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Abstract

The shading information in images that depict surfaces of 3D objects cannot be perceived correctly unless

the direction of the illuminating light source is known, and, in the absence of this knowledge, perception

in adults is consistent with a light-from-above Bayesian prior assumption. In order to investigate if

children make use of a similar assumption, 171 children between the ages of 4.6 and 10.8 years were

tested using 20 images containing shading information, where the shape depicted in each image can

be perceived as either convex or concave. Each child’s Bayesian prior probability that light comes

from above was estimated, and (assuming that decision-noise is approximately the same in all children)

regression analyses revealed a significant increase in this prior probability of 0.034-0.035 per year, and

predict a neutral prior (ie 0.5) at 1.6 years for naturalistic picture stimuli and 3.6 years for abstract symbol

stimuli. Additionally, each child’s prior probability for perceiving shapes as being convex/concave was

estimated, and was found to be close to a neutral value of 0.5 for all ages. Together, these results

indicate that children have a neutral prior for shape convexity, and that their prior probability for lighting

direction gradually shifts towards an adult-like prior value as they grow older. Finally, the status of

these one-dimensional priors is discussed in relation to marginal distributions of high-dimensional priors

implicit in the statistical structure of the physical word.

1 Introduction

Perception involves recovering the three-dimensional structure of a scene from a two-dimensional retinal

image. Unfortunately, the process of projecting a scene onto the retina discards information about the three-

dimensional structure of that scene. This makes it impossible, in principle, to recover the scene structure

from a retinal image alone, making perception a classic example of an ill-posed problem (Poggio et al.

(1985)). It is therefore necessary for the visual system to rely on extra information, in the form of constraints,

assumptions, or Bayesian priors.

One assumption which adults adopt is that light comes from above (Rittenhouse (1786); Brewster

(1826); Metzger (2009); Von Fieandt (1949); Berbaum et al. (1983, 1984); Sun and Perona (1998); Mamas-

sian and Landy (2001); Stone et al. (2009)). For example, the images in Figure 1 can be interpreted either

as convex or as concave, depending on the direction from which light is assumed to originate. However,

the finding that perception of similarly ambiguous shaded figures can be modified by experience in adults
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(Adams et al. (2004)), suggests that adults may have learned to interpret such figures during development.

In contrast, chickens may be immune to the effects of experience (Hershberger (1970)), although earlier

experiments provide some indication that exposure to lighting-from-below from birth to 7 weeks causes

chickens to interpret stimuli as if light comes from below (see Hess (1950); Woodworth and Schlosberg

(1954), p463).

Brewster (1826) noted that children do not always perceive ambiguous shaded figures as adults do. More

recently, it has been reported that 3-8 year olds have an increasing tendency to interpret a single dome-like

shaded stimulus as if light comes from above (Yonas et al. (1979)),1 and that this applies to ‘polo mint’

stimuli in 4-12 year olds (Thomas et al. (2010)), and also to abstract symbols and naturalistic stimuli in 4-11

year old children (Stone and Pascalis (2010)). There is evidence that 7 month old infants (but not 5 month

olds) perceive a picture of a dome-like shaded stimulus as if light comes from above (Granrud et al. (1985)).

These results are consistent with those recently reported in (Tsuruhara et al. (2009)); using stimuli in which

depth was implied by one of two different cues (shading or texture), it was found that 6-7 month old infants

showed transfer-across-depth-cues, while 4-5 month-old infants did not. Both of these studies suggest the

existence of a light-from-above prior by the age of 7 months.

Here, the data presented in (Stone and Pascalis (2010)) are used to investigate if the developmental

changes reported above are contingent on underlying changes in a Bayesian prior for lighting direction and

shape convexity.

Place Figure 1 about here.

2 The Light-From-Above Prior and the Convexity Prior

The light-from-above (LFA) prior can be considered as the propensity of a child to assume that light comes

from above in the absence of a stimulus. As the stimuli used here have light coming only from above

or below, the analysis of each child’s data was performed using a model which included only these two

lighting directions. The result of assuming each stimulus has only one of two possible lighting directions

is that the ‘all around the clock’ prior distribution collapses to a prior ‘distribution’ model with only two
1However, it is not known if infants were repeatedly rewarded with praise for reaching toward the same apparently convex shape

(which was presented 16 times), which accounts for the results if infants simply learned to reach for the shape that was lighter at
the top.
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lighting directions (above/below). This means that the propensity of each observer to assume light comes

from either above or below can now be defined in terms of a single number ρ between zero and one, which

is the relative probability that an observer assumes light comes from above. For example, an observer with

a prior of ρ = 1.0 always assumes light comes from above, whereas ρ = 0.5 implies an equal propensity

for assuming light comes from above and below.

Similarly, the convexity prior can be considered as the propensity of a child to assume that objects are

convex in the absence of a stimulus. As the stimuli used here can be perceived only as convex or concave,

this effectively limits the number of shapes under consideration to two. This means that the propensity of

each observer to assume convexity or concavity can be defined in terms of a single number γ between zero

and one, which is the relative probability that an observer assumes convexity.

