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Abstract

A study was conducted to test the effect of two different forms of real-time visual

feedback on expressive percussion performance. Conservatory percussion students

performed imitations of recorded teacher performances while receiving either high-level

feedback on the expressive style of their performances, low-level feedback on the timing

and dynamics of the performed notes, or no feedback. The high-level feedback was based

on a Bayesian analysis of the performances, while the low-level feedback was based on

the raw participant timing and dynamics data. Results indicated that neither form of

feedback led to significantly smaller timing and dynamics errors. However, high-level

feedback did lead to a higher proficiency in imitating the expressive style of the target

performances, as indicated by a probabilistic measure of expressive style. We conclude

that, while potentially disruptive to timing processes involved in music performance due

to extraneous cognitive load, high-level visual feedback can improve participant

imitations of expressive performance features.
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Learning expressive percussion performance under different visual

feedback conditions

Introduction

The impact of feedback on the performance of various tasks has been widely

studied in the perceptual and motor sciences since the first half of the twentieth century

(see Annett, 1969, for a review of pre-1970s literature). Also termed knowledge of results

(KR) or extrinsic feedback, it appears both in research settings as well as in everyday life,

and can take a wide variety of forms, including right/wrong indicators, test scores, and

verbal commentary. More recent studies have demonstrated effects of various forms of

feedback on the learning of complex motor tasks, such as athletic, linguistic, and musical

performance (Escartı́ & Guzmán, 1999; Pennington, 1999; Rossiter et al., 1996). With

respect to the latter, a growing body of research has investigated the effects of real-time

visual feedback (RTVFB) on pitch accuracy and voice quality in singing performance (see

Hoppe et al., 2006, for a review).

RTVFB on music performance was first proposed and investigated by Welch and

colleagues (Welch, 1985; Welch et al., 1989) in the context of singing with accurate pitch.

It was noted that traditional verbal feedback on performance as a form of KR was subject

to a time delay, thus reducing the effectiveness of the feedback (Evans, 1960; Annett,

1969). By providing a real-time visualization of pitch and/or other vocalization

parameters, the time delay for the KR is removed. Findings in the above studies by Welch

and colleagues, along with more recently conducted research (Thorpe et al., 1999; Welch

et al., 2004) have generally reported beneficial effects of RTVFB on performance accuracy.

Apart from singing, a study by Sadakata et al. (2008) has looked at the effects of

RTVFB on the expressive performance of simple rhythms. Musical expression refers to
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the micro-deviations in the timing and dynamics of musical notes from what is specified

in a score (Palmer, 1997). The ability to perform music expressively is one of the skills

which is recognized in accomplished performers (McPherson & Schubert, 2004), but

which is sometimes neglected in music education practice (Tait, 1992; Person, 1993). This

may be due to the difficulties inherent in trying to verbally describe specific aspects of

musical performance (Hoffren, 1964; Welch, 1985), and to preconceptions about how

expressive performance skills are acquired (Juslin et al., 2004). However, despite the

difficulties involved in learning to perform expressively, expressive music performance

constitutes a prime example of a highly-refined motoric skill.

In the above study by Sadakata et al. (2008), amateur musicians were trained to

imitate simple four-note patterns containing various expressive deviations from the

musical scores that were provided. Half received RTVFB in the form of abstract shapes

that visualized the timing of each note as curvature, and the dynamics as size. The other

half received no RTVFB and served as a control. The participants also completed pre- and

post-tests without any RTVFB before and after the training. Results indicated that the

RTVFB was helpful for improving the accuracy of dynamic aspects of the performance,

but was detrimental for the timing dimension, as indicated by smaller RMS timing error

in the control group during both the training and post-test.

These results can be interpreted using Cognitive Load Theory (CLT) (Sweller, 1988;

Chandler & Sweller, 1991; Sweller, 1994; for a review, see Paas et al., 2003), which

provides a framework for designing effective instructional materials based on the

constraints of working memory. CLT identifies three types of cognitive load: intrinsic,

extraneous, and germane. Intrinsic cognitive load is caused by the inherent difficulty of a

given task, while extraneous cognitive load derives from the manner in which

information is presented. Germane cognitive load refers to the working memory

resources that are involved in learning new materials and skills in general, independent
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of a given task.

CLT also emphasizes the limitations of working memory and attention during

learning. In this regard, CLT is closely linked to research on working memory capacity

and performance on tasks involving divided attention. Performance on a wide range of

tasks suffers when working memory capacity has been reached, resulting from the

retrieval of response tendencies that conflict with the current task (Engle, 2002).

Similarly, performance in perceptual and memory retrieval tasks suffers as a result of

divided attention when compared to conditions in which attention is directed (Craik et

al., 1996; Corbetta et al., 1991). In this regard, the application of CLT to instructional

materials serves to reduce extraneous load on working memory and executive attention

processes during learning.

With respect to the RTVFB in the Sadakata et al. study, it may be the case that the

visual complexity of the chosen representation led to a high extraneous cognitive load,

due to the number of elements and parameters it contained. This is referred to in the CLT

literature as high element interactivity (Sweller, 1994), and indicates that a given display

or representation imposes a high load on working memory due to the processing of

individual elements and their relationships to one another. Alternatively, the

representation of timing may have been difficult to interpret, which also creates

extraneous cognitive load. This in turn may have led the participants to focus more on

dynamics than on timing.

