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ABSTRACT

Aims. Magnetohydrodynamic (MHD) sausage tube waves are excited in magnetic flux tubes by p-mode forcing. These tube waves
carry energy away from the p-mode cavity which results in a source of absorption. We wish to see the effect of an ensemble of ran-
domly distributed thin magnetic flux tubes on the absorption of p-modes for the model plage region and also study the effect of the
spacial weighting function on the theoretically calculated absorption coefficients.
Methods. We calculate the absorption coefficients of p modes for a model plage, assumed to consist of an ensemble of many thin
magnetic flux tubes with randomly distributed plasma properties. Each magnetic flux tube in the ensemble is modelled as axisymmet-
ric, non-interacting, vertically oriented and untwisted.
Results. We find that the magnitude and the form of the absorption coefficient is sensitive to the plasma-β of the tubes which is con-
sistent with previous work. Both the random distribution used to model the ensemble of flux tubes and the spatial weighting function
inherent to the measurement of the absorption affect the absorption. As the width of the weighting function increases, the absorption
increases.
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1. Introduction

Solar acoustic modes (p modes) are absorbed and scattered by
magnetic inhomogeneities such as sunspots or plage regions.
Scattering by such structures has been studied, using various
observational helioseismic techniques (see Braun et al. 1988,
Couvidat et al. 2006). Braun & Birch (2008) found that sunspots
can absorb over half of incident p-mode power and plage regions
can absorb around 20%. The measured “bell-shaped” absorp-
tion has a well-established frequency dependence; the absorp-
tion rises from zero at zero frequency, plateaus around 4 mHz
and then suffers a precipitous drop at higher frequencies; this
drop off has now been deemed unphysical due to local emission
at higher frequencies (Braun & Birch 2008).

This “bell-shaped” absorption had been known for decades
(e.g., Braun et al. 1988) and theoretical models have been con-
structed to interpret the frequency variation in an attempt to un-
derstand the sub-structure of these magnetic regions. One pro-
posed mechanism is mode conversion. Classical MHD wave
theory reveals that where fast and slow magnetoacoustic waves
share the same phase velocity (i.e., at the equipartition layer),
transformation of acoustic wave energy occurs between these
two waves (see, for example Crouch & Cally 2003). Other mech-
anisms include resonant absorption (Hollweg 1988), mode mix-
ing (D’Silva 1994) and excitation of tube waves through p-mode
buffeting (Bogdan et al. 1996, Hindman & Jain 2008).

Spruit (1981) derived the governing equations for two basic
modes of oscillation for a thin magnetic flux tube: kink modes,
which describe transverse, incompressive motions of the tube
supported by magnetic tension, and sausage modes, which are
longitudinal, compressive motions driven by the external pres-
sure perturbations at the boundary between the tube and the non-
magnetic medium. The excitation of tube waves through p-mode

buffeting was first introduced in Spruit (1991) and further ex-
amined in Bogdan et al. (1996). Bogdan et al. (1996) calculated
p-mode damping rates for such a mechanism using a photo-
spheric stress-free boundary condition thus only allowing energy
to be lost down the tube as the waves are reflected at the sur-
face. To combat this issue of what surface boundary condition
to use, Hindman & Jain (2008) introduced a maximal-flux con-
dition whereby no reflection takes place at the surface, allowing
energy to propagate above the surface. This boundary condition
therefore, gives the other extreme of the stress-free condition,
i.e., it places an upper limit on the energy lost to the solar atmo-
sphere. Jain et al. (2009) studied this mechanism to calculate the
absorption of p modes in a simulated plage region, comparing
with observational results from Braun & Birch (2008).

