systems
that togetherundergo an operation, which can potentially en-
tangle them. The entangling power of the black-box operation
over multiple input systems accounts for the super-linear scal-
ing of Q with N. Only whenH does not have any entangling
power across the input, we are guaranteed to haveQ= O(N).
This is in agreement with Refs. [9] and [10] where

√

F(ϕ)
scales super-linearly inN, but is always linear inQ, as de-
fined here. Since we have a systematic method for increasing
N (andQ) given the atomic interactionH j , this uniquely de-
fines an asymptotic query complexity of the network. Since
bothT andQ count the number of queries, this allows us to
meaningfully compare theSQL with the Heisenberg limit.

Given that in Eq. (2)
√

F(ϕ) . Q, we have to find a gen-
eral procedure that boundsQ, based on the physical descrip-
tion of the estimation protocol in Fig.1a). Previously, we
showed thatQ is the number of black-box terms inH , and
a straightforward choice for the resource count is therefore
|〈H 〉| ≤ O(Q). An important subtlety occurs whenH cor-
responds to a proper Hamiltonian. The origin of the energy
scale has no physical meaning, and the actual value of|〈H 〉|
can be changed arbitrarily. Hence, we must fix the scale such
that the ground state has zero energy (equivalently, we may
choose|〈H −hminI〉|, wherehmin is the smallest eigenvalue,
andI the identity operator). In most cases, this is an intuitive
choice. For example, it is natural to associate zero energy to
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the vacuum state, and add the corresponding amount of en-
ergy for each added photon. Technically, this corresponds to
the normal ordering of the Hamiltonian of the radiation field
in order to remove the infinite vacuum energy. Slightly less
intuitive is that the average energy ofN spins in a GHZ state
(| ↑〉⊗N + | ↓〉⊗N)/

√
2 is no longer taken to be zero, but rather

N/2 times the energy splitting between|↑〉 and|↓〉.
While the expectation value ofH is easy to calculate,

it is not the only way to obtain a bound ofO(Q) from
H . Other seemingly natural choices are the variance and
the semi-norm. For example, if we writeH ≡ ∑Q

j A j , the

variance is(∆H )2 = 〈(∑Q
j A j)

2〉 − 〈∑Q
j A j〉2 = ∑Q2

j 〈L j〉 −
∑Q

j ,k〈A j〉〈Ak〉 ≤ cQ2 for some positive numberc and positive
operatorL j . This gives∆H ≤ O(Q), where e.g., in Ref. [9]
Q = O(N2). Similarly, |〈H 〉| = ∑Q

j |〈A j〉| ≤ O(Q) since all
expectation values are positive and finite. In other words,
in terms of the scaling behaviour withQ, we can use either
the variance or the expectation value. However, there are im-
portant classes of quantum systems for which the variance of
the energy diverges, such as systems with a Breit-Wigner (or
Lorentzian) spectrum [12, 13]. Similarly, the semi-norm does
not exist for a large class of states, such as optical Gaussian
states. In these cases the resource count, and by implica-
tion the scaling of the error, would be ill-defined. By con-
trast,|〈H 〉| always exists and is always positive. Also, from
a physical perspective the higher-order moments do not de-
scribe “amounts” in the same way as the first moment does,
and refer instead to the shape of the distribution. This is a fur-
ther argument that|〈H 〉| is the natural choice for the resource
count. Sometimes, it is unclear how the query complexity is
defined, for example when the estimation procedure does not
involve repeated applications of the gatesO j(ϕ), or when an
indeterminate number of identical particles, such as photons,
are involved. Nevertheless, the generatorH is always well-
defined in any estimation procedure, and we can always use
its expectation value to define the relevant resource count.

The resource count in terms of|〈H 〉| is completely gen-
eral for all possible quantum networks. For interactionsU(ϕ)
where we include feed-forward and arbitrary unitary gates be-
tween queries, we can use an argument by Giovannettiet al.
[11] to show that|〈H 〉| = |〈(∂U(ϕ)/∂ϕ)U†(ϕ)〉| is unaf-
fected by the intermediate unitary gates, and the scaling is
therefore still determined byQ.

After establishing the appropriate resource count, we are fi-
nally in a position to prove the optimality of the Heisenberg
limit for quantum parameter estimation in its most general
form. The Fisher information can be related to a statistical
distanceson the probability simplex spanned byp(x|ϕ). Con-
sider two probability distributionsp(x|ϕ) andp(x|ϕ)+dp(x).
The infinitesimal statistical distance between these distribu-
tions is given byds2 =

∫

dx[dp(x|ϕ)]2/p(x|ϕ) [14, 15]. Di-
viding both sides by(dϕ)2 we obtain

(

ds
dϕ

)2

=
∫

dx
1

p(x|ϕ)

(

∂ p(x|ϕ)
∂ϕ

)2

= F(ϕ) , (3)

which relates the Fisher information to the rate of change of
the statistical distance (i.e., the speed of dynamical evolution).