In a study of singing, Wilson et al. (2008) also considered CLT with respect to

different RTVFB representations, and reported that performance decreased relative to

baseline during training with RTVFB, and then rebounded to a significantly higher level

than baseline during the post-training assessment. The authors concluded that the

decrease during training was due to a higher cognitive load on participants created by the

RTVFB display.
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Wilson et al. also reported that different visual representations were more or less

effective depending on the musical skill level of the participant. While beginning

students performed more accurately using a more detailed display representing pitch

frequency contour, advanced students achieved better performance when using a simple

display which represented categorical information about pitch (i.e. a keyboard display

showing performed notes such as C, F#, etc.).

Research on music perception has shown that some musical features, such as

rhythm, are also perceived categorically (Clark, 1987; Desain & Honing, 2003). Moreover,

important work on categorical perception by Rosch has led her to propose that category

systems ”provide maximum information with the least cognitive effort” (2002). Thus,

categorical feedback may provide the most information with the least cognitive load.

However, while providing categorical feedback on pitch can be done using fundamental

voice frequency, the specific sets of parameters that distinguish different categories of

expressive performance, such as a ”funky”, ”romantic”, or ”jazzy” performance, are not

immediately given.

One approach in machine learning and perception that has been successful in

complex domains is the use of probabilistic models based on Bayes’ theorem. Specifically,

Bayesian methods have been used successfully in tasks such as computer vision (Knill et

al., 1996), handwriting recognition (Cheung et al., 1998) and music transcription (Cemgil

et al., 2000), as well as classification of rhythm and key in music (Temperley, 2007). These

methods are based on the identification of feature sets that distinguish between the

categories of interest in a given domain, and that can then be used as evidence in an

application of Bayes’ theorem. By identifying appropriate timing and dynamics features,

this type approach can also be used to distinguish different categories of expressive

musical performance, such as the various styles used in contemporary drumming (e.g.

”laid-back”, ”rushed” or ”on-the-beat”), or the performance characteristics of different
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musicians.

The present study aims to extend the above research findings on RTVFB with

simple sung melodies and tapped rhythms to the domain of expressive percussion

performance, and to test the effect of cognitive load on performance using two different

RTVFB representations. An experiment was conducted in which advanced drum students

imitated target performances by an instructor. Imitation paradigms have been used in

previous studies of expressive musical performance (Clark, 1993; Repp, 2000), including

those making use of RTVFB (Sadakata et al., 2008), as well as in studies on speech

production (Kent, 1974; Repp & Williams, 1985; 1987). The imitations were performed in

three different RTVFB conditions: low-level, high-level, and no feedback (control). The

two RTVFB representations differ in the type of information they display, and in the

number of visual elements used to provide feedback.

The first representation (”low-level”) displays the timing and dynamics error of

each performed note, and is similar to the representation used by Sadakata et al. (2008) in

that many visual elements are displayed on screen, giving it a high extraneous cognitive

load. The second representation (”high-level”) displays categorical feedback about the

expressive style and skill level of the performance, and uses only two visual elements to

give feedback, thus reducing the extraneous cognitive load. It is based on the real-time

output of a set of Bayesian classifiers of the expressive style and skill level of the imitation

performances developed using the target performance materials from the experiment.

While the primary focus of the task was on imitation of expressive performances, the

classification of skill level ensured that the high-level feedback provided useful

information on features of the performance not related to expressive style. The feature

analysis and Bayesian formulation used in the high-level feedback are described in the

Appendix.

It was expected that participant imitation performances would replicate specific
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timing and dynamics features used by the Bayesian classifiers to distinguish expressive

style and skill level more accurately in the high-level condition than in the low-level or

control conditions. Additionally, a lower overall root-mean-square (RMS) error for both

timing and dynamics was expected in the high-level condition than in the low-level

condition, due to a reduced cognitive load. Finally, an increased rate of improvement

across trials was expected in the high-level feedback condition relative to the other two

conditions.

Methods

Participants. The participants in the study were 18 conservatory level percussion

students, twelve from the Royal Music Conservatory in The Hague, Netherlands, and six

from the Music Conservatory of Utrecht. They had an average age of 22.4, and an average

of 11.8 years of experience playing drums. The average amount of practicing time per

week was 13.2 hours, while the average amount of total playing time was 15.6 hours.

Materials. A percussion instructor from the Amsterdam Conservatory assisted in

selecting two standard beat patterns for the experiment: 8th-note and 16th-note. In

addition, he chose three common expressive styles: on-the-beat, laid-back, and rushed.

Notation of the materials was provided by the instructor, and is shown in Fig. 1. While

expressive timing isn’t explicitly annotated in the musical scores, a lengthening of

intervals containing accented notes consistent with previous observations (Semjen &

Garcia-Colera, 1986; Dahl, 2000) was found (see Fig. A2). Using the experimental setup

described below, the instructor recorded each pattern (repeated 36 times) in each of the

three styles, making for a total of six different performances. One novice percussionist

(the first author) with less than 3 months experience playing drums (8 years of formal

music instruction) also recorded 36 repetitions of both the 8th-note and 16th-note

on-the-beat patterns. The repetitions of the instructor and the novice performances were
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then analyzed using the methods described in the Appendix, and a set of features was

selected for use in generating the high-level feedback. From each of the instructor

performances, one repetition was selected, looped for four bars, and presented as a target

during the experimental trials. More details on the materials, including mean timing and

dynamics profiles for the instructor performances, can be found in the Appendix.