In this paper we wish to study two different effects: how
do details of the observational kernel function which repre-
sents the spatially weighted average of the magnetic flux around
a point, modify the measured absorption coefficient and how
does a distribution of tube parameters (i.e., plasma-β) influence
the physical absorption. We construct a model consistent with
Jain et al. (2009) in order to simulate the absorption of a plage
region, with a random collection of thin, axisymmetric, vertical
magnetic flux tubes. In§2 we describe the equilibrium config-
uration of our magnetic flux tubes, which are embedded in an
adiabatically stratified, plane-parallel, polytropic atmosphere. In
§3 we construct a wave field for our model. In§4 we describe
the absorption mechanism. We present our results and discuss
our findings in§5 and conclude in§6.
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2. Equilibrium Configuration

We consider magnetic fibril fields as axisymmetric magnetic flux
tubes embedded in a plane-parallel, gravitationally stratified at-
mosphere. We wish to study the excitation of magnetohydrody-
namic (MHD) tube waves through the buffeting of the tubes by
external acoustic oscillations residing beneath the solar photo-
sphere.

2.1. Background Atmosphere

We model the nonmagnetic medium as a polytropic atmosphere
with constant gravity acting downwardsg = −g ẑ; z is increasing
upwards. The pressure, density and sound speed vary as power
laws as follows:

Pext(z) =
gz0ρ0

a + 1

(

− z
z0

)a+1

= P0

(

− z
z0

)a+1

, (1)

ρext(z) = ρ0

(

− z
z0

)a

, (2)

c2
ext(z) = −

gz
a
, (3)

where the subscript ’0’ refers to the value at the model photo-
sphere. Following Bogdan et al. (1996), Hindman & Jain (2008)
and Jain et al. (2009) we set the truncation depth atz = −z0
which is the model photosphere where the quantitiesρ0 andP0
are the values of the mass density and gas pressure at this depth.
Above the truncation depthz > −z0 we assume the existence of
a hot vacuum (ρext → 0 with temperatureText → ∞). The exter-
nal pressure, density and sound speed increase with depth and as
our atmosphere is in convective equilibrium, the polytropic in-
dexa is related to the ratio of specific heatsγ via a = 1/(γ − 1).
We also set the following characteristic physical scales for our
model photosphere,ρ0 = 2.78× 10−7 g cm−3, P0 = 1.21× 105

g cm−1 s−1, andg = 2.775× 104 cm s−1, which coincide with
the photospheric reference model of Maltby et al. (1986). The
choice of polytropic indexa = 1.5 yields the truncation depth
z0 = 392 km and a photospheric sound speed of 8.52 km s−1.

2.2. Slender Magnetic Tube Configuration

We assume the magnetic field is comprised of thin magnetic flux
tubes with the following properties:

– Vertically aligned with thez-axis.
– Untwisted and axisymmetric.
– Embedded inside the field-free polytropic atmosphere.
– Potential magnetic field, thus force free (i.e., no internal cur-

rents).
– Thin such that the tube’s radius is much smaller than any

characteristic length scale such as the atmospheric scale
lengths and the wavelength of tube waves.

– Flux tube interior has the same temperature variation with
depth as the surrounding polytrope.

For such a thin magnetic flux tube to be in hydrostatic and ther-
modynamic balance requires that temperature and total pressure
are uniform across the tube and equal to the external values. Thus
the magnetic pressure has the same scale height as the gas pres-
sure, which results in a constant plasma-β with height within the
tube. Since the gas pressure decreases rapidly with height in the
solar atmosphere so does the magnetic pressure; this then results

in significant flaring of field lines which inevitably breaks the
thin flux tube approximation. This is the reason for truncating
the polytrope at a depth which ensures that the thin flux tube ap-
proximation is valid. The radial variation of the magnetic field is
ignored (see Bogdan et al. 1996 for details). Thus the tube’s in-
ternal pressureP(z), densityρ(z), magnetic fieldB(z), and cross-
sectional areaA(z) can be described as follows,

P(z) =
β

β + 1
Pext(z), (4)

ρ(z) =
β

β + 1
ρext(z), (5)

B2(z)
8π
=

1
β + 1

Pext(z), (6)

A(z) =
θ

B(z)
=

(

β + 1
8πPext(z)

)1/2

θ. (7)

It is important here to point out the relationship betweenA(z),
B(z) andθ for a single tube. For any given flux tube we are free to
specify only two of the four parameters: the photospheric radius
R0 (or cross-sectional areaA0 = πR2

0), the magnetic fluxθ, the
photospheric field strengthB0 and the plasma-β. Once specified,
these two are the two remaining parameters are determined by
equations (6) and (7).