3 Results

Place Figure 2 about here.
The stimuli were 5 naturalistic pictures and 5 geometric embossed symbols, with 2 examples shown in

Figure 1. Each stimulus was presented twice, the right way up, and upside-down, making a total of 20 stim-

uli. The mean ages of children in each bin were [4.8, 5.5, 6.5, 7.4, 8.4, 9.8, 10.4] years, the corresponding

numbers of children that contributed to data in each bin were [16, 32, 39, 29, 21, 12, 22], and the mean prob-

ability of a ‘correct’ response2 within each age group is [0.572, 0.589, 0.686, 0.722, 0.745, 0.783, 0.802]. A

full account of the stimuli, methods, participants and initial data analysis are given in (Stone and Pascalis

(2010)). In that paper, we reported a significant relationship between age and children’s tendency to inter-

pret shading information as if light comes from above, but no significant change in children’s tendency to

perceive stimuli as being convex. Here, we report a significant increase in the value of a light-from-above

prior with age, and a non-significant change in the convexity prior with age.

Changes in the light-from-above prior with age: The Bayesian light-from-above prior for each child

was estimated using a modified form of the method described in Stone et al. (2009), (see Appendix). For

symbol stimuli, the mean light-from-above prior is ρsym = 0.63 (sem= 0.013), and for pictures the mean is

ρpic = 0.70 (sem= 0.012), both of which are significantly different from a neutral prior of 0.5 (p < 0.001).

2A ‘correct’ response is defined here as a response consistent with overhead light.
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A separate regression analysis was also performed on the picture and symbol stimuli, see legend of Figure

2. For both symbol and picture stimuli, the slopes of the fitted regression lines are non-zero (p < 0.05),

which suggests that the propensity of each child to assume that light comes from above increases throughout

childhood. The two fitted regression lines have slopes that are not significantly different (p > 0.05), so that

the light-from-above prior increases at about the same rate for symbol and picture stimuli.

These regression analyses predict that the lighting direction prior has a value of ρ = 0.5 at 3.63 years

for symbol stimuli, and 1.61 years for picture stimuli, which suggests that children make no particular

assumption about lighting direction below these ages for these type of stimuli. A paired t-test comparing the

7 means plotted in Figure 2a with those in Figure 2b yielded a significant difference (t = 7.18, p < 0.001),

so the light-from-above prior for picture stimuli is significantly greater than the light-from-above prior for

symbol stimuli.

Place Figure 3 about here.
Changes in the convexity prior with age: The method of analysis also provides an estimate of the convex-

ity prior γ, which underlies the probability of a convex response, as shown in Figure 3. The mean convexity

prior for symbol stimuli is γsym = 0.446 (sem=0.013), which is significantly smaller than a neutral convex-

ity prior of γ = 0.5 (p < 0.01). For picture stimuli γpic = 0.509 (sem=0.011), which is not significantly

different from γ = 0.5. However, each of these two stimulus-specific means is based on seven age-specific

means, some of which are significantly different from each other (as indicated by the error bars in Figure 3),

so that collapsing across age to obtain the two stimulus-specific means should be treated with caution.

A separate regression analysis for the changes in the convexity prior with age yielded non-significant

fits for both symbol and picture stimuli (see legend of Figure 3), and neither slope is significantly different

from zero (p > 0.05).

4 Discussion

The main findings from this paper and its partner (Part I), are threefold. 1) As children grow older, they have

an increasing tendency to interpret a range of ambiguous naturalistic picture and symbolic stimuli as if light

comes from above. 2) Estimates of the intrinsic lighting-direction prior suggest that children’s assumption

regarding lighting direction evolves throughout childhood towards an increasingly adult-like light-from-
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above prior. 3) Estimates of the intrinsic shape-convexity prior suggest that children are essentially neutral

with respect to shape convexity. The findings (1) and (2) may appear to be very similar, but they are

qualitatively different. This is because, in essence, the phenomenological findings of (1) depend upon the

(now un-)hidden variable, namely the light-from-above prior of (2).

The results presented here could be interpreted either in terms of learning the statistical structure of

the physical world (eg light tends to come from above), or in terms of a pre-programmed developmental

trajectory. The experiment presented here does not permit these two alternatives to be discriminated.

The Convexity Prior: Results reported here provide evidence for a neutral (ρ = 0.5) convexity prior (a

result that is in agreement with previous estimates in adults (Stone et al. (2009))), and no indication that this

changes consistently with age. However, a smaller reaction time for convex shapes than for concave shapes

has been cited as indirect evidence for a non-neutral convexity prior in adults (Kleffner and Ramachandran

(1992)), and Liu and Todd (2004) concluded that a strong bias for convexity exists alongside a weaker bias

for overhead lighting direction, but these studies did not have access to methods that could measure the

priors for convexity or lighting direction. More recently, it was claimed in (Thomas et al. (2010)) that a

convexity prior dominates perceptual interpretation of shaded figures in young children, but that a light-

from-above prior dominates later and in adulthood. However, it is difficult to interpret overt responses in

terms of priors in the absence of a rigorous method for estimating those priors. For example, the raw data

for picture stimuli reported in Figure 5a of (Stone and Pascalis (2010)), give the appearance of a non-neutral

prior for convexity (and the proportion of convex responses is significantly above chance), but these data

have been shown to be consistent with a neutral (ie 0.5) convexity prior here.