Procedure. Before the test began, the participant was provided a set of instructions

describing the experimental task, the visual feedback, and the target materials, and was

allowed to ask the experimenter questions throughout the instruction period. The

participant also saw examples of visual feedback, heard the target materials, and

practiced the task using a beat pattern (simple quarter-note) not included in the actual

experiment. Once this was completed, the experiment began.

During each trial, the participants were first asked to listen carefully to the target

performance. They were then asked to imitate the target performance as precisely as

possible. A within-participant design was used, and the experiment was divided into

three blocks, with short breaks between them. In each block there was a different visual

feedback condition: low-level, high-level, or control (no RTVFB). Only one of the three

expressive styles was performed in each block, with the 8th note pattern always being

played first, and the 16th note pattern coming second. This means that, for individual

participants, each expressive style was paired with one of the visual feedback conditions

in a randomized, counterbalanced design requiring groups of nine participants.

In each trial, four bars of the current target performance were played over

loudspeakers, and, in the RTVFB conditions, were used to generate a visualization of the

target performance. There was then a pause for the participant, followed by a one-bar

metronome count-in, after which the imitation performance began and lasted for eight

bars. With the exception of the control condition, it was during this period that RTVFB

was presented. Throughout the target presentation and during the imitation
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performance, a metronome click was heard over the speakers at a level determined to be

comfortable by each participant. Participants were instructed to pEach of the two beat

patterns was repeated for five trials, making a total of ten trials in each section, and 30

trials in the whole test. Between trials there was also a pause.

Technical System. An Apple PowerMac G5 computer connected to a five-piece

Mapex drum kit using piezzo contact microphones placed on the drum heads of the bass

and snare drums, and on the underside of the hi-hat cymbal was used to collect MIDI data

via an Alesis D4 drum machine interface. Two Brüel and Kjaer microphones recorded

performance audio at 44.1kHz 16-bit quality. The application Logic Express was used for

presentation of target materials, and for the recording of the student performances. MIDI

data were routed from MAX/MSP to Macromedia Flash 8, which then generated the

different visual feedback displays. Target performances and the metronome signal were

presented using a pair of loudspeakers placed in front of the participants. A latency check

using a Tektronix THS710A oscilloscope along with a contact microphone and a light

sensitive diode revealed an average latency of 82 ms (St. Dev = 15.8 ms) over 20

measurements between performed notes and on-screen visualization.

Visual Feedback: High-Level. The high-level feedback displayed categorical

information about the expressive style and skill level of the imitation performance. This

was done using the continuous probabilities generated by a set of Bayesian classifiers

formulated using the target materials as training data. Eight performance features

distinguishing between the three expressive style categories, and eight features that

distinguished the instructor and novice performances were selected. Bayes’ rule in

combination with these feature sets was then used in real-time with the performance data

from the most recent half-bar repetition of the target to generate a set of four probabilities

representing the three expressive style categories and the instructor/novice distinction.
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The details of the feature selection process and the formulation of the Bayesian classifiers

can be found in the Appendix.

Simple, four-sided polygons were used to represent each of the three expressive

style categories (see Fig. 2a-c.) The three shapes were chosen because they were visually

distinct from one another, while still being four-sided. They were defined by eight points:

one in each corner, and one at the midpoint of each segment. This allowed for simple

morphing between the three shapes. Before each imitation, the shape representing the

style of the target was displayed while the target performance was presented. Then,

during the imitations, the corresponding shape was presented in the background as a

grey target which the participants were instructed to match. During the first half-bar,

while the data needed to calculate the features was being collected, the imitation shape

was not presented. After the first half-bar, the imitation shape faded from completely

transparent to 60 percent opacity over the course of the next half-bar.

During the real-time calculation of the four probabilities (values between 0 and 1),

lower- and upper-bounds of 0.15 and 0.7 were chosen. Probabilities between these

bounds were re-scaled to a value between 0 and 1, while those outside were set to either 0

or 1. Probabilities were continuously updated with each incoming note. These final

values were used as weights on the eight vertices of the corresponding shape definitions

for each category, and were combined into a foreground shape representing the imitation.

This shape would morph between successive intervals as the probabilities were updated.

Higher probabilities for a given style led to a shape which more resembled that of the

corresponding style. In addition, the shape grew in size as the novice probability shrank,

and vice versa. An example sequence of probabilities and the corresponding shapes can

be seen in Fig. 2d. In the sequence, the performance starts off in the on-the-beat style,

and has a relatively high-novice probability, which reduces the size of the figure. As the

performance progresses, the novice probability decreases, causing the shape to grow in
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size, while the performance moves to the rushed style, causing the form of the shape to

become more like the target.

Visual Feedback: Low-Level. Examples of the low-level feedback can be seen in Fig. 3.

Panels a-f show the target patterns, while panel g is an example of the display during

imitation. It drew on standard musical notation for percussion, with notes on the bass

drum, snare drum, and hi-hat cymbal plotted from low to high, respectively, and with

time proceeding from left to right, with grid lines placed at metrical time points

corresponding with the quarter note level. In these respects, it was considered to be easy

for the participants to make use of. However, due to the number of elements displayed on

screen at any given point (more than 20), it was expected to have a high element

interactivity, thus giving it a high extraneous cognitive load.