The next step is to simulate a plage region by considering
a random distribution of flux tubes. We choose to restrict our
attention to a range ofβ values between 0 and 2, spanning the
strong to weak field regimes. We shall use three different ran-
dom distributions, auniform distribution so allβ values have
equal probability, thus meanβ = 1. We shall also consider anor-
mal (Gaussian) distribution of flux tubes with meanβ = 1 and
variance 1 (or e-folding length of 1). The final distribution we
shall take is anexponential distribution such that the probability
decreases asβ increases with meanβ = 0.2 and variance 1. For
simplicity we shall assume that every individual tube has equal
magnetic fluxθ. This means that changingβ has the effect of
changing the radius of the tube (see equation (7)).

3. Wavefield description

The field-free atmosphere supports resonant acoustic oscilla-
tions (f and p modes) that are trapped in a waveguide below the
model photosphere. The upper boundary of the waveguide is the
photosphere itself while the lower boundary is refractive, arising
from the linear increase in temperature with depth.

3.1. Wave equations

In the field-free atmosphere, for wave perturbationsp′ext, ρ
′
ext,

ξ′, in pressure, density and fluid displacement, respectively, we
have the following linearized hydrodynamic equations,

ρ′ext + ξ
′
‖
∂ρext

∂z
+ ρext(∇ · ξ′) = 0, (8)

p′ext + ξ
′
‖
∂Pext

∂z
+ γPext(∇ · ξ′) = 0, (9)

ρext
∂2ξ′

∂t2
+ ∇p′ext − gρ′ext = 0, (10)
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whereξ′‖ = ξ
′ · ẑ. By eliminatingp′ext andρ′ext and substituting

ξ′ = ∇Φ whereΦ is the displacement potential we obtain the
following partial differential equation,

∂2
Φ

∂t2
= c2
∇

2
Φ − g

∂Φ

∂z
. (11)

Here we have dropped the subscript onc2
ext because, as men-

tioned earlier, the temperature variation inside and outside the
tube is the same.

The incident acoustic wavefield expressed by equation (11)
supports plane wave solutions of the form,

Φ(x, t) = Aei(kx−ωt)Q(z), (12)

whereA is the complex wave amplitude,ω the temporal fre-
quency, andk the horizontal wavenumber.Q(z) is the vertical
eigenfunction. Substituting equation (12) into (11) generates the
following ordinary differential equation

[

c2 d2

dz2
− g

d
dz
+ (ω2 − k2c2)

]

Q(z) = 0. (13)

3.2. Boundary Conditions

Using the physical boundary conditions that the solution van-
ishes deep in the atmosphere and the Lagrangian pressure per-
turbations vanishes at the surface (i.e., at the truncation depth
z = −z0), the solutions to equation (13) form a set of orthogonal
eigenfunctions,

Q(z) = w−(µ+1/2)Wκ, µ(w), (14)

which depends on the following dimensionless parameters,

w = −2kz, µ =
(a − 1)

2
, ν2

=
aω2z0

g
, κ =

ν2

2kz0
.

Vanishing Lagrangian pressure perturbation at the up-
per boundary (∇ · ξ′ = 0), at z = −z0, requires the
following quantization condition (see Bogdan et al. (1996) or
Hindman & Jain (2008) for details),

Wκ, µ+1

(

ν2

κ

)

= 0. (15)

The eigenvaluesκ have a discrete set of values. For the spe-
cial case of a “complete” polytrope, wherez0 = 0, the eigenval-
ues take the special formκn = 1/2+ µ + n. In our more general
case, withz0 , 0, theκn must be generated numerically from the
roots of equation (15).