When we count the resources that are used in a parame-
ter estimation procedure, we must make sure that we do not
leave anything out, and this can be guaranteed by including in
our description the environment that the estimation procedure
couples to. This reduces the quantum states to pure states,
which means that we can use Wootters’ distance [15] between
quantum states as the statistical distance:

s(ψ ,φ) = arccos(|〈ψ |φ〉|) , (4)

where|ψ〉 and |φ〉 are two pure states in the larger Hilbert
space, ands(ψ ,φ) is the angle between them. The distance
between the probe stateρ(0) and the evolved stateρ(ϕ) can
then be represented by the pure states|ψ(0)〉 and|ψ(ϕ)〉, re-
spectively, and the unitary evolution is given by

|ψ(ϕ)〉= exp(−iϕH ) |ψ(0)〉 . (5)

Here,we place no restrictiononH , other than fixing the en-
ergy scale if necessary. We can place an upper bound on the
derivative of Wootters’ distance by evaluating the differential
of s in Eq. (4) and using the Schrödinger equation implicit in
Eq. (5) [16]:

ds
dϕ

≤ |〈H 〉| . (6)

Combining this with Eq. (3) and Eq. (2) leads to the Cramér-
Rao bound

(δϕ)2 ≥ 1
T

(

ds
dϕ

)−2

≥ 1
T |〈H 〉|2 . (7)

When all resources are used in a single-shot (T = 1) experi-
ment, the error inϕ is bounded by

δϕ ≥ 1
|〈H 〉| . (8)

Since|〈H 〉| is the resource count in the parameter estimation
procedure, this is the Heisenberg limit. It is always positive
and finite, and in the limit where|〈H 〉| → 0 there are no re-
sources available to estimateϕ , andδϕ cannot be bounded. In
general, the bound is not tight. Indeed, only carefully chosen
entangled systems can achieve this bound [11]. This com-
pletes the proof of the optimality of the Heisenberg limit in
the most general case.

In addition to Eqs. (3) and (6), the Fisher information is also
bounded by the variance ofH according toF(ϕ)≤ 4(∆H )2

[17]. This leads to a (single-shot) quantum Cramér-Rao bound

δϕ ≥ 1
2∆H

. (9)

However, since∆H is not a resource count, such as the aver-
age photon number, but rather a variance (or uncertainty) this
is not the Heisenberg limit. In fact, it is Heisenberg’s uncer-
tainty relation for the parameterϕ and its conjugate operator
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H . Any parameter estimation procedure must respect both
bounds, and the Heisenberg limit in Eq. (8) may not be at-
tained for a particular input state because the bound in Eq. (9)
prevents it from doing so.

The term “Heisenberg limit” was introduced by Holland
and Burnett [7], who referred to the number-phase uncertainty
relation in Heitler [18]. However, as our optimality proof and
the subsequent discussion indicate, the Heisenberg limit isnot
an uncertainty relation, since it relates the uncertainty of the
parameter to thefirst moment of the conjugate observableH ,
rather than the second. It turns out instead that the Heisenberg
limit is intimately connected to the Margolus-Levitin bound
on the time it takes for a quantum system to evolve to an or-
thogonal state [16, 19, 20]. To see this, we can formally solve
Eq. (6) by separation of variables, yielding

∫ ϕ

0
dϕ ′ ≥ 1

|〈H 〉|

∫ π/2

0
ds ⇒ ϕ ≥ π

2
1

|〈H 〉| . (10)

We can therefore identify the Heisenberg limit with the
Margolus-Levitin bound on the speed of dynamical evolution
of quantum systems whenH is the Hamiltonian. The (gen-
eralized) uncertainty relation, on the other hand, can be iden-
tified with the Mandelstam-Tamm bound [16]. Both limits
are completely general (assuming the existence of∆H ) and
complement each other.