Performed notes were displayed as three different shapes representing the voice of

the note (square=bass drum, circle=snare drum, triangle=hi-hat cymbal). The size of the

shapes varied with the dynamics of the performed note; the louder the note was played,

the larger the shape would appear. The association of visual size with loudness has been

shown in research in audio-visual perception to be present in a large majority of

participants (Walker, 1987), and has worked effectively as an audio-visual mapping in a

previous study using RTVFB for musicians (Sadakata et al., 2008). The display showed

the most recently performed 2 bars, and scrolled to the left continuously; new notes

always appeared at 80 percent of the screen width on the right side.

During the presentation of the target performance for a given trial, the instructor’s

performance was displayed in real-time. Then, during the imitation phase of a trial, the

target performance would appear in a grey color in the background, while the imitation

performance appeared in the foreground as a semi-transparent colored overlay. Extra

notes were also displayed, while missed notes were absent from the imitation overlay.

The more accurate the student was with the imitation, the more overlap there would be
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between the student’s shapes and the instructor’s shapes.

Analysis. MIDI recordings of the participant performances were converted to text

files and analyzed using the JMP 5.1 statistics package. Half bars containing extra or

missing notes were excluded from the analysis. A total of 8122 half bars out of 8640

recorded half bars (94%) were included in the analysis, with the rate being above 92% for

all three feedback conditions, 91% for the two beat patterns, and 92% for the three

different styles, indicating that there was no significant imbalance in the resulting data set.

Four performance measures were then averaged on a per trial basis for each

participant. The average RMS timing error (in terms of seconds) and RMS dynamics error

(a value between zero and one derived from the standard MIDI 0-127 range) for each

half-bar repetition in the imitation performances were calculated using the values of the

corresponding notes in the selected target performances. In addition, for a given

imitation, one of the instructor performances served as a target performance, with the

probability (between zero and one) generated by the corresponding classifier (the ”target

probability”) serving as a measure of how well the expressive features of the instructor

performance had been imitated, with higher values indicating greater success in

imitation. The ”novice probability” used in the generation of the high-level feedback was

also taken as a performance measure, representing a set of performance features that

distinguished the instructor performances from that of the novice percussionist. Here, a

lower probability indicates a performance more like that of the instructor.

The RMS error measures and the probabilistic measures capture two distinct

tendencies in the data. The RMS error measures reflect the absolute difference between a

given imitation and the target. They are directly related to the low-level feedback, which

displayed the raw performance data of the target and the imitation overlaid on one

another, and can be considered to as a measure of the precision of the imitation. The

probabilistic measures make use of second-order features capturing the timing and
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dynamics profiles of the imitation. These features are based predominantly on

proportional relationships of subsequent notes to one another. As such, a given feature in

an imitation could be identical to that in the target performance even though the

constituent notes were themselves slightly shifted in timing or dynamics.

A mixed effects model with the participant modeled as a random variable and trial

taken as a continuous variable was used to calculate an ANOVA for each of the four

performance measures, in order to see how the performance of the participants was

influenced by the visual-feedback condition, beat pattern, expressive style, and trial

number. Interactions between these variables were also checked for their influence on the

performance measures.

Results

The main effects are plotted in Fig. 4, while ANOVA results are presented in

Table 1, including test parameters and significance levels. Interaction effects for all four

measures are presented at the end, following the main effects for each measure.

Target Probability. In the analysis of the target probability measure, significant main

effects of RTVFB condition, expressive style, beat pattern, and trial were found. For the

three visual feedback conditions, the average target probability was highest in the

high-level visual feedback condition (Mean=0.37, St. Err.=0.01), followed by the

no-feeback control condition (Mean=0.35, St. Err.=0.009), then the low-level feedback

condition (Mean=0.34, St. Err.= 0.009). A planned pair-wise comparison (Tukey-HSD)

revealed that the difference between the high-level feedback and the other two conditions

was significant, but that the difference between low-level feedback and the no-feedback

condition was not.

With respect to trial, the average target probability increased from trial 1

(Mean=0.33 St. Err.= 0.013) to trial 5 (Mean = 0.37 St. Err. =0.012), indicating that
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performances in general improved across trials. A regression line fit to the trial data had a

slope of .008, confirming the positive trend across trials.

With regards to the three expressive styles and beat pattern of the performances,

performance was highest for the on-the beat performances (Mean= 0.41, St. Err.=0.007),

followed by the rushed (Mean=0.34, St. Err.= 0.01), then the laid-back performances

(Mean=0.30, St. Err.=0.01). A Tukey-HSD pair-wise comparison revealed that the

differences between the three styles were all significant. Target probabilities were

significantly higher for the 8th note pattern (Mean= 0.38, St. Err=0.007) than the 16th note

pattern (Mean=0.32, St. Err.=0.008).

Novice Probability. Analysis of the novice probability measure revealed a significant

main effect of expressive style. With the novice probability, a lower number indicates a

more skilled performance. Novice probability was lowest for the on-the-beat performances

(Mean=0.33, St. Err.=0.006), followed by those performed with the rushed (Mean=0.34, St.

Err.= 0.006), and the laid-back (Mean=0.35, St. Err.=0.006) styles, similarly to the pattern

observed for the target probability. No significant effects were found with pattern, visual

feedback condition, or trial.

RMS Timing Error. Significant effects of visual feedback condition, expressive style,

beat pattern, and trial were found in the analysis of the average RMS timing error of the

participants’ imitation performances. Performances had the lowest average timing error

in the control condition (Mean=29.7 ms, St. Err.=0.9 ms), followed by the low-level

feedback condition (Mean=31.1 ms, St. Err.=0.9 ms), and lastly by the high-level feedback

condition (Mean=34.1 ms, St. Err.=0.9 ms), with the differences between conditions all

being significant (planned pair-wise comparison, Tukey-HSD).