The relationship between the observer responses and the estimated priors for convexity and lighting-

direction is systematic, but non-trivial. Recovering priors from observer’s data is analagous to solving the

following algebraic problem: find the value of the prior x given that an observer’s response y = f(x×z/w),

where neither x (the prior), nor z (the likelihood), nor w (the evidence) are known, and only the general

(sigmoidal) form of the function f is known. However, as shown in the Appendix, these priors can be

disentangled from the observer’s behavioural data. Moreover, the complexity of the relationship between

them ensures that it would be possible, in principle, for an observer to respond convex to all 10 ‘upright’

(ie convex with light-from-above) figures in (Stone and Pascalis (2010)), and still have a strong light-from-
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below prior. This complexity also forces us to perceive hollow faces with overhead lighting as convex faces

with light from below (see Figure 4), despite a default assumption that light comes from above.

Possible confounds. Previous studies have either been run in darkness (eg Adams et al. (2004); Stone et al.

(2009)) or have explicitly manipulated the lighting direction (eg Mamassian and Landy (2001); Jenkin et al.

(2004)). In this study, the natural lighting was always overhead, and was therefore in the same direction as

the light-from-above prior. This confound seems to imply that we cannot be certain whether the children

developed a stronger tendency to perceive shapes as illuminated above because their prior changed with

age or because they became better at using lighting direction cues provided by the natural lighting present.

However, in an experiment similar to that reported hereThomas et al. (2010) 51 children were tested at

different ages using non-overhead (eye-level) lighting. Thomas’ data have a regression slope of +4.6% per

year (estimated here from the regression line in their Figure 3). This compares to +4.2% per year (ie 0.84/20

items per year) found in the present study. The striking similarity in regression slopes in these two studies

suggests that the natural lighting conditions used here had a negligible impact on the slope of the regression

line, although it is logically possible that the physical lighting direction in the room did affect the height of

the regression line.

One caveat applies to the results presented here. The observed increase in the probability of a ‘correct’

response could be caused either by an increase in the light-from-above prior ρ (as shown in Figure 2), or

by a decrease in the decision-noise parameter σL (or by both). Alternatively, children may have access to

high quality sensory data, and to a fully formed adult prior and likelihood, but their ability to integrate these

by performing inference (which is known to be NP-hard (Paul and Michael (1993))) improves throughout

childhood. However, the simple experimental design used here does not provide data that could be used,

even in principle, to discriminate between these alternatives.

Calibrating the Decision Noise Parameter Value: If we assume a fixed value for the decision-noise pa-

rameter σL then we can justify the value of σL = 1.0 used here, as follows. Define a to be the age at which

the LFA prior has a neutral value of ρ = 0.5, and assume that the convexity prior is 0.5 (an assumption

justified on the grounds that the estimated convexity prior is about 0.5 for all ages, almost irrespective of the

value of σ). If the LFA prior has a neutral value of ρ = 0.5 at age a then it follows that the proportion of

correct responses is also exactly 0.5 at age a (according to Equation 18), so we can estimate a from the re-
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gression line drawn through the proportion of correct responses at different ages (ie from the regression line

for combined picture and symbol stimuli in Figure 3a of Stone and Pascalis (2010)). The regression analysis

reported in Stone and Pascalis (2010) predicts that the age at which the proportion of correct responses is

0.5 is 2.8 years, and this is therefore the age at which the LFA prior estimate is also 0.5. So, we know the

age a = 2.8 at which the LFA prior is equal to 0.5; what we do not know is σL. But, if the type of model

used here is correct then there exists one value of σL which forces the regression line to pass through 0.5 at

the known age a = 2.8. If we again use the combined picture and symbol stimuli then, as we vary putative

values of σL, this changes the slope and intercept of the regression line for the LFA prior ρ (because each

data point being fitted by the regression line is determined by the psychometric function defined by equation

Equation 18). Numerical experiments indicate that the value of σL = 1.0 used here provides a reasonable

fit inasmuch as the combined picture and symbol stimuli yields a regression line (not shown) which predicts

the LFA prior has a value of 0.5 at an age of 2.5 years. Thus, setting σL to a value that respects this approx-

imate equality may be considered as a form of calibration for the decision-noise parameter. However, as the

regression line for the LFA prior is fitted to data points which depend non-linearly (ie via Equation 18) on

the value of σL, it is not obvious how to compute error bars for its value.

Relation to Previous Work: Evidence which suggests that infants have non-neutral priors by the age of

6 months was presented in (Granrud et al. (1985)) and (Tsuruhara et al. (2009)), and data re-analysed in

(Stone and Pascalis (2010)) from (Yonas et al. (1979)) suggests an age of 9 months. If we equate the age

at which children’s performance is at chance (in terms of proportion correct) with the age at which the LFA

prior is 0.5 (see previous paragraph) then the regression analyses reported in (Stone and Pascalis (2010))

predict a neutral LFA prior (0.5) at 1.7 years (for picture stimuli), and 3.8 years for symbol stimuli. Aside

from differences in the stimuli used, the other difference between these studies is that, here, an ‘in/out’

verbal response was required for each single stimulus, whereas a 2AFC procedure was used in the three

other studies cited above. Also, the estimates made here are based on linear regression lines from older

children’s data (4.6-10.8 years), rather than direct testing of infants, and it is possible that the actual change

in non-linear below the age of 4 years.

