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Abstract

A system’s wiring constrains its dynamics, yet modelling of neural structures often overlooks the specific networks formed
by their neurons. We developed an approach for constructing anatomically realistic networks and reconstructed the
GABAergic microcircuit formed by the medium spiny neurons (MSNs) and fast-spiking interneurons (FSIs) of the adult rat
striatum. We grew dendrite and axon models for these neurons and extracted probabilities for the presence of these
neurites as a function of distance from the soma. From these, we found the probabilities of intersection between the
neurites of two neurons given their inter-somatic distance, and used these to construct three-dimensional striatal networks.
The MSN dendrite models predicted that half of all dendritic spines are within 100mm of the soma. The constructed
networks predict distributions of gap junctions between FSI dendrites, synaptic contacts between MSNs, and synaptic
inputs from FSIs to MSNs that are consistent with current estimates. The models predict that to achieve this, FSIs should be
at most 1% of the striatal population. They also show that the striatum is sparsely connected: FSI-MSN and MSN-MSN
contacts respectively form 7% and 1.7% of all possible connections. The models predict two striking network properties: the
dominant GABAergic input to a MSN arises from neurons with somas at the edge of its dendritic field; and FSIs are inter-
connected on two different spatial scales: locally by gap junctions and distally by synapses. We show that both properties
influence striatal dynamics: the most potent inhibition of a MSN arises from a region of striatum at the edge of its dendritic
field; and the combination of local gap junction and distal synaptic networks between FSIs sets a robust input-output
regime for the MSN population. Our models thus intimately link striatal micro-anatomy to its dynamics, providing a
biologically grounded platform for further study.
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Introduction

The mammalian brain is a vastly complex structure at every

level of description. Faced with the sheer breadth of neuron and

receptor types, many researchers are abandoning attempts to

intuit the ‘essential elements’ of a neural circuit, instead building

large-scale models of neural circuits, modelling neuron-for-neuron

[1–4]. This approach brings into sharp focus a further problem:

how should we wire up the models? After all, the more accurate

the underlying circuitry, the more confident we will be in linking

dynamics of neural models to experimentally-recordable neural

activity and, ultimately, to potential functions of the modelled

structure. Typical modelling fall-backs of fully, regularly, or

randomly connected networks are understandable choices when

faced with this problem. Yet no neural circuit has these network

topologies [5–8].

Establishing the detailed network of the striatum is a particular

priority, given the large number of experimental and theoretical

studies seeking to understand its computations [4,9–16]. This large

subcortical nucleus is the principal input structure of the basal

ganglia, and is thought crucial for both motor control and learning

[17,18]. Profound deficits in both arise from diseases – such as

Huntington’s or Parkinson’s – that directly affect the striatum or its

primary afferents. Within the striatum lies a complex, predomi-

nantly GABAergic, microcircuit [19]. Medium spiny projection

neurons (MSNs) are the only output neurons and comprise up to

97% of the cell population in rat, with GABAergic and cholinergic

interneurons forming most of the remaining cell population.

Despite their comparatively small number, the GABAergic fast-

spiking interneurons (FSIs) in particular exert a very strong

influence on the MSNs [20–22], receive input from similar

sources, and are interconnected by both chemical synapses and

gap junctions. However, the striatum’s lack of layers and

intermingling of neuron types has made it difficult to establish a

detailed picture of its intrinsic network, hindering progress towards

understanding the computations performed on its widespread

cortical inputs [23].

One compelling reason for choosing to model at one-to-one

scale is to explore a key question that can not be approached any

other way: are there natural scales for the size of striatal regions

involved in computing input-output functions? Much thought has

been devoted to this question. The ‘‘domain’’ theory of striatum

[9,24,25] began with the basic assumption that the natural

computational element of the striatum was the network of MSNs

within the radius of one MSN’s dendritic tree – a sphere of

approximately 200mm radius. Alexander and Crutcher [26]
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showed that microstimulation of primate sensorimotor striatum

could elicit discrete movements of single joints, with each

movement elicited from a small zone at most 1.2 mm in length.

Graybiel and colleagues [27,28] have argued that the pallidal-

projecting regions of primate striatum are sub-divided into

discernible cell clusters, each having a cross-sectional diameter of

between 200 and 800mm. More recently, Carillo-Reid et al [29]

have shown that global excitation of an in vitro slice of striatum can

induce the appearance of three or four cell assemblies – co-active

groups of cells – within an 800|600mm region. All these lines of

evidence point to different sizes and different reasons for defining a

‘computational element’ within striatum. Hence, by building at

such scales we can look for the natural size of the computational

element.

First though we had to build a model of the striatal network.

Complete reconstructions of neural circuits are technically

challenging, so quantitative data on the inputs and outputs of a

single neuron are often incomplete or absent, while many

published values are rough estimates. One way around this

problem is to use reconstructions of stained dendrites and axons as

guides [30]. Recent approaches test for appositions between cells

by passing three-dimensional reconstructions of the morphology of

several axonal and dendritic fields through each other [31–33],

yielding statistics on the probability and location of synapses

between two neurons. However, sets of complete, three-dimen-

sional reconstructions of both axonal and dendritic morphologies

are not available for most neural structures. Furthermore, building

a network based on intersections of a sample of reconstructions

may unknowingly limit the possible topologies.

To overcome these problems, we developed a stochastic

approach based on the density of overlapping neurites, determin-

ing the densities from prototype dendrite and axon models. We

applied this approach to reconstructing the three-dimensional

GABAergic microcircuit of the adult rat striatum. Building

prototype dendrite and axon models for MSNs and FSIs allowed

us to determine any omissions or inconsistencies in existing

quantitative data, and to establish constraints on the dendritic

locations of afferent input. Using these models to reconstruct the

three-dimensional network, we could address key questions about

striatal micro-anatomy: how sparsely is the striatum connected?

What are the comparative numbers of contacts for each type of

connection? Are there natural spatial scales of the sub-networks

within it? And do these scales correspond to previous electrophys-

iological [26] and theoretical [25] indications of functionally

separate sub-regions of striatum? Finally, we could use our

anatomical model as the basis for a dynamic model that showed

the functional consequences of the network’s structure. Our

network models provided unique insights into striatal circuitry,

overcoming the unintuitive nature of connectivity in three

dimensions.

Materials and Methods

The microcircuit and connection statistics
The striatal GABAergic microcircuit, shown in Figure 1, is

formed by the connections between the GABAergic MSNs and

FSIs. The MSNs are the only output neurons and comprise 90–

97% of the neuron population in rat [19,34], at a density of 84900

per mm3 [35]. The FSIs form 1–5% of the striatal neuron

population [19,36]. Stereological counting suggests that parvalbu-

min-immunoreactive neurons, the likely histochemical marker for

FSIs [37], make up 0.7% of the striatum [38,39]. As we will see,

our model supports this lower estimate: only an FSI density of at

most 1% resulted in numbers of FSI connections that are

consistent with current data.

Four connection types make up the microcircuit. First, MSNs

extend local axon collaterals that synapse on other MSN dendrites.

