This is a repository copy of *A cost-effectiveness model of prostate cancer screening*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/42939/

Conference or Workshop Item:

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
A cost-effectiveness model of prostate cancer screening

Matthew Mildred
Jim Chilcott
Silvia Hummel
ScHARR
Contents

• Introduction to the project and topic
• Disease natural history model
• Data and model calibration
• Validation
• Results
• Conclusions
The project

• **Client:** UK National Screening Committee

• **Purpose:** Help determine IF a national prostate cancer screening programme should occur AND which screening strategy is best.

• **Objectives:**

 Estimate costs, benefits and resource implications of alternative screening options.
Introduction to prostate cancer

The prostate is a small gland in men behind the bladder.

The most common cancer in men in UK (excluding non-melanoma skin cancer)

In 2008:
Over 37,000 men diagnosed
Over 10,000 men died from prostate cancer
Aim of screening:
Reduce cancer mortality, morbidity and treatment costs through early diagnosis and intervention.

Current evidence:
In 2009 two large RCTs reported apparently inconsistent results in terms of the death rate ratio:

- ERSPC – significant reduction in PCa death rate
- PLCO – no statistically significant reduction
Challenges:

• Effectiveness of different screening programmes unknown.
• Scarce data around disease process due to its unobservable nature.
• Multiple unknown parameters in cancer screening model.
Solution:

- Develop loosely parameterised cancer screening simulation model.
- Calibrate unobservable model parameters to observed data.
- Estimate impact of prostate cancer screening using calibrated model.
About the model:

- Disease natural history model (Simul8)
- Calibration module (Excel, Visual Basic)
- Simulation model of prostate cancer screening (Simul8)
- Resource impact model (Excel)
Screening strategies investigated

<table>
<thead>
<tr>
<th>No. Screens</th>
<th>Screening Age (years)</th>
<th>Screening Interval (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>50</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Repeat</td>
<td>50-70</td>
<td>2, 4</td>
</tr>
<tr>
<td></td>
<td>50-74</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td></td>
<td>55-70</td>
<td>2, 4</td>
</tr>
<tr>
<td></td>
<td>55-74</td>
<td>2, 4</td>
</tr>
</tbody>
</table>
Outputs:

- Age-specific incidence
- Age-specific mortality
- Prostate cancer stage distributions
- Over-detection rate
- Lead time
- Life years gained, QALYs gained
- Probability of developing prostate cancer
- Etc...
Definitions & terms used

Over-detection:

- PCa Onset
- Screen Detection
- Lead-time
- Clinical Diagnosis
- Other Cause Mortality
- PCa Mortality

Relevant:

- PCa Onset
- Lead-time
- PCa Mortality
- Screen Detection
- Clinical Diagnosis
- Other Cause Mortality
Disease natural history model
Data

<table>
<thead>
<tr>
<th>Data</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age specific cancer incidence</td>
<td>Office of National Statistics</td>
</tr>
<tr>
<td>Cancer stage distributions</td>
<td>ProtecT RCT</td>
</tr>
<tr>
<td></td>
<td>UK Cancer Registry (ERIC)</td>
</tr>
<tr>
<td>Gleason score distributions</td>
<td>ProtecT RCT</td>
</tr>
<tr>
<td></td>
<td>UK Cancer Registry (ERIC)</td>
</tr>
<tr>
<td>PSA/biopsy test characteristics</td>
<td>ERSPC RCT</td>
</tr>
<tr>
<td></td>
<td>(Rotterdam section)</td>
</tr>
<tr>
<td>Progression Free Survival</td>
<td>ERSPC RCT</td>
</tr>
<tr>
<td></td>
<td>(Rotterdam section)</td>
</tr>
<tr>
<td>Overall Survival</td>
<td>ERSPC RCT</td>
</tr>
<tr>
<td></td>
<td>(Rotterdam section)</td>
</tr>
</tbody>
</table>
Calibration process

1. Initial parameter set
2. Generate new set of parameters
3. Run simulation for 50,000 people
4. Compare model prediction to data (SSE)
5. Accept/Reject parameter set
6. Repeat process 4,000 times
Total SSE during calibration
Validation: Incidence

The graph shows the age-specific incidence (per 100,000) of a condition across different age groups. The blue line represents the ONS incidence, while the red line represents the modelled incidence. The graph indicates a peak incidence in the age group of 75-79 years for both ONS and modelled incidences.
Validation: PCa mortality
Validation: BAUS

Localised G<7

Localised G=7

Localised G>7

BAUS data

ScHARR model
Results: Incidence

The graph shows the incidence of prostate cancer (PCa) per 1000 years across different age bands and screening intervals. The age bands are 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84, and 85+.

- **No screening**
- **Once at 50**
- **50-74 every 4 years**
- **50-74 every 2 years**
- **50-74 every year**

The incidence peaks in the 70-74 age band for the '50-74 every year' screening interval, with significant reductions observed for other screening intervals.
Results: Mortality

![Graph showing PCa mortality rates by age band and screening frequency.](image)
Over-detection & Lead time:

<table>
<thead>
<tr>
<th></th>
<th>Once at 50</th>
<th>50-74 every 4 years</th>
<th>50-74 every 2 years</th>
<th>50-74 every year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over-detection rate</td>
<td>18%</td>
<td>44%</td>
<td>45%</td>
<td>46%</td>
</tr>
<tr>
<td>Lead time (for over-detected cases)</td>
<td>15.2 yrs</td>
<td>11.6 yrs</td>
<td>12.5 yrs</td>
<td>13.0 yrs</td>
</tr>
</tbody>
</table>
Conclusions:

A minimal life gain is offset by the high levels of disease management and over-diagnosis:

- One off screening: life gain of 0.004 years (1.2 days) with 36 years of additional disease management
- Repeat screening: life gain of 0.03 years (10-11 days) with 67-84 years of additional disease management
Have you heard our findings?

BBC News 06/12/2010 http://www.bbc.co.uk/news/health-11930979

Experts scrap prostate screening proposal

UK experts have recommended against a screening programme for prostate cancer, saying its potential harms would outweigh any benefits.

The UK National Screening Committee says after weighing all the evidence, screening for this male cancer using a blood test called PSA is not advisable.

PSA screening has been contentious because of concerns about over-diagnosis.

Blood can be checked for PSA levels
Acknowledgements:

• Dr Anne Mackie and Prof Julietta Patnick at the UK National Screening Committee
• The South West Public Health Observatory
• The British Association of Urological Surgeons
• The ProtecT team