The Problem With Bayes’ Theorem. There is a great deal of debate regarding the status of Bayes’ theorem,

a debate which remains unresolved, but which perhaps should have been made largely redundant by the
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work of Jaynes (2003) and Cox (1961). Jaynes states that much of the heat of this debate depends on

ideological arguments regarding the interpretation of probability, and that there is actually little to debate

if the mathematical infrastructure and scientific utility of different methods are compared. Specifically,

in setting up rules for calculating with probabilities, we would insist that the result of such calculations

should tally with our everyday experience of the physical world. That is, if we insist that probabilities must

be combined with each other in accordance with certain common sense principles then Cox’s consistency

theorems lead to a unique set of rules; a set of rules which includes Bayes’ theorem. In essence, this means

that any other rules violate fundamental notions of rationality or consistency. So Bayes’ theorem is not

just a convenient rule which happens to work, it is part of a set of rules which are logically implied by our

insistence that such rules should yield results which conform to the behaviour of the physical world.

Place Figure 4 about here.
The Problem With Priors. When it is claimed that the prior distribution for lighting direction has been

estimated, what does this mean in practice? In this study, there are two variable parameters, lighting direction

(θ) and the convexity/concavity (c) of a number of different shapes. As there is no reason to expect these

two parameters to be correlated in the physical world, it makes sense to assume that they are independent.

This means that the joint prior distribution p(θ, c) can be represented as the product of two one-dimensional

prior distributions, so that p(θ, c) = p(θ)p(c). This independence not only makes the problem tractable,

it also ensures that each of the estimated one-dimensional prior distributions is just a re-scaled marginal

distribution of a multivariate (ie 2D) prior distribution.

However, the assumption of independence between parameters may not be justfied in general, because

some variables are correlated with others in the physical world, as shown in Figure 4. For example, sup-

posing shape and lighting direction were not independent. For example, if Figure 1a denoted by c = 1 is

presented at multiple orientations in an experiment, and we estimated the prior distribution for lighting di-

rection then what have we found? From Figure 4, it is apparent that we have not found the prior for lighting

direction in general. Instead, we have found a cross-section of the 2D joint distribution p(θ, c) at c = 1,

which can be considered to be the prior for lighting direction, but is actually associated with only a single

shape.

This argument also applies to the abbreviated, two-valued form of the lighting direction (above/below)
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and convexity (convex/concave) prior distributions estimated here. Indeed, this argument may explain why

the lighting-direction priors for symbols and pictures appear to be different (ie because they are different).

Even when considered over both types of stimuli, we may not have estimated the prior p(θ) for lighting (for

example), but a kind of average prior for lighting associated with symbols and pictures. Only if the range

of stimuli were sufficiently broad could we claim to have estimated the prior for lighting direction, because

this broad range effectively marginalises the joint prior distribution p(c, θ) over shape c leaving the marginal

(prior) distribution p(θ). Given that the picture stimuli involved a broad range of pictures, this suggests that

the ‘prior’ for pictorial stimuli is a better approximation to the lighting direction prior p(θ) than the ‘prior’

associated with the relatively homogeneous set of symbol stimuli. The point is that, ideally, the estimated

prior distribution is the marginal distribution of a two-dimensional joint distribution p(θ, c), as in Figure 4,

but in practice, the estimated prior is more likely to be a cross-section of of the 2D prior p(θ, c). If this

cross-section is considered for a face-like shape then the resultant lighting-direction ‘prior’ could well be

uniform, because even hollow faces (eg from a mask) are perceived as convex, despite the fact that this

forces the perceived lighting to come from below (Frisby and Stone (2010), p309). Even if this prior is

not exactly uniform in adults, results presented here suggest that it is likely to be uniform in infants, which

predicts that infants perceive hollow faces as convex, irrespective of the lighting direction.

More generally, the joint distribution p(θ, c) is itself a marginal distribution of a high-dimensional prior

with axes that include parameters such as shape, illuminance spectrum, multiple light sources, colour, tex-

ture, slant, size, depth, spatial/temporal frequency, and stereo disparity. If the parameters associated with

these axes are independent then the high-dimensional prior can be represented as a set of 1D marginal prior

distributions, each of which can be learned through exposure to the physical world. But if these parame-

ters are not independent then this presents a serious problem for the brain, because the problem of learning

the structure of the entire high-dimensional prior scales exponentially with the number of parameters (di-

mensions). Learning an adequate representation of such a prior could take many life-times observing the

physical world, so it is likely to be hard-wired into the brain at birth, at least in an approximate form.

In practice, it is likely that subsets of physical parameters are mutually independent of other subsets.

This effectively decomposes the problem of learning a single high-dimensional prior into the problem of

learning many subsets of low-dimensional priors. These may be partly innate, but may also require fine-
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tuning during childhood.

Naturally, there are considerations beyond the dimensionality of a given prior. For example, adult herring

gulls have a red patch on their beaks, and herring gull chicks peck at this to elicit regurgitation of food from

the adults (Tinbergen (1951)). Indeed, these chicks peck at almost anything that is red because this is critical

to their survival. In such cases, there is little question about the innateness of the chick’s ability to peck at

red patches. Similarly, if humans were born into a world where milk could be obtained from convex, but not

concave, objects where the shape was defined only by shading information, then it is likely that our ability

to discriminate between convex and convex shapes would be almost perfect from birth.

5 Conclusion

The research reported here embodies the first attempt to track the developmental of Bayesian priors (rather

than task performance) for shape convexity and lighting direction in children. As with most first attempts, it

is far from perfect, but it is intended to represent a significant step towards a formal account of how Bayesian

priors develop throughout childhood.