Long-established anatomically [40], considerable electrophysio-

logical evidence for them now exists [11,21,22,41,42]. Second,

axon collaterals from FSIs synapse onto MSN dendrites and somas

[43], and have a strong inhibitory influence [20–22,44–46]. Third,

FSI dendro-dendritic gap junctions [39,47] electrically couple the

Figure 1. The striatal GABAergic microcircuit studied in this
paper. Primary input to the striatum comes from glutamatergic (GLU:
.) fibres originating in the neocortex, thalamus, hippocampal formation
and amygdala, and dopaminergic (DA: &) fibres originating in the
hindbrain dopaminergic neuron bands. The medium spiny neurons
(MSNs) are interconnected via local collaterals of their axons projecting
to other nuclei of the basal ganglia. The fast-spiking interneurons (FSIs)
can form dendro-dendritic gap junctions between them; they may also
be connected by standard axo-dendritic synapses. All these intra-striatal
axo-dendritic connections (D) are GABAergic and hence inhibitory.
doi:10.1371/journal.pcbi.1001011.g001

Author Summary

The brain has an immensely complex wiring diagram, but
few computational models of brain regions attempt
accurate renditions of the wiring between neurons.
Consequently, these models’ dynamics may not accurately
reflect those of the region. Key barriers here are the
difficulty of reconstructing such networks and the paucity
of critical data on neuron morphology. We demonstrate an
approach that gets around these problems by using the
available data to construct prototype neuron morpholo-
gies, and uses these to estimate how the probability of a
connection between two neurons changes as we change
the distance between them. With these in hand, we
constructed artificial three-dimensional networks of the rat
striatum and find that the connection distributions agree
well with current estimates from anatomical studies. Our
networks show features and dynamical implications of
striatal wiring that would be difficult to intuit: the
dominant input to the striatal projection neuron arises
from other neurons just at the edge of its dendrites, and
the main inhibitory interneurons are coupled locally by
electrical connections and more distally by chemical
synapses. Together, these properties set a unique state
for the input-output computations of the striatum.

The GABAergic Striatal Microcircuit
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paired cells [14,20]. (Gap junctions between MSN dendrites

probably occur only in immediate post-natal tissue [11,48] so we

do not consider them here). Finally, the FSI axon collaterals

synapse onto other FSI dendrites: previously, evidence for these

connections was indirect [47], with others finding no electrophys-

iological evidence of synaptic connection [20]; however, a recent

study using transgenic mice found synaptic connections between

pairs of striatal FSIs in the majority of cases [21]. We study the

implications of this newly-described connection here.

The connection statistics between MSN pairs are partially

known. Conservative anatomical estimates place 600 synapses on

one MSN from other MSNs [19,49]. Stimulating an afferent MSN

elicits a post-synaptic response consistent with it making an

average of 3 synapses on the target MSN [44]. This gives a lower

bound of 200 MSNs afferent to each MSN. Other estimates

suggest a single MSN contacts around 12–18% of the other MSNs

within a 200mm radius axonal field, based on the observed

frequency of synaptically-coupled pairs in stimulation studies

[44,50]. This gives an upper bound of about 470 MSNs afferent to

1 MSN within a 200mm radius, in good agreement with previous

estimates [44,51]. Finally, Planert et al [22] recently reported

synaptic-coupling between 20% of all tested MSN pairs with

somas within 100mm of each other.

There is less data on the statistics of FSI connectivity. Previous

estimates of the number of FSIs afferent to a single MSN place

bounds of 4–27 FSIs per MSN [19,44]. Planert et al [22] recently

reported synaptic-coupling between 74% of all tested FSI-MSN

pairs with somas within 100mm of each other. Fukuda [39]

reported densities between 500 and 4000 gap junctions per mm3

of striatal tissue, and observed typically 1–3 junctions per

connected FSI pair. In Table 1, we use these data to calculate

estimates for the number of FSIs connected to one FSI by gap

junctions. These estimates show that we expect each FSI to be

coupled to at most only a few others, and in many cases to have no

gap junctions at all. As a consequence, and contrary to Fukuda’s

description of this network as ‘‘dense’’, the FSI gap junction

network seems to be very sparsely coupled.

Outline of approach
Our aim was to construct a stochastic model of the three-

dimensional network of the adult rat striatum, and study the

statistics of contacts between the striatal GABAergic neurons. By

‘‘contact’’ we mean whether or not one neuron connects to

another: a contact is one or more synapses or gap junctions. Our

starting hypothesis was that, in a three-dimensional, non-laminar

structure like the striatum, the minimum probability of contact

between a pair of neurons is proportional to the density of their

overlapping neurites. This is a passive process: numbers of contacts

exceeding this minimum probability thus imply active processes,

especially axon guidance towards specific types of target neurons.

We encapsulate the role of active processes as an increase in the

effective density of the axon. As we will see, this relatively simple

model is able to capture the known statistics of the microcircuit’s

connectivity.

Figure 2 illustrates the steps in our approach to reconstructing

contact probability functions, starting from models of dendrites

and axons. We began by generating the dendrites and axons of

both MSNs and FSIs using stochastic models (Figure 2A). For the

dendritic trees we used an existing algorithm [52] that has been

successfully applied elsewhere. However, some key parameters for

this algorithm require data that are typically unavailable for most

neuron types. We overcame this problem by finding these

parameters using an evolutionary algorithm search of a fitness

space defined by known properties (e.g. number of branch points)

of the neuron type’s dendritic tree. For the axon we created our

own model based on known properties of MSN and FSI axons. By

creating models for the dendrite and axon structure, we had a full

set of data on the dendritic branches and axons at each distance

from the soma, including their approximate volume (Figure 2B).

Hence we produced a large number of dendritic trees and axons to

estimate expected neurite volume.

We could then compute the expected spherical volume that was

occupied by dendrite (or axon) at a given distance from the neuron

body (Figure 2C,D). Then, in turn, we computed the expected

volume of overlap between the spherical fields given the distance

between neuron bodies for each connection type (Figure 2E). For

every 1mm3 voxel in this overlapping volume, we computed the

probability of its occupancy by both neurites (axon and dendrite or

dendrite and dendrite, depending on the connection type) and thus

the probability of intersection. Summing over all voxels in the

overlapping volume thus gave us the expected number of

intersections for each distance between neuron bodies

(Figure 2F). We treat this as a probability of contact when

constructing our three-dimensional networks. We elaborate on

these steps below.

Dendrite models: The Burke algorithm
We chose the Burke algorithm [52] for reconstructing model

dendrites. The Burke algorithm constructs dendrites in short,

cylindrical segments DL mm long, each successive segment

tapering in diameter as the tree extends away from the soma.

Details of the Burke algorithm are given in Text S1. At each step

of the algorithm, the current segment can either extend, branch,

or terminate. If the segment branches, it bifurcates into two

daughter segments, both narrower than the parent, and one larger

than the other. If the segment terminates, the branch is complete

Table 1. Estimates of the mean number of FSIs gap-junction coupled to each FSI, derived from Fukuda’s [39] data.

Number of gap junctions per coupled pair

FSI density (%) FSI density (# FSIs) 1 2 3

1 850 ½0:54,4:7� ½0:29,2:35� ½0:2,1:57�

3 2547 ½0:2,1:57� ½0:1,0:79� ½0:07,0:52�

5 4245 ½0:12,0:94� ½0:06,0:47� ½0:04,0:31�

Fukuda reported densities of between 500–4000 gap junctions per mm3 across the striatum; we used this to estimate lower and upper bounds for the number of FSIs
gap-junction coupled to a FSI, for each FSI density and for between 1 and 3 gap junctions per coupled pair. For example, the first entry of the fourth column indicates
that if we assume 2 gap junctions are made per coupled pair and the FSI density is 1%, then each FSI contacts between 0.29 and 2.35 other FSIs via gap junctions. We
assumed here a MSN density of 84900 per mm3 [35] when computing the density of FSIs.
doi:10.1371/journal.pcbi.1001011.t001

The GABAergic Striatal Microcircuit
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and the algorithm moves to the segment on the next unfinished

branch. This algorithm is repeated from a single starting segment

to obtain each of the dendritic trees necessary to form a complete

dendrogram: we built 6 trees for a complete MSN dendrogram

[40,53,54], and 5 trees for a FSI [37]. The dendrogram records

the diameter, distance from soma, parent segment, and end type

(branch, termination, or continuation) of each dendritic segment.