4. Absorption via the Excitation of Tube Waves

Here we consider the absorption of acoustic waves arising from
the excitation of magnetic tube waves. We ignore the excitation
of the acoustic jacket and the existence of mode mixing (see
Bogdan & Cally 1995 for a full investigation into the presence
of laterally evanescent jacket modes and Gordovskyy et al. 2009
for an explanation of the role of mode mixing in p-mode absorp-
tion).

4.1. Magnetic Flux Tube Oscillations

We are seeking waves on thin tubes that lack internal struc-
ture. Only three types of MHD waves satisfy this criterion: tor-
sional Alfvén waves, longitudinal (sausage) waves and trans-
verse (kink) waves. We ignore torsional Alfvén waves because
the p-mode oscillations are irrotational when the atmosphere is
adiabatically stratified and therefore do not couple with torsional
waves. In this paper we will also ignore the kink waves and
specifically concentrate on axisymmetric oscillations. Using the
formulation of Jain et al. (2009), the fluid displacement due to
the excitation of sausage waves within the tube can be described
by the following equation,
(

∂2

∂t2
+

2gz
2a + β(1+ a)

∂2

∂z2
+

g(1+ a)
2a + β(1+ a)

∂

∂z

)

ξ‖

=
(1+ a)(β + 1)
2a + β(1+ a)

∂3
Φ

∂z∂t2
. (16)

These sausage wavesξ‖(z, t) can be described as axisymmet-
ric pressure pulses that produce displacements that are primarily
parallel to the magnetic field. The p-mode driving term appears
on the right hand side of equation (16) through the displacement
potentialΦ. This equation can be put in nondimensional form
as,
(

d2

ds2
+
µ + 1

s
d
ds
+
ν2ǫ

s

)

ξ‖ =
A
z0

f (s), (17)

where,

s = − z
z0
, ǫ =

2a + β(1+ a)
2a

, f (s) = − (1+ a)(β + 1)
2a

ν2

s
dQ(s)

ds
.

The homogeneous version of equation (17) has the following
solution,

ψ‖(s) = s−µ/2H(1)
µ (2ν

√
ǫs), (18)

whereH is the Hankel function (Abramowitz & Stegun 1964)
andψ‖(s) represents a downward propagating sausage wave and
its complex conjugateψ∗‖ (s) represents the upward propagating
wave.

4.2. Absorption Coefficient for a Single Tube

In order to calculate the absorption of a single thin magnetic flux
tube, we follow the calculation presented in Jain et al. (2009)
and Hindman & Jain (2008). Quoting their result for the absorp-
tion coefficient α due to the generation of sausage waves, we
have

α =
πβ

2(2+ γβ)(β + 1)
λa+1

ν2H
A0

z2
0

(|Ω + I∗|2 + |I|2 − |Ω|2 + S), (19)

S = − (1+ a)(β + 1)
2a

ν2Q0

{

H(1)
µ

(

2ν
√
ǫ
)

(Ω + I∗)

+H(2)
µ

(

2ν
√
ǫ
)

(Ω∗ + I)
}

, (20)

whereλ = ν2/κ andH is an integral associated with the lateral
energy flux carried by any individual wave component (see Jain
et al. 2009, eqn. (11)). The integral

I =
∫ ∞

1
sµ+1ψ‖(s) f (s)ds, (21)
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Fig. 1. Absorption coefficient calculated as a function of frequency for a simulated plage consisting of a number of flux tubes for two different
BC. Each tube is assumed to be of the sameβ (= 1). Each panel shows the absorption coefficient for two different kernel function. One has much
broader wings (C = 1) than the other (C = 3). Each mode order is represented by a different colour: red (p1), green (p2), blue (p3) etc.

describes the interaction between the p mode and the sausage
wave.