The results reported in Part I of this paper (Stone and Pascalis (2010)), suggest that children interpret

ambiguous shading information from embossed symbol and naturalistic picture stimuli in an increasingly

adult-like manner as they grow older, and the results reported here suggest that this age-related change in

performance is contingent on an underlying change in children’s prior assumption about lighting direction,

but not on their assumption about shape convexity.

These results do not rule out the possibility that children have an innate, but weak, predisposition for

interpreting stimuli as if light comes from above. However, whether or not children have a nascent light-

from-above prior at birth, these results suggest that the prior for lighting direction is gradually learned

throughout childhood as an empirical fact about the nature of the physical world.

Even though light has rarely come from below during the 540 million years since eyes first evolved, and

even though almost all objects are essentially convex, these facts do not seem to have been hard-wired into

the human brain in the form of strong innate light-from-above and convexity Bayesian priors.
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Appendix: Estimating Priors

The shape information in each stimulus x is a function of two parameters, the direction θ of the light source,

and the degree c of convexity/concavity of the 3D shape depicted in the image. When presented with an

image x of a shaded object, the perceived shape ĉ and lighting direction θ̂ depends upon the observer’s prior

expectations about shape and lighting direction as represented in the observer’s prior probability density

function (pdf) p(c, θ), and on the likelihood function p(x|c, θ), which is the probability of the image given

a shape c and lighting direction θ.

The perceived shape ĉ is a function of the posterior pdf p(c, θ|x), and is usually assumed to correspond

to the pair of values of (c, θ) that maximises p(c, θ|x). Using Bayes’ rule we can express the posterior in

terms of the prior and the likelihood,

p(c, θ|x) = p(x|θ, c)p(c, θ)/p(x), (1)

where p(x) is treated as a constant and we assume p(x) = 1, which allows us to omit it from now on. It is

usually assumed that the observer has an accurate estimate of the likelihood function.

Loss function: The loss function defines how costly errors in perceived shape are to an observer. We assume

that the visual system minimises average loss E, where this average is taken over values of c and θ

E =
∫
c

∫
θ
D(ĉ, c) p(c, θ|x) dθ dc = 1/p(x)

∫
c

∫
θ
D(ĉ, c) p(x|c, θ) p(c, θ) dθ dc, (2)

whereD(ĉ, c) is a loss function. Here we assume a zero-one loss function, which adopts the valueD(ĉ, c) =

0 for correctly classified stimuli, and D(ĉ, c) = −1 for incorrectly classified stimuli. If the observer makes

choices that minimise E then the stimulus x is perceived as the shape ĉ as if it is lit from direction θ̂, where

(it can be shown that) the values c = ĉ and θ = θ̂ correspond to the maximum value of the joint posterior

probability density function (pdf) p(c, θ|x).

It is important to note that the quantities referred to above are properties of an observer, rather than

properties of the physical world. In other words, the objective is to estimate the prior distribution of an

observer with respect to lighting direction and convexity, but not to estimate the prior distribution of lighting
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direction in the physical world.

In practice, each stimulus x used here is consistent with only two (opposite) lighting directions, which

we define as light-from-above (LFA) θa and light-from-below (LFB) θb = θa + 180◦, each of which is

consistent with only one shape, either convex c0 or concave c1 (depending on the stimulus considered).

These two classes of shapes/lighting directions will be referred to as convex/LFA and concave/LFB (eg for

the images in Figure 1), and as convex/LFB and concave/LFA (eg for inverted versions of the images in

Figure 1). In order to use a concrete example, we consider the case of a stimulus xa which is perceived as

convex if light is assumed to come from above (ie convex/LFA), and concave if light is assumed to come

from below (ie concave/LFB).

In order to minimise the number of mis-classified stimuli, signal detection theory (Green and Swets

(1966)) dictates that, given a stimulus xa, the observer should respond convex if the posterior probabil-

ity density that the shape is convex/LFA is greater than the posterior probability density that the shape is

concave/LFB, or equivalently, if the posterior ratio

R =
p(c0, θa|xa)
p(c1, θb|xa)

, (3)

is greater than one, and concave otherwise. Applying Bayes’ rule (Equation (1)) to the numerator and

denominator of Equation (3) yields

R =
p(xa|c0, θa)
p(xa|c1, θb)

× p(c0, θa)
p(c1, θb)

(4)

=
p(c0, θa)
p(c1, θb)

. (5)

Crucially, the stimulus xa is equally consistent with two physical scenarios, namely, convex/LFA and con-

cave/LFB. Assuming that the observer’s likelihood function reflects this equality, the observer’s two likeli-

hood values in Equation (4) are equal (ie p(xa|c0, θa) = p(xa|c1, θb)). This ensures that the ratio of posterior

values in Equation (3) is equal to a ratio of prior values, as shown in Equation (5).

The Key Step: Equations (3-5) are key to understanding the method. The reason why the likelihood values

are equal in Equation (4) is that a single stimulus xa is equally likely to have been generated (as in Figure

1, for example) either by a convex shape with light from above (convex/LFA), or by a concave shape with
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light from below (concave/LFB). Crucially, if the likelihood values cancel (as they do for the stimuli used

here) then the ratio of posterior values is the same as the ratio of prior values. This is important because we

can use the measured observer responses to estimate the ratio of posterior values, which we now know to be

equal to the ratio of prior values, and this can be used to estimate the prior values.