With regards to expressive style, timing error was lowest in the rushed

performances (Mean=28.5 ms, St. Err.=1.1ms), followed by the laid-back (Mean=32.6 ms,
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St. Err.=1.1 ms) and the on-the-beat (Mean=33.6 ms, St. Err=1.1 ms) performances, with the

difference between the rushed and the other two styles being significant (Tukey-HSD).

Error was significantly lower in 8th note performances (Mean=26.2 ms, St. Err.=1 ms )

than the 16th note performances (Mean=36.9, St. Err.=1 ms). A regression line fit to the

trial data had a slope of -1.1 ms, indicating that the timing error decreased across trials.

RMS Dynamics Error. An ANOVA on the average RMS dynamics error showed

significant effects of expressive style and beat pattern. The error was highest for the

laid-back performances (Mean=0.191, St. Err.=0.003) followed by the on-the-beat

(Mean=0.187, St. Err.=0.003) and the rushed performances (Mean=0.17, St. Err.=0.003).

The rushed performance had a significantly lower dynamics error than the other two

style. For beat pattern, the dynamics error was significantly lower for the 16th-note

pattern (Mean=0.148, St. Err.=0.002) than for the 8th-note pattern (Mean=0.217,

St.Err.=0.002).

However, the effects of visual feedback and trial did not reach significance,

indicating that no one visual feedback condition provided any greater benefits with

regards to imitating the overall dynamic levels of the instructor performance.

Additionally, the accuracy of the participant imitations with respect to overall dynamics

did not improve across trials.

Interaction Effects. A significant interaction of style and pattern was found for all

four measures. While style and pattern were both under experimental control, they were

not specifically related to the hypotheses tested by the experiment. Additionally, no

systematic effects within or between measures were observed in the subsequent planned

pairwise comparisions, limiting any interpretation related to the difficulty of performing

a given pattern or style.

For the RMS timing error, and additional interaction of trial and pattern was found.
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A significant decrease in timing error between the first trial (Mean=42.6ms, St. Err.=0.001)

and last three trials (Mean Range=34.6-35.3ms, St. Err.=0.001) of the 16th-note

performances was revealed by a planned-pairwise comparison (Tukey-HSD). The timing

error on all 8th-note trials was significantly lower than that of the 16th-note trials, but no

significant effect existed within the 8th-note trials.

A three-way interaction of condition, style and pattern was found for both the

novice probability and the RMS timing error. However, no systematic effects with respect

to condition were observed within the interaction for either measure.

Discussion

The results of the present study are generally congruent with the previous research

findings regarding musical performance under different RTVFB conditions. In line with

the findings of Sadakata et al. (2008), but contrary to our hypothesis, RMS timing error

was significantly higher in the two feedback conditions than in the control condition. This

is also in line with the findings reported by Wilson et al. (2008) that participant

performance was worse during training with VFB.

While we hypothesized that reducing the number of elements in the high-level VFB

representation would reduce extraneous cognitive load, it may be that the initial use of a

VFB display during music performance diverts attentional resources away from the

primary task. In essence, a dual-task (perform and monitor VFB) is being compared with

a single task (perform). The dual task can be interpreted as having a higher intrinsic

cognitive load than the single task, leading to divided attention and a greater timing

error. This interpretation is consistent with previous findings in the RTVFB literature. The

high skill-level of the participants may also have led to relatively low timing error in the

control condition.

However, the finding that the target probability measure increased during the
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high-level feedback condition resembles the findings of Rossiter et al. (1996). In their

study, visual feedback on various measured parameters of singing (i.e. F0 amplitude,

laryngeal closed/open quotient) was presented to participants. It was shown that,

depending on which particular parameter of performance was used to generate visual

feedback, that the visualized parameter alone showed significant increases, while

non-visualized parameters showed little or no changes. In the present study, high-level

feedback was based primarily on the target probability measure. It is worth noting that,

while the participants were not explicitly told which features of the performance were

used to generate the visual feedback, they nonetheless performed with a higher target

probability when provided with high-level visual feedback.

The disparity between the results for the timing error and the target probability

may lie in how these measures were calculated. Whereas the RMS error measures are

fixed to the absolute timing and dynamics parameters of the target materials, the target

probability was based on a set of features capturing the profiles of the target materials

using proportional measures. As such, many combinations of values in a succession of

notes could result in the same relative proportions. A performance slightly shifted in

absolute dynamics or timing could still capture the expressive aspects of the performance,

thus resulting in a higher target probability and a higher RMS timing or dynamics error.

One might argue that it is these higher-order features which better capture the

”expression” of the performances than the RMS errors.

We evaluated this possibility by assessing how the participant performances relate

to qualitative judgements of the imitations. Following the experiment, we presented a

subset of 54 of the 8th note participant performance recordings (18 from each style) to 3

professional percussion instructors. The performances were selected such that the low to

high range for each of the 4 performance measures was evenly represented within the set.

For each evaluation, the instructors were presented first with the target performance, and
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then with the participant imitation, and could listen as many times as needed. They then

rated the quality of the imitation on a 7-point scale.