The probability of a dendritic segment branching or terminat-

ing is a function of its diameter. To determine these probability

functions, Burke et al [52] pooled morphological analyses of six

spinal a-motor neurons to obtain a distribution of the number of

branch and termination points at each dendritic diameter, and

found the probability per-unit-length of either termination or

branching; all their resulting probability functions had the

exponential form

p(EDh)~k1 exp (k2h), ð1Þ

for the probability of event E (termination T or branching B),

given dendrite diameter h and the free parameters k1 and k2. A

single function p(T Dh) of this form was sufficient to fit the

termination probability data; two functions of this form p1(BDh)

and p2(BDh) were required to fit the branch probability data. The

single branching probability p(BDh) was obtained by evaluating

both and using the minimum value:

p(BDh)~minfp1(BDh),p2(BDh)g: ð2Þ

Figure 3A shows the termination and branch probability functions

obtained from the a-motor neuron data by [52] (for a segment

length of DL~25mm).

As for most neuron types, detailed data on the diameters of

dendrites at branch and termination points are not available for

MSNs and FSIs, and so we could not define the probability

functions and apply the Burke algorithm directly. Instead, we

gathered morphological data on the known properties of their

dendritic trees (Table S1 in Text S1): branch order, dendritic

radius, number of terminals, and terminal diameter. We then

searched to find the parameters for the probability functions that

resulted in dendrograms fitting all the constraints of the gathered

data.

Finding the parameters for the Burke algorithm

probability functions. We used an evolutionary algorithm

search to find the set of parameter values for the probability

functions of the Burke algorithm, one set for MSN and one set for

FSI dendrograms. Each candidate in the search was a vector

comprising values for the 6 parameters of the probability

functions, namely k1 and k2 for each of p1(BDh), p2(BDh) and

p(T Dh). The complete form of the search is given in Text S1. In

general, we began with an initial population of candidates, each

with randomly chosen values. The values from the first candidate

were then used in the Burke algorithm to generate multiple

instances of the dendrogram. The fitness value of that candidate

was taken as the proportion of resulting dendrograms that fell

within all the bounds on morphological properties (Table S1 in

Text S1). Each candidate was evaluated in turn, and ranked by

fitness. The most-fit candidates were randomly paired, and the

others discarded. Each pair mated to produce two offspring by

crossing over the two vectors at a randomly chosen point. Each

parameter in the retained (most-fit) candidates and their offspring

was then tested for mutation to some other value, with low

probability. The resulting new population then formed the basis

for the next set of Burke algorithm tests. This cycle of ‘population

testing then pair-mate-mutate’ was repeated until the most-fit

candidate reliably generated dendrograms that fell within all the

bounds on morphological properties (Table S1 in Text S1), or the

maximum number of population generations was reached. We

used the most-fit candidate to generate our dendrograms that then

underpinned the volume and intersection calculations.

Axon models
We use a simpler model for the axons, partly due to the absence

of equivalent data to constrain a growth algorithm, partly because

Figure 2. Anatomy model construction. Panels A–F show in order
the steps involved in moving from a dendrite model to a probability
function of contacts between two neuron types. A We create complete
dendrograms using a stochastic algorithm, bounded by known
properties of the dendrites. This example shows all six dendritic trees
of the complete dendrogram for one MSN. B Each segment of each
branch is modelled as a cylinder. The diameter of successive cylinders
tapers with distance from the soma. Summing over all branches gives
the total volume of dendrite (or axon) at each distance from the soma.
C We then compute the proportion of spherical volume occupied by
dendrite (or axon) at each distance from the soma. D Expected values
for occupied volume are computed over many repetitions of the
growth algorithm. The result is a continuous function of volume
occupancy for each dendrite and axon type. E We find the intersecting
volume between the dendrite and axon spherical fields for each
distance ds between somas. The volumes are discretised into 1mm3

voxels. F For each voxel, given its distance from the respective somas,
we compute the probability of intersection between neurites (dendrite-
axon or dendrite-dendrite) from the volume occupancy functions (in
panel D). We then sum over all probabilities to get the expected
number of intersections between neuron pairs as a function of distance
between their somas. We use the resulting functions to construct our
networks.
doi:10.1371/journal.pcbi.1001011.g002

The GABAergic Striatal Microcircuit
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their structure is simpler, and partly because we can later use the

axon model to encapsulate the process of attraction between axon

and dendrites. The only quantitative description of local MSN

axon collateralisation we are aware of is due to Preston et al [53],

who described axons maintaining a diameter of 0:5mm over their

initial length, then branching into 4 collaterals within 250mm of

the soma, each with a diameter of 0:25mm (which terminate in

extensive branching). This suggests an approximately two-fold

increase in total diameter after all the branching had occurred.

Similar branching patterns have been reported in [55]. We are not

aware of any equivalent data for striatal FSI axons, and so use the

same axon model for both as their axonal fields are similar [20].

Based on these observations, we proposed a sigmoidal model of

the changes in axon diameter, in which the total axon diameter

A(d) at distance d from the soma is given by

A(d)~0:5z
0:5

1z exp½{b(d{a)�
: ð3Þ

We used a~125 and b~0:075 throughout for both MSNs and

FSIs. With these values, the model captures all axonal branching

occurring between *50mm and *200mm from the soma [53,55],

as illustrated in Figure 4A. We used a maximum distance from the

soma of 300mm for both the FSIs [20,37,56] and the MSNs

[53,55].

Embedding in space: estimating the volume occupied by
neurite

Dendrites. The Burke algorithm parameters from the

evolutionary algorithm searches were used to generate q

dendrograms of FSIs and MSNs. A dendrogram was rejected if

its morphological properties did not fall within the bounds for all

of branch order, dendritic radius, number of terminals, and

terminal diameter (Table S1 in Text S1), ensuring that all q

retained dendrograms were accurate within the constraints of the

available data.

Our dendrogram models describe the bifurcation and termina-

tion of dendrites along the radial axis stretching away from the

soma; however, real dendrites wander extensively around their

straight-line axis. The extent of this ‘tortuosity’ is measured as the

ratio of the actual length of a given dendritic segment to the

measured straight-line length. We adjusted the lengths of the

dendrite segments to account for tortuosity by factors of w~1:5
for MSNs [57] and of w~1:3 for FSIs (data from cortical FSIs

[58]).

For each dendrogram we found the total volume occupied by

the dendritic shafts between distances d and dzDL from the

soma; we abuse the terminology slightly and refer to this as the

volume Vd(d) at distance d from the soma. Assuming that each

dendritic segment of length DL is a cylinder, the total dendritic

shaft volume Vd(d) at distance d from the soma is

Vd(d)~
X

m

i~1

wDLp hi=2ð Þ2, ð4Þ

where hi is the diameter of the ith segment, and the sum is taken

over all m segments at distance d. Equation (4) is calculated for

each d[f0,DL,2DL, . . . ,nDLg, up to the final nth segment in the

dendrogram.

The average over all z contributing dendrograms at each

distance is then

~VVd(d)~
1

z

X

z

i~1

Vd
i (d), ð5Þ

where zƒq: at long distances not all constructed dendrograms will

have any dendrite.

To accurately estimate the volume of the MSN dendrites, we

needed to account for the additional volume provided by their

Figure 3. Probability of a branch or termination event as a function of the diameter of the dendrite. The dashed line plots the
probability function for termination; the solid line plots the probability function for branching, given by equation (2). A The original functions from
[52]. Branching probability is given by two exponential functions. B Probability functions found for the MSN dendrite models. C Probability functions
found for the FSI dendrite models. The searches for both MSN and FSI dendrite models suggest that only a single exponential function is needed to
describe the branching probability in these neurons.
doi:10.1371/journal.pcbi.1001011.g003

Figure 4. Elements of neurite modelling. A The axon diameter
model. The schematic MSN axon (top) shows the assumption that all
branches occur over a short interval of *50{200mm. This is modeled
as a continuous increase in axon diameter for convenience. B Spine
density data (.) from [59] and our piece-wise linear fit (see equation 6).
doi:10.1371/journal.pcbi.1001011.g004

The GABAergic Striatal Microcircuit
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dendritic spines. Figure 4B plots the mean number of spines per

mm as a function of distance d from the soma, obtained from a

previous detailed study of MSN spine morphology [59] (data from

C. Wilson, personal communication). Figure 4B also shows our

piecewise linear fit F(d) to this data, given by

F (d)~

0, if dv10mm

{1:16z0:08d, if 10ƒdƒ50mm

3:56{0:012d, if dw50mm

8

>

<

>

:

: ð6Þ

The parameters for the linear fit were found by least squares

regression using the MATLAB (Mathworks, Natwick CA) routine

lsqcurvefit.