Finally, we demonstrate that our proof applies to continu-
ous variable systems as well as discrete systems, by consid-
ering the procedure of Beltrán and Luis [8]. The construc-
tion is as follows: The evolutionO(ϕ) is generated by an
optical nonlinearity proportional to the square of the photon
number operator ˆn2 acting on a single-mode coherent state
|ψ(0)〉 = |α〉. The evolved state before detection is given by
|ψ(ϕ)〉 = exp(−iϕ n̂2)|α〉, and the mean square error inϕ is
calculated asδϕ ≃ 1

4〈n̂〉−3/2 = 1
4|α|−3, to leading order in the

average photon number〈n̂〉. Since here the average energy is
directly proportional to the average photon number, this pro-
cedure seems to surpass the Heisenberg limit. To resolve this
paradox, we note that the generator of translations inϕ is not
the photon number operator ˆn, but rather the higher-order non-
linearity H = n̂2. The appropriate resource count is there-
fore |〈H 〉|= 〈n̂2〉, instead of the average photon number〈n̂〉.
It is easily verified that to leading orderδϕ is theoretically
bounded by 1/〈n̂2〉= 1/|α|4. Hence the parameter estimation
procedure not only doesnotbeat the Heisenberg limit, it does
not attain it.

Formally, we can attain the Heisenberg limit in this setup
with the following modification of the input state and the
measurement. Consider the single-mode input state|ψ0〉 =
(|0〉+ |N〉)/

√
2, where|0〉 denotes no photons, and|N〉 de-

notes N photons. The state of the probe before detec-
tion is then given by|ψ(ϕ)〉 = exp(−iϕ n̂2)|ψ(0)〉 = (|0〉+
e−iϕN2|N〉)/

√
2. We define the measurement observableX =

|0〉〈N|+ |N〉〈0|. Hence, for the final state|ψ(ϕ)〉 we calculate
〈X〉= 〈ψϕ |X|ψϕ〉= cos(N2ϕ) and∆X = sin(N2ϕ). Using the
standard expression for the mean squared error, we find that

δϕ =
∆X

|d〈X〉/dϕ | =
1

N2 . (11)

Since|〈H 〉| = 〈n̂2〉 = 1
2N2, this attains the Heisenberg limit.

This is a formal demonstration that the Heisenberg limit can
be attained according to quantum mechanics, even though we
currently do not know how to implement it.

In conclusion, we demonstrated that the Heisenberg limit
is optimal for all parameter estimation procedures in quantum
metrology, but it requires careful consideration as to which re-
source is appropriate for expressing the scaling behaviourof
the mean square error. The correct resource to take into ac-
count is (the expectation value of) the generator of the trans-
lations in the parameter. In the case of most optical phase
estimation protocols this reduces to the average photon num-
ber. Contrary to the origin of the term “Heisenberg limit”, it
is not a generalised uncertainty relation, but rather an expres-
sion of the Margolus-Levitin bound on the speed of dynamical
evolution for quantum states.

Acknowledgements.We thank Jonathan Dowling for es-
tablishing the etymology of the term “Heisenberg limit”, and
Sam Braunstein for valuable comments on the manuscript.
This research was funded by the White Rose Foundation.

∗ Electronic address:p.kok@sheffield.ac.uk
[1] C. M. Caves, Phys. Rev. D23, 1693 (1981).
[2] P. Kok and B. W. Lovett,Introduction to optical quantum infor-

mation processing(Cambridge University Press, 2010).
[3] C. W. Helstrom, Phys. Letters25A, 101 (1967).
[4] C. W. Helstrom, Quantum detection and estimation theory

(Academic Press, 1976).
[5] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett.72, 3439

(1994).
[6] C. W. Gardiner and P. Zoller,Quantum noise, p. 322 (Springer-

Verlag, 2004), 3rd ed.
[7] M. J. Holland and K. Burnett, Phys. Rev. Lett.71, 1355 (1993).
[8] J. Beltrán and A. Luis, Phys. Rev. A72, 045801 (2005).
[9] S. Boixo, S. T. Flammia, C. M. Caves, and J. M. Geremia, Phys.

Rev. Lett.98, 090401 (2007).
[10] S. Roy and S. L. Braunstein, Phys. Rev. Lett.100, 220501

(2008).
[11] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 96,

10401 (2006).
[12] G. Breit and E. Wigner, Phys. Rev.49, 519 (1936).
[13] J. Uffink, Am. J. Phys.61, 935 (1993).
[14] A. Bhattacharyya, Bulletin of the Calcutta Mathematical Soci-

ety 35, 99 (1943).
[15] W. K. Wootters, Phys. Rev. D23, 357 (1981).
[16] P. J. Jones and P. Kok, Phys. Rev. A82, 022107 (2010).
[17] S. L. Braunstein, C. M. Caves, and G. J. Milburn, Ann. Phys.

247, 135 (1996).
[18] W. Heitler,The Quantum Theory of Radiation, p. 65 (Clarendon

Press, Oxford, 1954), 3rd ed.
[19] N. Margolus and L. B. Levitin, Physica D120, 188 (1998).
[20] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. A67,

052109 (2003).

mailto:p.kok@sheffield.ac.uk