The ratings for each performance were then correlated with the four performance

measures. For the target probability and novice probability, there were correlations of

r = .326 and r = −.322, respectively. The correlations with RMS Timing Error and RMS

Dynamics Error were r = −.084 and r = −.308. All the correlations, with the exception of

the RMS Timing Error (not significant), were significant at the p < .0001 level. Thus,

while none of the correlations were above the 0.5 level, a stronger relationship with the

quality ratings was found for the probabilistic measures and the RMS dynamics error

than with the RMS timing error measure.

No effect of VFB condition was found for the novice probability measure. One

potential explanation is that, unlike the target performances, the recordings of the novice

were not presented to the participants, as the primary focus was on the learning and

imitation of the expressive styles. The inclusion of the novice performance in the

development of the high-level feedback served as a check to ensure that participants

imitated all aspects of the instructor performance. The three styles performed by the

teacher differed primarily with respect to the timing and dynamics of the hi-hat, whereas

the snare and bass drum were played consistently across styles. However, the bass and

snare drum were performed much less consistently by the novice, which led to a set of

features distinguishing these aspects of the novice performances from those of the

instructor. More details about these features are provided in the appendix.

With respect to the effects of beat pattern on the four performance measures, no one

clear interpretation is possible. While it would be natural to expect that 8th note

performances would generally be less difficult to perform than the 16th note

performances, leading to better overall results in the performance measures, this is not

the case with respect to the RMS dynamics error. A potential explanation is that the RMS
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dynamics error of the bass and snare notes contributes disproportionately to the overall

average, and that the additional hi-hat notes in the 16th note pattern offset this, leading to

a lower average error.

The significant effects of expressive performance style on the various performance

measures also tell a mixed tale. While the on-the-beat performances were considered

easier to play, due to the more complex accenting patterns for the laid-back and rushed

performances, the RMS timing error was actually lowest for the rushed performance,

which, given the offbeat accenting, would perhaps be considered the most difficult.

However, with regard to the two probabilistic measures, performance was significantly

better for the on-the-beat performances. In a sense, this is a microcosm of the overall

finding that imitation of higher-order features relevant to the expressive style improved

at the expense of temporal precision.

Conclusions

High-level real-time visual feedback at the categorical level can help to improve the

low-level performance features upon which it is based. However, at least in the initial

periods of use examined during this study, the high-level RTVFB may also increase the

cognitive load placed on participants during the imitation task, as indicated by a

significantly higher RMS timing error than in the other two RTVFB conditions. The

design of the present experiment prohibits us from knowing whether or not the positive

and detrimental effects of RTVFB persist in non-feedback conditions, or if longer-term

familiarization and use of the RTVFB system leads to changes in the observed effects.

These would both be interesting questions to pursue in follow-up research.

While traditionally applied to the design of instructional and educational materials

such as textbooks or multimedia learning tools, Cognitive Load Theory shows promise as

a tool in the design of interactive computer-based training systems for complex tasks such
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as music performance. The present results highlight both the benefits and the difficulties

that come along with the various manners in which knowledge of results can be given to

learners.

This may be especially true in learning situations involving complex tasks such as

expressive drum performance, which requires the combined use and sequencing of

multiple effectors at short, precisely timed intervals, and with subtle manipulations in

force in order to achieve the desired performance. As such, it places strong demands on

cognitive and working memory resources, and does not leave much over for the

processing of additional feedback information above and beyond normal sensory

feedback mechanisms. Thus, any type of RTVFB designed for these type of tasks must

minimize all forms of extraneous cognitive load, while also providing knowledge of

results which is useful for improving various aspects of performance.
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Appendix

Applications of Bayes’ rule to problems in machine learning and perception have

achieved success in several different domains, including computer vision (Knill et al.,

1996), handwriting recognition (Cheung et al., 1998), and music transcription (Cemgil et

al., 2000). Although Bayes rule has not been explicitly applied to the classification of

expressive style or skill level, the successes which have been achieved with it in pattern

recognition in other domains suggest that it may be a fruitful approach.

A statistical analysis of the target materials was conducted, the results of which

subsequently led to the development of a set of Bayesian classifiers. These classifiers were

used on student performance data in the experimental portion of the study to identify

which of the three expressive styles performed by the instructor it most resembled, and

whether or not the participant performance most resembled the instructor or the novice

performances. The resulting classification rates were used as the basis for the high-level

RTVFB. Additionally, the classifiers were applied to the target materials, and the most

prototypical repetition of each target performance was chosen to present to participants

during the experiment.

Feature Analysis. An analysis was then conducted in order to find a set of features F

which could be used to distinguish between N classes of interest; in our case, on-the-beat,

laid-back, rushed, and novice. The timing data were represented in terms of millisecond

values, while the MIDI velocity data was scaled to a 0-1 range representing dynamics.

MIDI timing data were also included for the metronome ticks. Data were analyzed per

half-bar repetition, with each containing six or ten notes for the 8th note or 16th note

patterns, respectively (see Fig. A1 for a schematic diagram). Given a set of R repetitions

in class cn , for each repetition r of a performance, there is a corresponding set of
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parameters Θr,c containing the raw data.

A set of M features [ f1... fm] was then defined (see Table A1). This set included

typical musical performance measures such as inter-onset-intervals, relative proportions

of successive intervals, asynchronies, and measures of variance. A total of 90 features for

the 8th note performances, and 186 features for the 16th note performances were defined.

Each of these features was labeled as either a dynamics or a timing feature. Using these

definitions, each parameter set Θr,c produced a set of values [xr,c,1...xr,c,m] corresponding

to the individual features for a given repetition of a performance.