For each MSN dendrogram, we used equation (6) to find the

total number of spines at distance d from the soma,

S(d)~mF (d)wDL, ð7Þ

where m is again the number of segments at distance d, and

equation (7) is again calculated for each d[f0,DL,2DL, . . . ,nDLg.
The average over all z contributing dendrograms at each distance

is then

~SS(d)~
1

z

X

z

i~1

Si(d): ð8Þ

The total spine volume ~VV s(d) at distance d from the soma is thus

given by

~VV s(d)~0:12~SS(d), ð9Þ

where we make use of the recorded mean volume of 0:12mm3 for

an individual spine [59].

Putting this all together, the estimated total dendritic volume

Vd
T(d) per DL step from the soma for FSIs was just Vd

T(d)~
~VVd(d),

given by equation (5); for MSNs it was Vd
T(d)~

~VVd(d)z ~VV s(d), the

sum of dendritic shaft and dendritic spine contributions. We fitted

continuous functions fFSI(d) and fMSN(d) to these estimates,

allowing us to determine the volume at any arbitrary distance d.

The specific fits we found are given in the Results.

Axons and attraction to dendrites. We already have a

functional description of total axon diameter as a function of

distance d, given by equation (3). Using this, a naive model of the

total volume at d would be

Va(d)~DLp A(d)=2ð Þ2: ð10Þ

For consistency with the dendrite calculations, the axonal volume

is found using the same segment length DL, and again assuming

each axonal segment is a cylinder.

The axon model (equation 10) gives the straight-line change in

axon diameter. Yet, both MSN and FSI axon collaterals wander

extensively within their overall field [37,53,56], reflecting that the

axon trajectory is dependent on active processes (such as

chemodensity gradients or relative neuron activity) guiding it

towards particular dendrites during development (e.g. [60–62]).

We therefore introduce a density constant j to scale the total axon

volume,

Va(d)~j DLp A(d)=2ð Þ2
h i

, ð11Þ

capturing the effective volume of the axon. Exact values for j are

unknown, so we establish plausible values using recent data on the

probability of connections between MSN-MSN and FSI-MSN

pairs up to 100mm apart (see Finding the axon-density constant in the

Results). A further check on their plausibility is that the resulting

estimates of numbers of connections per neuron for the whole

model network should match existing experimental estimates.

Probability of intersection
Both MSNs [40,63] and FSIs [20,37] have approximately

spherical dendritic and axonal fields. Following a mean-field

approach, we thus made the simplifying assumption that the

probability of finding the neurite is the same in all directions for a

given distance away from the soma. We could then compute the

following from the estimates of dendrite and axon volumes: the

probability of finding dendrite (or axon) at a given distance from

the soma, in a given volume of space; and hence the probability of

intersection between two neurons’ neurites in the same volume of

space. To compute probabilities it was necessary to define the

minimum volume required for a single intersection. The total

volume of space was thus discretised into cubes or voxels that were
DV mm on the side. We set DV~1mm to be consistent with the rat

striatum’s synaptic density of approximately 1 per mm3 [64]; this

scale of individual intersections is also common to studies of rat

cortical connectivity [31,33].

As we are assuming that the probability of finding a neurite is

invariant for a given distance from the soma, we proceed by

considering successive spherical shells of width DV , the first shell

wrapped around a sphere describing the soma. The voxels in a

given shell will have the same probability of containing a neurite.

The total volume of a shell at distance d from the soma is

v(d)~
4

3
p (dzDVzrs)

3
{(dzrs)

3
� �

, ð12Þ

where rs is the radius of the soma: we used rs~7:5mm for both

MSNs [65] and FSIs [20].

If the number of DV mm-on-the-side voxels in a shell at distance

d from the soma is

Ns(d)~
v(d)

DV3
, ð13Þ

and the number of voxels occupied by dendrite in that shell is

Nd(d)~
Vd

T(d)

DV3
, ð14Þ

(where Vd
T(d) is the total dendritic volume at that distance from

the soma) then the ratio Nd(d)=Ns(d) gives the probability of

finding a dendrite-occupied voxel in that shell

pd(d)~
Nd(d)

Ns(d)
~

Vd
T(d)

v(d)
: ð15Þ

Similarly, for axons occupying Na(d)~Va(d)=DV3 voxels of the

shell, the probability of finding an axon-occupied voxel in that

shell is

pa(d)~
Na(d)

Ns(d)
~

Va(d)

v(d)
: ð16Þ

(For arbitrary distances d from the soma, we could compute
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dendrite equations (14) and (15) using the continuous function fits

fFSI(d) or fMSN(d) to the corresponding Vd
T for FSIs and MSNs,

respectively. Probabilities for the axons could be computed at

arbitrary distances d directly from equation (16) because the axon

volume function (equation 11) is continuous).

Having obtained an estimate of the probability that a voxel

contains an axon or dendrite, we could calculate the probability

that a voxel contains an intersection between the neurites of two

neurons. Let us denote the distance between the somas of the two

neurons as ds. A given distance defines a volume of intersection

between the two neurite-occupied spheres (Figure 2E). The centre

of a given voxel in this intersecting volume is at distance d1 from

neuron 1 and distance d2 from neuron 2. The probability of this

voxel containing a neurite of the required type from both neurons

is then

p(I Dd1,d2)~p1(d1)p2(d2), ð17Þ

given the probabilities of finding a neurite from neuron 1 (p1) and

neuron 2 (p2) in that voxel, from equation (15) or equation (16).

The total expected number of neurite intersections between two

neurons at a given distance ds apart is then

I(ds)~
X

Nv

i~1

p(I Dd1(i),d2(i)): ð18Þ

where d1(i) is the distance of the soma of neuron 1 from the ith

voxel, d2(i) is similarly defined for neuron 2, and Nv is the total

number of voxels in the intersecting volume of the two neurite

spheres. We calculated equation (18) for a range of inter-somatic

distances ds, and fitted the resulting range of I(ds) values with a

continuous function E(ds) so that we could obtain the expected

number of intersections between a pair of neurons for an arbitrary

distance between their somas. We did this for each of the four

types of connection in the microcircuit (Figure 1), and the fitted

functions Ec(ds) are given in the Results – we add the additional

subscript c to denote which of the four connection types is being

described.

Building a network
We first define a volume of striatum we went want to model.

The striatum contains 84900 MSNs per mm3 [35]; we added

either 1% [19], 3% or 5% [36] of those as FSIs. We randomly

assigned three-dimensional positions to each neuron, with a

minimum distance of 10mm between neurons enforced, to model

the non-laminar structure and intermingling of neuron types. To

wire up the network, we treated the continuous functions Ec(ds)

giving the expected number of intersections between a pair of

neurons as the probability of a contact between the pair of

neurons. Hence, Ec(ds)§1 was treated as a contact with a

probability of unity. Thus, given a particular distribution of

neurons in space, with each pair at some distance ds, for each

connection type c we used Ec(ds) as the binomial probability of a

contact.