The Posterior Pdf p(c|xa): Having shown how equal likelihood values lead to a ratio of prior values, we

now back up a little in order to derive an expression for the posterior pdf p(c|xa). In principle, the observer’s

posterior pdf for shape p(c|xa) is obtained by marginalising over θ:

p(c|xa) =
1

p(xa)

∫
p(xa|c, θ) p(c, θ) dθ. (6)

However, as already noted, each stimulus xa is consistent with only two (opposite) lighting directions, θa

and θb = θa + 180◦. This implies that p(xa|c, θ) is non-zero only at p(xa|c0, θa) and at p(xa|c1, θb), which

allows us to model the likelihood function p(xa|c, θ) as a pair of delta functions

p(xa|c0, θ) = δ(θ − θa) and p(xa|c1, θ) = δ(θ − θb). (7)

Substituting Equation (7) in the integral of Equation (6) for c = c0 yields a cross-section p(c0, θ) of the joint

prior at c = c0, which is the posterior

p(c0|xa) =
1

p(xa)

∫
δ(θ − θa) p(c0, θ) dθ, (8)

= p(c0, θa)/p(xa). (9)

A similar line of reasoning for c = c1 yields the posterior

p(c1|xa) = p(c1, θb)/p(xa). (10)

Now define

L0 = log p(c0|xa), and L1 = log p(c1|xa). (11)
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As before (but now using these newly defined log-posteriors), the observer should respond convex if L0 >

L1 and concave otherwise. Equivalently, the observer should respond convex only if the log posterior ratio

L = log
p(c0|x)
p(c1|x)

(12)

= L0 − L1, (13)

is greater than zero. Substituting the posteriors of Equations (9) and (10) into Equation (12) yields the log

prior ratio

L = log
p(c0, θa)
p(c1, θb)

. (14)

If the observer assumes that the stimulus shape and the lighting direction are mutually independent then the

joint prior distribution p(c, θ) factorises, p(c, θ) = p(c)p(θ), so that Equation (14) can be re-written as

L = log
p(c0) p(θa)
p(c1) p(θb)

, (15)

where (for example) p(θa) is the value of the prior for the LFA lighting direction θa, and p(c0) is the value

of the prior for convexity c0.

Regardless of the lighting direction, each observer perceives each stimulus as either convex c0 or concave

c1, and responds accordingly. Thus, together, p(c0) and p(c1) is a pair of co-determined observer-specific

scalar priors, such that p(c1) + p(c0) = 1. For the two lighting directions (above/below) considered here,

the same logic implies that p(θa) + p(θb) = 1. We call the scalar p(c0) the convexity prior, and the scalar

p(θa) the light-from-above (LFA) prior, for a given observer. Notice that we have discretized the lighting

directions into N = 2 values: θa and θb. This effectively models the entire prior distribution for lighting

direction as the pair p(θ) = (p(θa), p(θb)).

Modelling Noisy Responses: As human decision making is noisy, we assume that the process which com-

pares the measured value of the log probability density L0 with L1 is subject to noise, in a manner broadly

consistent with the signal detection theory (Green and Swets (1966)). Specifically, the measured values of
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L0 and L1 are assumed to be, respectively,

L0 = L0 + η0 and L1 = L1 + η1, (16)

where η0 and η1 are Gaussian noise terms, both with zero mean and standard deviation σ. Therefore the

distribution of L0 values is Gaussian with mean L0 and the distribution of L1 values is Gaussian with mean

L1, both with standard deviation σ. This implies that L = L0−L1 is also Gaussian with mean L = L0−L1

and variance σ2
L = 2σ2, where σL is a decision-noise parameter.

The use of log-ratios can be justified because the neural encoding of log probabilities has a simple

neural interpretation (Gold and Shadlen (2001)), such that a difference in spike rate between two neurons

constitutes a decision variable that is proportional to the log ratio L.

Given these assumptions, the probability P (c0|x) that the observer perceives the shape c0 in the stimulus

xa is given by the probability that L0 > L1, which is described by the cumulative density function of a

Gaussian

P (c0|xa) = P (L0 > L1) (17)

=
1√
2π

∫ L/σL

−∞
e−η

2/2 dη (18)

= Φ(L/σL), (19)

where the ratio L/σL can be interpreted as a z-value with zero mean and unit variance3. Given a measured

value for the probability P (c0|x) of a convex response, we can obtain L/σL from the inverse function

L/σL = Φ−1(P (c0|x)). (20)

Note that the decision-noise parameter σL is measured in units of log-probability density, and (for the delta

functions assumed here) is independent of the sensory-noise parameter σθ conventionally associated with

signal detection theory.

3A slightly different definition of σL was used in (Stone et al. (2009)), which we denote as σ2009, and in (Stone et al. (2009)),
σ2009 = 2. The value of σL = 1 used here is equivalent to a value of σ2009 = 4.34.
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The Method in a Nutshell: At this point, we have enough information to summarise the key steps used to

estimate the observer’s prior pdf.

1. If we know the functional relationship between the measured probability P (c0|xa) that the observer

responds convex and the log ratio of posterior probability densities L (which we do, via Equation

(20)) then we can use P (c0|xa) to estimate L/σL.

2. For each stimulus used here, we have shown that the log ratio of posterior probability densities is

equal to the log ratio of prior probability densities.

3. Under mild assumptions, we can use the log ratio of prior probability densities to derive estimates for

the prior probability densities (ie not just their ratios).

Having outlined the key steps, we give details of these below.