For each feature fm within the feature set, the distribution Dc,m of all corresponding

values across repetitions within each individual class cn was estimated using a Gaussian

function, based on the observation that the majority of features exhibited unimodal

distributions with low skew. This facilitated a probabilistic interpretation of a given value

xm with respect to the distribution of values for a specific feature fm given class cn. This

was done using a probability density function dc,m (x) corresponding to each distribution

Dc,m.

Subsequently, a comparison of the distributions between classes for each feature

was done using an index of separability S. Given a specific feature fm, this index

estimates the amount of surface overlap between the distributions for all classes by

integrating the max function for the N density functions across all possible values of xm,

and dividing by the total possible surface area of the distributions. The index is then

normalized such that S ∈ [0, 1].

S( fm) =

∫ ∞
−∞ max (d1,m (x) , ..., dN,m (x)) dx

N − 1
(1)

Accordingly, S is a measure of the distinctness of a particular feature in the different

classes of interest. From the perspective of signal detection theory, S is similar to d′ in that

our classification task is a probabilistic decision process based on observations of events
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which are normally distributed and which makes use of an optimal criterion (Wickens,

2002). When d′ is high for a given class of events (the ”signal”), the probability that

another event (”noise”) will be mistakenly identified as belonging to that class is low. The

main difference between the measures is that S distinguishes between an arbitrary

number of classes, while d′ distinguishes between two.

In our situation, features having a high separability index have a more distinct

distribution of values for each class, meaning that these features are good candidates to

use for classifying performances of the same material. The 16 features which were

selected based on the results of the feature analysis are shown in Table A2. Additionally,

the mean timing and dynamics profiles of the instructor performances along with a

schematic illustration of a subset of the selected features are shown in Fig. A2.

Bayesian Formulation. A subset F consisting of L = 16 features possessing the

highest separation indexes, half of which were timing features, and the other half of

which were dynamics features, was selected to form the basis of a classifier that specifies

the likelihood that a performance belongs to a particular class cn; in the current case,

on-the-beat, laid-back, rushed, or novice. These measures were formulated using an

application of Bayes rule, which is given by:

P (c|F) =
P (F|c) P (c)

P(F)
(2)

We assume that the likelihood of all classes are equal, such that the P(c) term is set

to 1
N . The probability of the feature set F given a class cn is calculated in the following

equation:

P (F|cn) =
1
L

L

∑
1

dc,i (x) (3)

This is the average of the probability density functions for the individual features
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[ f1... fL] given a class cn. While taking the product of the individual density functions is

typically chosen, we made an ad hoc decision to use the average, as it led to more graded

transitions in the resulting probabilities. This was more suitable for the generation of the

high-level feedback in the experiment. The overall probability of a feature set F is the sum

of the conditional probabilities P (F|cn) for each possible class cn in the set of N classes.

P (F) =
N

∑
i=1

P (F|ci) (4)

The results from equations 3 and 4 provide the terms necessary for calculating

equation 2. A total of N probabilities is calculated whose sum is equal to 1. The chance

probability for each class is equal to 1
N .
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P (target) P (novice) Timing Error Dynamics Error

DOF Den. F-Ratio p F-Ratio p F-Ratio p F-Ratio p

Condition 2 487 4.82 <.01 0.83 n.s. 8.94 <.001 2.28 n.s.

Style 2 487 46.92 <.0001 13.50 <.0001 12.86 <.0001 18.59 <.0001

Pattern 1 487 47.37 <.0001 1.29 n.s. 148.89 <.0001 514.31 <.0001

Trial 1 487 5.98 <.05 0.92 n.s. 12.65 <.001 0.09 n.s.

Style x Pattern 2 487 4.18 <.05 9.97 <.0001 7.22 <.001 43.56 <.0001

Trial x Pattern 1 487 1.16 n.s. 0.06 n.s. 4.56 <.05 0.03 n.s.

Con x Sty x Pat 4 487 1.47 n.s. 3.46 <.01 3.33 <.05 0.49 n.s.

Table 1

Main effects and significant interactions for mixed model ANOVAs of performance

measures. The unit of observation has been set to the trial level, in order to model

interactions between trial and condition. Three- and four-way Interactions with no

significant effects are omitted.
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Basic Features (Θr,c)

ty
i timing of voice y at metrical position i

vy
i velocity of voice y at metrical position i

Ti metronome/mechanical timing at metrical position i

Derived Features

∆ty
i = ty

i − Ti timing difference from metronome of voice y at metrical position i

∆vy
i = vy

i − v̄y velocity difference of voice y at position i from mean velocity of voice y

IOIy
i,j = ty

j − ty
i inter-onset-interval of voice y at successive metrical positions i and j

VIy
i,j = vy

j − vy
i velocity-interval of voice y at successive metrical positions i and j

TPy
i,j,k = IOIy

i,j/IOIy
j,k relative proportion of successive inter-onset-intervals of voice y at positions i, j, and k

VPy
i,j,k = VIy

i,j/VIy
j,k relative proportion of successive velocity-intervals of voice y at positions i, j, and k

TAy,z
i = ty

i − tz
i timing asynchrony of voice y and z at metrical position i

VAy,z
i = vy

i − vz
i velocity difference of voice y and z at metrical position i

σ (IOI)y
1..n standard deviation of the inter-onset-interval for voice y over a given half bar segment