Dynamics on the network model
We explored the dynamical implications of some of our

anatomical findings, using a computational model of the striatum

drawn from our previous work [4]. In the model used here, the

model neurons were wired together using our found intersection

functions and the resulting network models; otherwise, the model

neurons, synapses, gap junctions and inputs were as specified in

[4]. Briefly, the neurons were simulated using the canonical, two-

dimensional spiking model of Izhikevich [66], adapted to match

the input/output properties of striatal MSNs and FSIs. We used

conductance-based, single exponential synaptic models for intra-

striatal connections (GABAa) and cortical input (AMPA and

NMDA). As in the real striatum, we made synapses between model

MSNs relatively weak, and the FSI synapses on MSNs relatively

strong: following existing data [22,44], the FSI-MSN synaptic

conductance was five times greater than the MSN-MSN synaptic

conductance. Gap junctions were modelled as a passive compart-

ment between the coupled neurons, with a time-constant and

conductance previously obtained by tuning to data on electrically-

coupled cortical FSIs [4]. Cortical input was specified as the mean

number of events/s arriving at excitatory synapses.

We ran two sets of simulations: one set used networks

constructed within 500mm-on-the-side cubes of model striatum;

the other used a network within a 1 mm-on-the-side cube. For the

500mm scale networks, we looked at the spontaneous activity of the

striatal network in response to 10 seconds of background input of

475 events/s to every neuron (corresponding to around 1.9 spikes/

s for 250 active afferents). For the 1mm-scale network, we selected

the MSN closest to the centre of the cube as our reference neuron.

We then stimulated all neurons in a series of 50mm wide spherical

shells extending away from this central MSN. For each simulation,

the central MSN and all neurons (MSNs and FSIs) in a shell were

driven for 4 seconds with a mean of 1250 events/s (corresponding

to around 5 spikes/s for 250 active afferents).

Results

The MSN and FSI dendrite models
The evolutionary algorithm searches successfully found usable

Burke algorithm parameters for both MSN and FSI dendrograms.

The resulting parameters are given in Table 2. For MSNs, the top

parameter set had a fitness of 83.3%, and was found on generation

44. For FSIs, the top parameter set had a fitness of 100%, and was

found on generation 114. Both top sets were thus found well

before the termination of search, and are likely to be close to the

best available given the initial population. (Note that a fitness of

100% does not mean that the parameter set guarantees an

accurate dendrogram every time, due to the stochastic nature of

the Burke algorithm). We used these parameters to generate q~30

MSN and FSI dendrograms.

The resulting probability functions for branching and termina-

tion of the MSN and FSI dendrites are shown in Figure 3. The

search results predict that, because k1 for the second branching

probability function p2(BDd) is very small (Table 2), only a single

exponential is effectively needed to describe the branching

probabilities of both neuron species, rather than the two

exponentials fitted by Burke et al [52] to their motorneuron data.

Table 2. Search results: final parameters for the MSN and FSI
branch and termination probabilities, rounding to two
significant figures.

MSN FSI

k1 k2 k1 k2

p1(BDd) 0.059 18 0.039 91

p2(BDd) 0.0065 0.41 0.0052 0.37

p(T Dd) 5.7 213 8.6 214

doi:10.1371/journal.pcbi.1001011.t002
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This suggests some fundamental difference in the morphology of

MSNs and FSIs, compared to the morphology of the motorneur-

ons studied in [52].

The resulting MSN dendrogram models made some interesting

predictions. Figure 5A shows that the predicted dendritic taper of

the MSN model closely approximated the dendritic taper data

recorded from real MSNs ([67]; data from C. Wilson, personal

communication). The data from the real MSNs suggests a sharp

initial decrease in diameter as the dendrite leaves the soma that is

not captured by the model, but otherwise the tapering is of a

similar form.

Second, the model MSN dendrograms predicted that existing

data on total dendrite length and estimates of spine counts are

mutually inconsistent. The median total dendrite length, averaged

over all instantiated dendrograms, was 3584mm (range 2693–

4925), exceeding the previously obtained median value (2425mm)

and range of 994{4110mm reported by Meredith et al [54] across

22 MSN reconstructions. The predicted number of spines on the

whole dendritic tree was *5934+2009 (mean + 2 s.d.), a mean

value lower than the bottom end of the previously predicted range

of 6250–15000 spines per neuron based on the same original spine

data [68]. The dendrogram model has thus shown that, even if the

total dendritic length extends beyond the reported data, we cannot

recover these total spine estimates.

A third prediction is that the spines are in abundance in the

proximal dendrites. We plot the histogram of the MSN

dendrograms’ mean spine counts in Figure 5B and see that it is

skewed, with half of all spines occurring within *103mm of the

soma. The MSN model also shows us that the long-tailed fall-off of

the number of spines when moving further away from the soma is

primarily due to a corresponding fall in the number of processes

across the whole dendrite (Figure 5C).

Dendrite and axon volumes, and probabilities of finding
neurites
We used the instantiated dendrograms to find the mean total

volumes Vd
T of the MSN and FSI dendrites per DL step (equations

4–9). Having found these mean total volumes over a range of

distances d from the soma, they were fitted with functions of the

form

log10 fx(d)½ �~
azbd

1zcdzdd2
, ð19Þ

to obtain functions fMSN(d) and fFSI(d) giving us the volume of

MSN and FSI dendrite, respectively, at arbitrary distance d from

the soma. Table 3 gives the best-fit parameter values (found using

non-linear least squares, as implemented by MATLAB function

lsqcurvefit). Both the functional form and the log10
transform in equation (19) were necessary to accurately fit the

tails of the total volume distribution (Figure 6A). The transform

overcomes the problem that using summed-squared error favours

close fits to higher magnitude data-points, as the majority of ‘error’

occurs for them.

The importance of close-fitting to the tails becomes clear when

we consider the probabilities of finding a neurite-occupied voxel,

and the subsequent intersection calculations. When we compute

the probability of finding a dendrite-occupied voxel (Figure 6B),

we see that it falls faster than the dendrite volume (compare

Figure 6A): the volume of the embedding spherical shell increases

cubically with each DV step. Yet when we turn to compute the

number of intersections, the number of voxels also increases

cubically with each DV step. Hence, at intermediate distances

from the soma, the very small probabilities of finding neurites are

counteracted by the very large number of voxels checked for

intersections. Poor fits to the tail thus incur noticeable changes in

the number of expected intersections.

Figure 5. Predictions of the MSN dendrite models. A The diameters of MSN dendrites as a function of the distance from the soma (.; data
supplied by C. Wilson), and the mean diameters predicted by the dendrite model with the parameters from the evolutionary algorithm search. The
data mostly fall within one standard deviation of the model’s mean values. (The diameters were averaged over all instantiated dendrograms; the
dashed lines indicate +1 s.d. from the mean). B Predicted distribution of spines across the dendrites of one MSN (histogram of the mean number of
spines per mm step away from the soma in black, with +1 s.d. plotted as dotted lines; cumulative distribution of spines given by the blue solid line).
The dendrite models predict that the mean total number of spines per MSN is*5934, with half occurring within 103mm of the soma (indicated by the
horizontal red dotted line). C The mean number of dendritic processes for an MSN per mm step away from the soma (solid line; dotted lines plot +1
s.d.); given the known relationship between spine density and distance from the soma (Figure 4B, equation 6), the fall of the number of processes
able to support spines dictates the spine distribution shown in panel B.
doi:10.1371/journal.pcbi.1001011.g005

Table 3. Parameters for best-fit functions to the model
predictions of total dendrite volume.

Neuron a b c d

MSN 1.416 20.0056 20.0031 3:2|10{6

FSI 1.077 20.0055 20.00032 {6:2|10{6

doi:10.1371/journal.pcbi.1001011.t003
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Contact probabilities within the microcircuit
Finally we turn to actually computing the expected number of

intersections for each of the MSN and FSI connection types in the

striatal GABAergic microcircuit (Figure 1): local axon collaterals

connecting MSNs [40]; projections from FSIs onto MSNs [20];

axo-dendritic synapses between FSIs [21]; and dendro-dendritic

gap junctions between FSIs [20,39,47].