Maximum Likelihood Estimation: For a stimulus xa that can be perceived as convex only if light is

assumed to come from above, the probability of a convex response is defined as qa = P (c0|xa). In contrast,

the inverted version of this stimulus xb can be perceived as convex only if light is assumed to come from

below, and the probability of a convex response is defined as qb = P (c0|xb). For the full set of na =

10 symbol and picture stimuli, which can be perceived only as either convex/LFA (c = c0, θ = θa) or

concave/LFB (c = c1, θ = θb), the probability of a convex response qa defines (via Equation (20)) the log

prior ratio

La/σL =
1
σL

log
p(c0)
p(c1)

p(θa)
p(θb)

. (21)

Similarly, if the nb = 10 pictures in Figure 1 are inverted then they can be perceived only as either

convex/LFB (c = c0, θ = θb) or concave/LFA (c = c1, θ = θa), and the probability of a convex response qb

defines the log prior ratio

Lb/σL =
1
σL

log
p(c0)
p(c1)

p(θb)
p(θa)

. (22)

For the na = 10 stimuli used here (see two examples in Figure 1), the measured number ma of convex

21



(r = 0) responses defines a likelihood function for the probability qa of a convex response as

p(ma|qa) = qma
a (1− qa)na−ma , (23)

where na −ma is the number of of concave responses, and the constant binomial coefficient Cna,ma has

been omitted because it will not affect our final estimate of qa. Notice that, given na = 10 stimuli which can

be perceived as either convex/LFA or concave/LFB, the number ma of convex responses can be considered

to be the number of ‘votes’ for the LFA lighting direction θa and the convex shape c0; and the number of

concave responses na−ma can be considered to be the number of ‘votes’ for the LFB lighting direction θb

and the concave shape c1.

Similarly, for the nb = 10 stimuli (as in an inverted version of Figure 1), the number mb of convex

(r = 0) responses defines the likelihood function

p(mb|qb) = qmb
b (1− qb)nb−mb . (24)

The values q̂a and q̂b for qa and qb that maximise Equations (23) and (24), respectively, are maximum

likelihood estimates (MLE), and are given by the proportion of convex responses

q̂a = ma/na and q̂b = mb/nb. (25)

At this point, we can either find estimates of the two priors using an easy but opaque method, or using

a transparent but hard method. The easy opaque method consists of using a numerical search for prior

values that maximise the product of the likelihoods defined in Equations (23) and (24). The hard transparent

method is described below, and is intended to provide some insight into how the priors are estimated. Both

methods provide the same maximum likelihood estimates (MLE) of the prior values.

For any measured value of qa and qb, we can obtain La/σL and Lb/σL via Equation (20) (recall that

qa = P (c0|xa)). So, thus far, we have two known terms, La/σL and Lb/σL. Equations (21) and (22) can
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then be used to express their difference in terms of the log ratio of prior values at θa and θb

La − Lb
σL

=
1
σL

log
p(c0)
p(c1)

p(θa)
p(θb)

− 1
σL

log
p(c0)
p(c1)

p(θb)
p(θa)

(26)

=
2
σL

log
p(θa)
p(θb)

(27)

= ∆L, (28)

where ∆L is defined for convenience, and its value is known because it is the difference between our two

known terms (La/σL and Lb/σL). If we assume that p(θa) + p(θb) = 1 then we can substitute p(θb) =

1 − p(θa) in Equation (27), which can be re-arranged to obtain an estimate of the LFA prior as a logistic

function of ∆L

p̂(θa) = 1/(1 + e−σL∆L/2). (29)

Having obtained p̂(θa), this is used to find an estimate p̂(c0) the convexity prior, as follows. First, define

Rc = p(c0)/p(c1) (30)

= p(c0)/(1− p(c0)) (31)

Rθ = p(θa)/p(θb) (32)

= p(θa)/(1− p(θa)), (33)

so that Equation (21) can be written as

La/σL =
1
σL

log
Rc
Rθ
. (34)

Multiplying both sides by σL, and re-arranging yields

Rc = Rθe
La . (35)

Re-arranging Equation (31) yields

p(c0) = 1/(1 + 1/Rc), (36)

23



and substituting Equation (35) in (36) yields

p̂(c0) = 1/(1 + 1/(RθeLa)), (37)

where Rθ is known from Equation (33), and the LFB prior estimate is obtained as p̂(c1) = 1− p̂(c0).

In summary, the maximum likelihood estimates (MLE) q̂a and q̂b are found from the observer’s responses

using Equations (25) and (25). These can then be used in the steps defined in Equations (27-29) to obtain an

estimate p̂(θa) of the LFA prior, which can be used in Equations (30-36) to obtain an estimate p̂(c0) of the

convexity prior. Thus, the LFA prior and the convexity prior can be estimated from the observer’s responses.

The functional invariance property of maximum likelihood estimates ensures that these estimates, which are

derived from the MLE q̂a, are also maximum likelihood estimates.

Estimating Priors for Simulated Observers. The method for estimating priors was tested using data from

a set of 20 simulated observers, a number which is similar to the number of children in each age group

used here. All 20 simulated observers had the same LFA prior p(θa) = 0.8 and the same convexity prior

p(c0) = 0.6, with σL = 1. Each simulated observer gave stochastic binary ‘responses’ in accordance with

Equation (18) for na = 5 stimuli and nb = 5 ‘inverted’ versions of those stimuli (eg for the picture stimuli).