σ (VI)y
1..n standard deviation of the velocity-interval for voice y over a given half bar segment

Table A1

Features used in the analysis of the instructor and novice performances. Basic features

were taken from the MIDI performance data. Derived features were calculated for all

possible permutations in each beat pattern. The relative timing and velocity proportions,

inter-onset-interval, velocity-interval, and the two standard deviation measures based on

them were calculated either for the hi-hat, or for the bass and snare drum together. For

features based on more than one note, the first note of the subsequent half bar’s data was

sometimes included.
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Expressive Style Features

8th note 16th note

Feature S Type Feature S Type

VIH
2,3 0.999 Dynamics VIH

6,7 0.987 Dynamics

VIH
3,4 0.999 Dynamics VIH

7,8 0.982 Dynamics

VIH
4,1 0.999 Dynamics VIH

2,3 0.977 Dynamics

VIH
1,2 0.997 Dynamics VIH

3,4 0.970 Dynamics

TPH
4,1,2 0.762 Timing TPH

4,5,6 0.696 Timing

TPH
1,2,3 0.725 Timing TPH

5,6,7 0.633 Timing

TPH
2,3,4 0.655 Timing TPH

8,1,2 0.627 Timing

TPH
3,4,1 0.604 Timing TPH

1,2,3 0.616 Timing

Skill Level Features

8th note 16th note

Feature S Type Feature S Type

vS
3 0.999 Dynamics vS

5 0.999 Dynamics

VIBS
1,3 0.999 Dynamics VIBS

1,5 0.999 Dynamics

VISB
3,1 0.999 Dynamics VISB

5,1 0.997 Dynamics

VAS,H
3 0.994 Dynamics VAS,H

5 0.994 Dynamics

TAS,H
3 0.645 Timing TAS,H

5 0.768 Timing

σ(IOI)BS
1...6 0.625 Timing σ(IOI)BS

1...8 0.691 Timing

TPBS
1,3,1 0.593 Timing TPBS

1,5,1 0.689 Timing

∆tH
1 0.791 Timing ∆tH

1 0.609 Timing

Table A2

Separation indexes of selected features for 8th and 16th note instructor performances

with three expression types, and for Novice vs. Instructor performances. The features

distinguishing between the expressive styles were all related to the differences in timing

and dynamics between successive hi-hat notes. The features which were selected for

the novice/instructor distinction were primarily based on the bass and snare drum

notes. While the instructor played the bass and snare drums relatively consistently across

performances, the novice performances were more variable in this regard.
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Figure Captions

Figure 1. Scores of target performances. Three different expressive styles for two different

beat patterns were notated by the same drum teacher who performed the target materials.

Each pattern contained only notes performed on the bass drum, snare drum, and hi-hat

cymbal (notated from bottom to top, respectively). The different styles are defined by

differing accent patterns on the hi-hat, indicated by the ’>’ symbols above a given note,

as well as by expressive timing variations (not specified in the scores).

Figure 2. High-level visual feedback. Panels a-c show the prototypical shapes used to

represent each of the three expressive styles. These shapes were defined by eight points:

one in each corner, and one at the midpoint of each line segment. Panel d shows an

example sequence of the RTVFB during an imitation performance. Here, the target

performance is represented by the grey shape presented in the background, while the

ongoing imitation performance is presented as a semi-transparent red shape in the

foreground. With each incoming note, the four probabilities were recalculated using the

most recent half-bar’s data. The corresponding shape definitions of the three styles were

then weighted by the current probabilities and summed to produce a mixture of the three

shapes. In addition, the novice probability determined the overall size of the resulting

shape. Thus, the feedback display was dynamically updated for each performed note. An

increase in the probability corresponding to the style of the target performance lead to a

red imitation figure which more closely resembled the shape of the grey target figure,

while a decrease in the novice probability led to an imitation figure whose size more

resembled that of the target.

Figure (a). on-the-beat

Figure (b). laid-back
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Figure (c). rushed

Figure (d). imitation

Figure 3. Low-level Feedback. The first six panels show one half-bar of the target display

for each of the performances. In panel g is an example of the RTVFB display during

imitation performances. In this instance, it can be seen that the last performed notes were

played slightly later and louder than the target performance.

Figure (a). 8th Note on-the-beat

Figure (b). 8th Note laid-back

Figure (c). 8th Note rushed

Figure (d). 16th Note on-the-beat

Figure (e). 16th Note laid-back

Figure (f). 16th Note rushed

Figure (g). example of RTVFB display during imitation

Figure 4. Main effects for the four performance measures. Effects of RTFVB condition,

expressive style, beat pattern, and trial were revealed using a mixed-effects ANOVA.

Asterisks indicate level of significance: * = p < .05, **= p < .01, *** = p < .001, **** =

p < .0001. For the target probability measure, a higher value indicates a better

performance, while for the other three measures, a lower value indicates a better

performance.

Figure A1. Schematic of score positions used for analysis of performance features. Both
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patterns used in the study were organized schematically for the analysis procedure. Each

metrical subdivision present in the pattern was given an index. The three different drum

voices were also given unique indices.

Figure A2. Instructor performance profiles. Panel a shows timing profiles for the six

instructor performances, while panel b shows dynamics profiles for the hi-hat notes in the

six performances. In addition, some of the features selected in the analysis of the target

performance are illustrated using the same notation as the feature definitions.

Figure (a). Instructor Timing Profiles

Figure (b). Instructor Hi-Hat Dynamics Profiles
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