Finding the axon density constant. We performed a simple

procedure to find plausible values of the axon density constant for

MSN (jMSN) and FSI (jFSI) axons, based on data from [22] for

probabilities of contact between MSN-MSN and FSI-MSN pairs

within 100mm of each other. We placed MSNs in a 1mm3 cubic

regular lattice. Putting 44 MSNs on a side gives a density of 85184

MSNs per mm3, as close to the experimentally measured density

of 84900 per mm3 [35] as we can get using a regular lattice. For a

range of values of jMSN in the axon volume model (equation 11),

we found the expected number of intersections (equation 18)

between the dendrites of the centre MSN and the axons of all

MSNs with a soma within 100mm of the centre (using our found

dendrite volume function fMSN(d) from equation 19). We also

repeated the procedure for a range of values for jFSI, except that

the centre neuron was now a FSI (so using our found dendrite

volume function fFSI(d) from equation 19).

We found that the probability of contacting the central neuron

was an exponentially saturating function of the axon-density

constant: p^68:8½1{ exp ({0:00013jMSN)� for MSN-MSN con-

nections, and p^2:4½1{ exp ({0:0041jFSI)� for FSI-MSN con-

nections. Planert et al [22] gave approximate probabilities of 0.2

for a MSN-MSN pair and of 0.75 for a FSI-MSN pair connecting

within 100mm of each other. To match these probabilities, the

functions we found predict values of jMSN&22 and jFSI&92.

Intersections between each type of neuron pair. Given

the axon-density constants, we computed the expected number of

intersections (equation 18) for each of the four connection types

over a wide range of distances between the somas (ds incremented

in 20mm steps within the interval ½10,790�mm; the upper limit of

790mm was used as this was the approximate inter-soma distance

at which the largest recorded model dendritic and axonal fields

would touch). Figure 7 shows that for all connection types the

expected number of intersections, and hence the number of

contacts, falls quickly with increasing distance between the somas.

At ds&400mm apart, a source neuron is expected to make less

than 0.05 contacts with a target neuron. Local axon collateral

contacts between MSN-MSN and FSI-FSI pairs are predicted to

have approximately the same distribution as a function of distance

between the pair, particularly further apart than 300mm.

Considerably fewer gap junction contacts between FSI pairs are

predicted as a function of distance; we show below the clear effect

this has on network topology.

We found that the distributions for the expected number of

intersections were well-fit by functions of the form

ln Ec(ds)½ �~{a{b 1{ exp {c(ds{d)½ �f g exp gdsð Þ ð20Þ

for each of the four connection types. The parameter values for the

best-fits to each connection type c are given in Table 4. Both this

functional form and logarithmic scaling of data were again

necessary for accurate fits to the tails of the distribution. In this

Figure 6. Model predictions for the changes in neurite density and detection probability with distance from the soma. A Model
predictions for the total volume of dendrite at a given distance from the soma. The solid lines give the best-fit functions of the form in equation (19).
Both this rational function form and the log10-transform of the data were necessary to accurately fit the tails of the distributions. B Probabilities for
MSN and FSI dendrites, computed directly from the mean total dendrite volume estimates. C Probability for finding an axon-occupied voxel, as given
directly by evaluation of equation (16) (shown for the chosen axon-density constant values of jMSN~22 and jFSI~92).
doi:10.1371/journal.pcbi.1001011.g006

Figure 7. Expected number of intersections occurring as a
function of the distance between the somas of two neurons.
Symbols give the numerically determined predictions of the dendrite
and axon models. Lines give the best-fit functions of the form in
equation (20), for use in constructing networks.
doi:10.1371/journal.pcbi.1001011.g007
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case, accurate fitting was essential for building networks. Though

the expected number of intersections falls rapidly, the number of

cells that are potentially contactable increases cubically with

increasing distance from the source neuron. Thus, though

probability of contact is small, the large number of repeated tests

means some contacts are made.

Contact distribution predictions of the model striatal
networks
We used the expected intersection functions (equation 20) to

construct model striatal networks, which we could examine for

their predictions of striatal connectivity. We built networks within

a 1mm3 cube of striatal tissue, giving us 84900 MSNs, with 1%,

3% or 5% FSIs added (see Materials and Methods). For every

neuron within 75mm of the centre, we found all of its targets,

afferents, and the distances to and from them. Restricting

ourselves to this radius ensured that we could identify neurons

that were little affected by their proximity to the edges of the

volume, having complete afferent and efferent intra-striatal

connectivity; hence we considered them the best candidates for

comparing to, and making predictions about, the real striatum. To

get sufficient numbers for analysis, we constructed 10 networks for

each FSI percentage and pooled the data.

The constructed networks predict that, for all but the FSI gap

junctions, the numbers of and distances between connected pairs

of neurons have Gaussian distributions (Table 5), despite the

complexity of the individual expected intersection functions

(Figure 7). Figure 8 shows these Gaussian distributions for the

MSN inputs to each MSN: each has *728+26 MSN afferents, at

distances of *230+101 mm (note the distribution is truncated at

the minimum distance of 10mm). As we show in Figure 8C, the

exception, consistent for each FSI percentage we tested, is the log-

normal distribution of distances between gap-junction coupled

FSIs.

Table 5 shows how the distributions of numbers and distances of

contacts change for all connections across the 1, 3, and 5% FSI

networks. The number of connected MSNs remains constant at

around 728 MSNs afferent to one MSN. We found that if we

restricted counting inter-connected MSNs to just those within

200mm of each other, then each MSN receives *296+16:5 MSN

afferents and, hence, has a p&0:1 probability of being connected

with another MSN in that radius, in excellent agreement with

previous estimates (see The microcircuit and connection statistics). The

number of MSNs contacted by one FSI (‘1 FSI-MSNs’ in Table 5)

stayed constant, as expected, at around 3000 MSNs per FSI. The

number of FSIs afferent to a single MSN increased with increasing

FSI percentage. The 1% FSI network predicts around 30 FSIs per

MSN, in good agreement with previous estimates of 4–27 FSIs per

MSN [19,44] – the other FSI percentage networks fall well outside

these bounds. Similarly, the numbers of synaptic and gap junctions

contacts between FSIs increased when increasing the percentage

of FSIs in the network models. The mean numbers of gap junction

contacts per FSI are only in good agreement with our estimated

ranges from Fukuda’s [39] data (see Table 1) for an FSI density of

1%.

A striking prediction of the network model is that the mean

afferent distances for FSI and MSN inputs to a MSN and for FSI

synaptic inputs to other FSIs are all *230mm (for 1% FSI

networks; the 3% and 5% networks have slightly lower mean

distances for FSI input to other FSIs). This strongly suggests a

natural spatial scale for the dominant inhibitory synaptic input to a

MSN or FSI. Further, the network model predicts that a FSI’s gap

junction network is focussed locally around the neuron. Both these

properties have implications for the dynamics of the striatum,

which we illustrate below.

The sparseness of striatal connectivity. Here we illustrate

that, despite the seemingly ‘large’ numbers of contacts for some

connection types, the network predicts that connectivity is sparse.

We compared our network results with a control model, which

asked: what if each neuron contacted all others with which it

shared an overlap of dendritic and axonal fields? Such a model

would give numbers for a fully connected three-dimensional

network, and provide a basis for understanding the sparseness of

connectivity within the striatum. Following the numbers used in

our full model, we assumed a MSN dendrite radius of 200mm, and

FSI and MSN axonal field radii of 300mm. Similar to the full

model, we constructed networks using 1mm3 cubes of randomly

positioned neurons, and counted all contacts for neurons within

75mm of the centre; except now we connected all MSN-MSN and

FSI-MSN pairs whose axonal and dendritic fields overlapped. We

found that the numbers of contacts in our network model (in

Table 5) were consistently just 1.7% of all possible MSN-MSN

contacts and 7% of all possible FSI-MSN contacts defined by this

control model (irrespective of the FSI density used).