The responses from each simulated observer were then used to obtain an estimate of the LFA and convexity

prior for that simulated observer, using the method described above for actual observers. Considered over all

20 simulated observers, the mean LFA prior was estimated as p(θa) = 0.823 (sem=0.0162), and the mean

convexity prior was estimated as p(c0) = 0.612 (sem=0.0235), neither of which is significantly different

from the known values of these priors (0.8 and 0.6, respectively). The results of these numerical experiments

suggest that the method provides accurate estimates of the LFA and convexity priors.

Setting the value of σL. If the value of the decision-noise parameter σL is set too low then numerical

problems arise which prevent accurate estimates of priors. For example, setting σL = 1, if the LFA prior

p(θa) = 0.8 and the convexity prior p(c0) = 0.6 then the upper limit of the integral in Equation (18) is

L/σL = 1.79 which yields P (c0|x) = 0.96 (where L/σL is a z-score). If σL is set much lower than

unity then P (c0|x) values are forced towards zero or one for most values of the convexity and LFA priors.

Numerical experiments indicate that setting σL ≤ 0.5 leads to under-estimates of the prior values, and that,

in order to recover prior values over a reasonable range, it is necessary to set σL ≥ 0.75, and we use σL = 1
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in this paper. Overall, using data from the 171 children, increasing the value of σL increases the rate at

which the LFA prior increases with age, but leaves the rate at which the convexity prior increases with age

fairly constant at about zero. (A slightly different definition of σL was used in (Stone et al. (2009)), which

we denote as σ2009, and in (Stone et al. (2009)), σ2009 = 2. The value of σL = 1 used here is equivalent to

a value of σ2009 = 4.34).
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(a) (b)

Figure 1: (a) Example of symbol stimulus, and, (b) picture stimulus. Each stimulus was presented as here,
and upside-down, and the observer indicated whether the shape appeared to be convex (‘out’) or concave
(‘in’). Both stimuli here should be perceived as convex if the observer assumes light comes from above (ie
from the top of the page). Conversely, turning the page upside-down forces the observer to perceive these
stimuli as concave if light is assumed to come from above. Note that these are 2 samples of the 10 actual
stimuli used, and that the embossed appearance of (a) was represented by a flat (ie non-embossed) stimulus.
The full set of stimuli can be seen in (Stone and Pascalis (2010)). Figure b is reproduced with permission
from Jan Sevcik.

26



2 3 4 5 6 7 8 9 10 11

0.4

0.5

0.6

0.7

0.8

Age (years)

Li
gh

t-f
ro

m
-a

bo
ve

 p
rio

r

(a) Symbols

2 3 4 5 6 7 8 9 10 11

0.4

0.5

0.6

0.7

0.8

Age (years)

Li
gh

t-f
ro

m
-a

bo
ve

 p
rio

r

(b) Pictures

Figure 2: Changes in the light-from-above (LFA) prior with age for (a) symbol stimuli and (b) picture
stimuli.
(a) For symbols, the mean LFA prior is ρsym = 0.629 (sem= 0.013). A regression analysis of priors ρsym
against age yielded ρsym = 0.034 × age + 0.375 (R2 = 0.839, F = 35.9, p = 0.004), which predicts a
neutral lighting direction prior (0.5) at 3.63 years.
(b) For pictures, the mean LFA prior is ρpic = 0.700 (sem= 0.012). A regression analysis of priors ρpic
against age yielded ρpic = 0.035 × age + 0.444 (R2 = 0.947, F = 89.1, p < 0.001), which predicts a
neutral lighting direction prior (0.5) at 1.61 years.
In each graph, the dashed line is a fitted regression line, and error bars denote standard errors.
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Figure 3: Changes in convexity prior with age for (a) symbol stimuli and (b) picture stimuli.
(a) Symbol convexity priors. The mean convexity prior is 0.446 (sem= 0.013). A regression of convexity
prior γsym against age yielded γsym = 0.002× age + 0.438 (R2 = 0.007, F = 0.034, p = 0.862).
(b) Picture convexity priors. The mean convexity prior is 0.509 (sem= 0.011). A regression of convexity
prior γpic against age yielded γpic = −0.001× age + 0.519 (R2 = 0.002, F = 0.008, p = 0.934).
In each graph, the dashed line is a fitted regression line, and error bars denote standard errors.
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Lighting-direction

prior=marginal

Shape=bowl

ShapeLighting direction

 

 

 

Shape=face

‘prior’ with bowl shape

Figure 4: The problem with priors. A hypothetical multivariate (2D) observer’s prior for shape c and
lighting direction θ defines a surface with a height given by p(θ, c). The prior for shape is the marginal
distribution p(c) (the solid curve on the left hand wall), and the prior for lighting direction is the marginal
distribution p(θ) (the dotted curve on the right hand wall). For example, the shape parameter c = 3 could
specify the face-like stimulus shown. If we used the bowl-like stimuli shown in an experiment (eg with
shape parameter c = 1) then the measured ‘prior’ for lighting direction corresponds to a cross-section
of the multivariate prior p(θ, c) at c = 1, given by the dashed curve. If the two parameters c and θ are
independent then the measured ‘prior’ would be a scaled version of the observer’s true prior. However, if
c and θ are correlated (as shown here) then the measured ‘prior’ is the dashed curve, which is a scaled and
shifted version the observer’s true prior, where the amount of shift depends on the particular shape c used
to measure the observer’s prior.
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