The parameterΩ in equation (19) represents the boundary
condition (BC) at the surfaces = 1 (or z = −z0). Similar
to Jain et al. (2009) we take two separate BC at the surface, a
stress-free and a maximal-flux condition. As mentioned in§1,
the stress-free BC has the physical interpretation that all upward
propagating waves are reflected at the surface. Maximal-flux BC
can be interpreted as no wave reflection at the surface, thus all
upward propagating waves escape into the upper atmosphere.
For a detailed explanation of how to calculateΩ for these two
BC see Hindman & Jain (2008); here we simply quote their re-
sult,

ΩS F = i
(1+ a)(β + 1)

aπ
ν2 Q0

R −
R∗
R I, (22)

for stress-free BC where,

R = ν
√
ǫH(1)

µ+1

(

2ν
√
ǫ
)

+ (β + 1)(µ + 1)H(1)
µ

(

2ν
√
ǫ
)

,

and,

ΩMF = −
(1+ a)(β + 1)

2a
ν2Q0H(2)

µ

(

2ν
√
ǫ
)

, (23)

for maximal-flux BC.

4.3. Absorption for a Random Ensemble of Tubes

We wish to apply our theory to model the absorption coefficient
measured for a typical solar plage region by examining the effect
of a large number of thin magnetic flux tubes. We thus assume
that the tubes are sufficiently separated so as to neglect the effect
of multiple scattering.

In order to compute the number of tubesN required to esti-
mate the collective absorption coefficient of a plage we follow
Jain et al. (2009). We use a spatial weighting function or ker-
nel K, which linearly relates the distribution of magnetic flux in

the plage region, to the observed absorption. LetΘ(r, ω) be the
amount of magnetic flux sampled by an observation,

Θ(r, ω) =
∫

K(r′ − r, ω)|B(r′)|dr′, (24)

whereK(r, ω) is the kernel, and as Jain et al. (2009) assumed,

K(r, ω) = e−k2|r|2/π2
, (25)

wherek (= ω2 a
2κg ) is the horizontal wavenumber.N, the number

of flux tubes, is equal to the magnetic flux sampled by the kernel
functionΘ divided by the magnetic flux of an individual flux
tubeθ,

N =
Θ(r, ω)

θ
. (26)

It is thus clear thatN is dependent on the form of the spatial
weighting function. We shall investigate the effect of various ker-
nel functions by including a constantC in the spatial weighting
functionK as follows,

K(r, ω) = e−Ck2|r|2/π2
. (27)

Increasing the value ofC narrows the width of the kernel func-
tion K(r, ω) and decreases the magnetic fluxΘ(r, ω) (see eqn.
24), thereby reducing the number of tubes required (vice versa
for decreasingC).

To calculate the total absorptionαtot for the various distribu-
tions of tubes as discussed earlier in§2.2 we generate a random
collection of N tubes, each with a different value ofβi drawn
from the desired probability distribution. The collective absorp-
tion is then,

αtot =

N
∑

i=1

α(βi), (28)

whereα(βi) is the absorption for a single tube and the sum is
over flux tubes. For high values ofN, tubes with nearly identical
properties are treated in bulk to reduce the number of random
numbers that need to be generated.
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Fig. 2. Mean absorption coefficient with error bars calculated as a function of frequency for a simulated plage, for various random distributions in
β. Over-plotted with dashed lines is the case for simulated plage with identical tubes ofβ equal to the meanβ of the distribution. Each mode order
is denoted by a different colour: red (p1), green (p2), blue (p3), etc.

5. Results and Discussion

In this section we present the results for theoretically calculated
absorption coefficients of p modes by the generation of magnetic
tube waves in the convection zone through external p-mode buf-
feting. In particular, we investigate the effect of a distribution of
flux tube plasma-β. We considerθ to be the same for every tube
in this model.

5.1. Effect of Kernel function on the Absorption Coefficient

It was previously noted in Jain et al. (2009) that a poor approx-
imation for the observation kernel will give a poor approxima-
tion for the number of flux tubes necessary to simulate the plage
region. Here we wish to explicitly examine the effect of various
constantsC in the Gaussian kernel function on the absorption co-
efficientsα. In figure 1 we plot absorption coefficients forC = 1
and 3 for the two separate boundary conditions. Increasing the
value of this constantC, narrows the kernel, resulting in a smaller
value for the parameterN (see equations (26) and (27)). This
clearly reduces the amount of p-mode absorption for the sim-
ulated plage. Here we have assumed that each flux tube in the
plage is identical with the sameβ (= 1) value.