Dynamical implications of network connectivity
The models of the striatal network revealed two striking features

that could play a key role in striatal dynamics: the differing spatial

scales for the inter-FSI gap junction and synaptic contact

networks, and the common mean distances of GABAergic

afferents to one MSN. We show here that both features indeed

have the potential to set the input-output relationships of the

striatum. To do so, we use a computational model of striatum that

took the developed models of neurons (MSNs and FSIs), synapses

(AMPA, NMDA, and GABAa) and gap junctions from our

previous work [4], but used the striatal network model developed

here as the basis for wiring the neurons together.

Effects of the spatial scales of inter-FSI networks. We

first established the impact of the different FSI densities on the

dynamics of the model. Figure 9 shows that increasing the FSI

density did not alter the distribution of MSN firing rates or their

variability (the median MSN inter-spike interval coefficient of

variation was 0.8 for all FSI densities); nonetheless, the model

MSNs had the very low firing rates characteristic of MSN activity

in vivo. Increasing the FSI density increased the proportion of FSIs

that did not fire, but also resulted in a broader and more

heterogenous firing rate distribution. Despite this, the median

firing rate of active FSIs was consistent across the changes in FSI

density. The FSIs’ firing rates of up to 80 spikes/s were also

consistent with those observed in vivo [69]. Figure 9C shows that

the active FSIs fired in a variety of desynchronised states, with no

evidence of strong, network-wide synchrony for any tested FSI

density.

Table 4. Parameters for the expected number of
intersections between neuron pairs.

Connection

type a b c d g

MSN-MSN 0.511 1.033 0.042 26.8 0.0039

FSI-MSN 20.921 1.033 0.042 26.8 0.0039

FSI-FSI 20.695 1.38 0.057 15.6 0.0036

FSI gap 1.322 2.4 0.016 43.3 0.0029

doi:10.1371/journal.pcbi.1001011.t004
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We examined the effects of the different spatial scales of the inter-

FSI gap junction and synaptic networks by then building models

with swapped FSI-FSI gap junction and synaptic interconnection

functions; hence, in these models, a FSI was synaptically coupled to

FSIs close by, but gap-junction coupled to FSIs further away,

inverting the spatial scales predicted by our network model.

Figure 9D–F shows this produced a dramatic effect on striatal

output. MSN population activity was now markedly affected by

changes of FSI density. This correlated with the FSIs themselves

becoming mostly (1%) or completely silent (3%), or entering a

pathological state of two FSIs discharging at extreme rates (5%).

The few active FSIs in the 1% FSI network tended to have higher

firing rates than in the equivalent normal model. As the FSIs were

completely silent in the 3% FSI network, the distribution of MSN

activity in this case corresponds to a MSN-only network.

Comparing this to all three distributions for the normal model in

Figure 9A, we can see that the silencing of FSI activity caused a

widespread decrease in MSN population activity.

Distance dependence of impact on MSN output. The

same mean distances of MSN and FSI afferents to one MSN imply

that there will be a strong, non-monotonic, distance-dependent

effect of those inputs on MSN activity. We examined this using a

1 mm-on-the-side cube of model striatum (84900 MSNs, and 1%

FSIs) – a size chosen so that we could stimulate the inputs to the

MSN nearest the centre of the cube by up to twice the mean

distance of the afferents. To test the impact of input from a range

of distances on the central MSN, we synaptically stimulated all the

neurons in successive 50mm-wide spherical shells around the

central MSN (Figure 10A–C).

Figure 10D shows that the number of GABAergic inputs to the

central MSN indeed peaks around the mean distance of FSI and

MSN contacts at *200mm. As a consequence, the central MSN’s

output was most strongly inhibited by inputs stimulated at this

distance (Figure 10E). Across all stimulated shells, the central

MSN’s output was inversely correlated with the number of inputs

at each distance (Figure 10E), but was not a function of the

changes in firing rate in each shell’s neurons (Figure 10C). We also

observed that the distance of the inputs had a small modulatory

affect on the regularity of the central MSN’s spike-train

(Figure 10F), but the relationship did not follow the same

distance-dependent pattern. Figure S1 shows that all these effects,

including the distance of maximum inhibition of the central MSN,

are robust as they were the same even if we used an FSI density of

3%.

Figure 8. Model predictions for the statistics of striatal neuron connectivity. A Distribution of distances for MSN afferents to each MSN over
all networks is approximately Gaussian (thick red line), truncated at the minimum enforced distance between neurons. B Distribution of number of
afferent MSNs to each MSN is approximately Gaussian too. C The distances between gap-junction coupled FSIs follow a log-normal distribution, with
half of all connections occurring between neurons less than 112mm apart. (All data taken from 3% FSI networks. Histograms were compiled for 10mm
(panels A, C) or 5 neuron bins (panel B), and normalised to the maximum bin count.)
doi:10.1371/journal.pcbi.1001011.g008

Table 5. Connection statistics of the model striatal networks.

Number of contacts Distance (mm)

FSI 1% FSI 3% FSI 5% FSI 1% FSI 3% FSI 5%

MSNs - 1 MSN 728+25.7 728+26.7 727+26.6 230+101 230+101 230+101

FSIs - 1 MSN 30.6+5.39 88.3+8.84 152+12.2 233+99.9 234+99.3 231+100

1 FSI - MSNs 3017+45.1 2992+37.7 3011+50.6 232+99.7 232+99.3 233+99.3

FSIs - 1 FSI 12.8+3.37 35.9+6.12 62.7+8.33 228+97 214+95.7 216+95.2

FSI gap 0.65+0.81 2.96+1.87 4.64+2.05 138+106 129+90 125+88.6

lnN (4:69,0:718) lnN (4:57,0:826) lnN (4:54,0:8)

The first column names all the connection directions that can have distinct distributions of numbers of contacts and distances between connected pairs. For example,
‘MSNs - 1 MSN’ gives data for the numbers and distances of MSNs afferent to 1 MSN; conversely, ‘1 FSI – MSNs’ gives data for the numbers and distances of MSNs
contacted by a single FSI. All values given as arithmetic mean + s.d., rounded to three significant figures. The second row for the FSI gap junction statistics gives the
location m and scale s parameters for the best-fit log-normal distributions lnN (m,s).
doi:10.1371/journal.pcbi.1001011.t005
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Discussion

We have established a complete protocol for constructing a

biologically-realistic network from first principles. The process

described here is of general interest: in principle it could be used to

model any region of the brain. It is particularly suited to the

reconstruction of three-dimensional networks in non-layered

structures, and we used it to reconstruct the GABAergic

microcircuit of the adult rat striatum.

Properties of dendrites, axons, and their intersections
Attempting to specify construction algorithms for the dendrites

and axons showed specifically where quantitative morphology data

were missing (we provide a complete list in Text S1). Building the

MSN dendrite models revealed an inconsistency between

previously reported total dendrite lengths and the number of

spines on the MSN dendrites: the dendrite model had more wire,

yet fewer spines. This suggests that the previously predicted range

of 6250–15000 spines per MSN [68] is an overestimate: the model

dendrites suggest a mean of 5932 spines per MSN – implying that,

as each spine maintains a cortico-striatal synapse [40,59], there are

fewer cortical inputs to a MSN than previously estimated [68].

Moreover, the dendrite model predicts half of all spines are within

100mm of the soma, half the radius of the MSN dendritic tree. As

cortico-striatal synapses occur only on the spines [40,59], this

suggests half of all cortical input is to the proximal dendrites.

Using the axon and dendrite models, we found that achieving

the target probabilities from [22] for MSN-MSN and FSI-MSN

contacts within 100mm required large axon density constants j.

Matching the target MSN-MSN probability of p~0:2 required an

increase of the effective MSN axonal volume by a factor of *22;

matching the target FSI-MSN probability of p~0:75 required an

increase of the effective FSI axonal volume by a factor of *92.