Clearly the absorption coefficient is sensitive to the width of
the kernel function. Knowing accurate kernel functions used for
observationally measuredα in magnetic regions is thus crucial
in correctly interpreting the amount of absorption observed.

5.2. Effect of a Random Collection of Flux Tubes on
Absorption Coefficients

Jain et al. (2009) assumed that each flux tube in the simulated
plage had the same value ofβ. However, intuitively, this is un-
likely to be the case for real solar plage regions. Thus, here we
consider magnetic fibrils with a random distribution ofβ values,
ranging from 0 to 2 as discussed in§4.3. We use three different
random distributions, uniform, normal (Gaussian), and an expo-
nential distribution and plot our results in figure 2. We gener-
ated 40 separate realisations for a given distribution then plotted
the mean absorption coefficient for this ensemble of realisations
(solid curve). The error bars represent the standard deviation ofα
within these 40 realisations. For comparison we have also over-
plotted, with dashed lines, the case of a simulated plage where
each flux tube is now assumed to have sameβ, i.e., a collection
of identical tubes withβ equalling the meanβ of the comparison
distribution.

For maximal-flux BC, the solid and dashed curves are in
good agreement with each other, whereas the stress-free BC
shows larger deviations. This is due to the fact that the absorption
coefficient is almost linear withβ (for β < 2) for maximal-flux
BC, whereas for the stress-free BC, it is nonlinear (this is ex-
plicitly explored in Jain et al. 2010). This effect is more for low
radial orders since these waves are confined closer to the surface
where the dynamics are more dominated by the upper boundary
condition.

In figure 2 the error bars also show an interesting pattern, for
low frequencies the error bars are very small and increase with
frequency. The error bars also reduce with increasing mode or-
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der. This behaviour is due to the parameterN (the number of
tubes required), which, because of its dependence on the ker-
nel, decreases as the horizontal wavenumber increases. The hori-
zontal wavenumber increases with frequency and decreases with
mode order. For high value for the numberN we have a larger
sample size and thus lower errors, and vice versa for lowN.

For the two upper BC used here, the maximal-flux condition
produces the most promising results at a first glance when com-
paring with observations (see Braun and Birch 2008). The stress-
free condition lacks the fall off as seen in the observed absorp-
tion coefficients at higher frequencies. However the unphysical
nature of this fall off (see Braun and Birch 2008) suggests that
extra caution should be taken when interpreting the observations.
Also, in reality theactual reflection at the solar photosphere is
likely to lie in between these two extreme conditions.

6. Conclusions

In this paper we have presented a calculation for the absorption
coefficient for a collection of vertical, axisymmetric, thin mag-
netic flux tubes designed to simulate a solar plage region. The
absorption mechanism used here is the generation of longitu-
dinal (sausage) tube waves through buffeting of the magnetic
fibrils by external solar p modes. The generation of these tube
waves carry energy out of the p-mode cavity and thus result in
the absorption of p modes.

We infer that there are a number of factors to consider when
investigating the absorption of p modes by magnetic regions. In
particular, the effect of the upper boundary condition, the obser-
vational kernel used to estimate the “effective” number of tubes
in a plage and the distribution of plasma-β amongst the collec-
tion of flux tubes. Besides local emission at high frequencies,
other factors such as the amount of reflection from the surface,
the plasma properties of the flux tubes in an ensemble and the
form of the spacial weighting function all have considerable ef-
fect on the absorption coefficient.

The small size of the error bars (see figure 2) tells us that
given the observed absorption coefficient for an active region,
we can be confident on the likely distribution ofβ that best fits
this observed active region. Thus if one can obtain a good match
between theory and observations we have a good diagnostic tool
with which to measure the statistical properties of the flux tubes
within a plage.
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