Both these results imply a dominant role for active processes

guiding axon to dendrite in wiring up the striatum, beyond passive

intersection of dendrite and axon alone. We used the same FSI

axon scaling factor to construct the synaptic connections between

FSIs: the intersection function for this connection is, hence,

Figure 9. Effects on simulated striatal activity of changing the spatial scales of the inter-FSI synaptic and gap junction networks.We
ran simulations of a 500mm-on-the-side cube of striatum (giving 10613 MSNs) for each FSI density (giving 106, 318, and 531 FSIs respectively); each
neuron was driven for 10 simulated seconds by background cortical input of around 475 spikes/s – just above the threshold for causing a MSN to
spike [80]. To investigate the effects of the spatial scales of inter-FSI connections, we ran two sets of simulations: one set (panels A–C) using networks
built with the expected intersection functions reported here (equation 20 and Table 4); the other set (panels D–F) using networks built the same way
except that the FSI-FSI gap junction and synaptic functions were swapped – thus inverting the spatial relationships between the inter-FSI gap
junction and synaptic networks. A The resulting empirical cumulative distribution functions (ECDFs) of MSN firing rates for each density of FSIs when
using the normal anatomical model. The distribution of MSN firing rates remained largely the same with increasing FSI density, and the model MSNs
had very low firing rates, characteristic of MSN activity in vivo. B The resulting ECDFs of FSI firing rates from the same simulations, showing that
increasing the density of FSIs increased the proportion of silent FSIs, but also broadened the distribution of firing rates. C Raster plots of 1 s of activity
of all FSIs in each simulation, illustrating these changes in firing rate distribution: the figures given below each raster show how the median firing rate
of the active FSIs remained relatively consistent, even though firing rate distributions broadened, and the proportion of active FSIs fell. D The ECDFs
of MSN firing rates after swapping the FSI connection functions shows that the MSN firing rate distribution was no longer constant; indeed for 3%
FSIs the distribution was that of an MSN-only model, as all FSIs were silent. E The corresponding ECDFs of FSI firing rates show a dramatic effect on
FSI activity. For 1% FSIs, swapping the connection functions caused an increased proportion of silent FSIs, but with a broadened spread of rates
compared to the normal model; the 3% FSI network was completely silent. The 5% FSI network entered a pathological state where only two FSIs fired
at extreme rates (indicated by the two crosses). F These changes in FSI firing rate distribution are clear in the corresponding 1 s raster plots.
doi:10.1371/journal.pcbi.1001011.g009
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currently a prediction of the model. By contrast, we found that the

density of FSI gap junctions was captured by the model using

passive intersections of dendrites alone.

The expected number of intersections between neurons had a

product-of-exponentials form (Figure 7), with five parameters

whose precise values (in Table 4) would be difficult to recover from

anatomical data. Nonetheless, the characteristic double-exponen-

tial function (equation 20) could, in principle, be recovered

qualitatively. Furthermore, we have shown that the probability of

contact between two neurons need not be a simple exponential

function of distance [31].

Statistics of striatal connectivity
When we applied the intersection functions to construct the

striatal network models, we found though that almost all

distributions of numbers of contacts and their distances were

Gaussian. The network models predicted that each MSN receives

an average of 728 inputs from other MSNs, when considering the

complete network. Confidence in this result stems not just from the

tuning to match the data on probability of contact within 100mm,

but also from the model having a mean number of 296 MSN-

MSN contacts within 200mm, which is in excellent agreement with

previous estimates (see The microcircuit and connection statistics). The
network model predicts each FSI contacts around 3000 MSNs,

which may explain why the FSIs, despite being few in number, are

able to potently suppress MSN activity across the striatum [45].

The numbers of contacts for the other connection types were

dependent on the percentage of FSIs in the network. Mean

numbers of contacts in the 1% FSI network are consistent with

existing estimates for the number of FSIs contacting one MSN

[44], and the density of FSI-FSI gap junctions [39] (albeit at the

lower end of the ranges we calculated from Fukuda’s [39] data in

Table 1). By contrast, the 3% and 5% FSI networks predict too

many FSI inputs per MSN, and too many FSI gap junctions.

Hence, the network model is consistent with recent estimates that

at most 1% of striatal neurons are FSIs [19,38,39]. Given the

decreasing density of FSIs over the dorsolateral-ventromedial axis

of the striatum [12,38,70], it is plausible that even lower densities

of FSIs occur in some striatal regions. Irrespective of the exact FSI

percentage, the network models showed that the full three-

dimensional network of the striatum is extremely sparse, forming

around 1.7% of all possible MSN-MSN contacts and 7% of all

possible single-FSI-to-many-MSNs contacts that could be made

given the radii of dendritic and axonal fields.

The network models made two striking predictions about the

spatial organisation of contacts in the striatum. First, that the

networks of gap junctions and synapses inter-connecting FSIs were

on different spatial-scales: the log-normal, left-skewed distribution

of gap junction distances implies each FSI makes most of its

electrical connections with immediately neighbouring FSIs; the

Gaussian distribution of synaptic distances implies each FSI makes

most of its synaptic connections with FSIs more distally. Second,

that inputs to a MSN from either FSIs or other MSNs are on the

same length scale of *230mm. This result illustrates the

unintuitive nature of three-dimensional connectivity: the fall-off

in the probability of connection is counteracted by an increase in

the number of neurons to make connections with, so that the

dominant distance of connections is some function of both.

Implications for the dynamics of the striatum
The anatomical model results point to some intriguing

implications for the spatial scales of computation in the striatum.

The ‘‘domain’’ theory [9,24,25] suggests that the natural

computational element of the striatum is the network of MSNs

within the *200mm radius of one MSN’s dendritic field. On the

one hand, the network models confirm that MSNs have an

approximately p~0:1 probability of contacting another MSN

Figure 10. Implications of distance-dependent connections for
MSN output. We stimulated all neurons within a 50mm wide spherical
shell at varying distances from the centre of a 1mm-on-the-side cube of
striatum (84900 MSNs, 1% FSIs) and studied the effect on the centre
MSN’s activity. A The total number of neurons per shell increases
exponentially with increasing distance from the centre; here and in
other panels we plot distances as the inner radius of the shell. B The
probability of any chosen neuron in that shell contacting the central
MSN falls exponentially with increasing distance. As contact probabil-
ities are symmetric, this can also be read as approximately the
distribution of probabilities for the central MSN contacting a given
neuron in that shell. C All stimulated neurons received approximately
1250 spikes/s excitatory input for 4 seconds. The mean firing rate of
MSNs in each shell fell slightly with increasing distance for the first few
shells; the mean firing rate of FSIs in the shell was roughly constant (the
first shell contained only one FSI). D The number of neurons projecting
to the centre MSN peaked at the same distance for both MSN and FSI
afferents, and confirm that the mean distances predicted by the
network model (Table 5) do correspond to the distances of the greatest
number of inputs. E In response to the same input as the stimulated
neurons, the centre MSN’s firing rate follows the inverse of the
distribution of its inputs across the shells. F The centre MSN’s inter-
spike interval (ISI) coefficient of variation (CV), indicating the irregularity
of the spike train, was also modulated by the distance of the afferent
input.
doi:10.1371/journal.pcbi.1001011.g010
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within that radius, far greater than the probability of contacting

farther MSNs, suggesting the formation of a closely-knit network –

if we consider only probability of connection. On the other hand,

our network models show us that the number of connections give

us the inverse of the domain concept: a MSN receives its greatest

number of inputs from MSNs and FSIs whose soma lie just on

edge of the main extent of its dendrites. The comparatively weak

nature of the individual MSN-MSN synapse – with a mean

conductance approximately five times smaller than the FSI-MSN

synapse [21,22,44] – suggests that the number of MSN inputs is

the key factor in understanding the influence of the local MSN

axon collateral network. We showed in a computational model

that this is indeed the case: the most potent inhibition of an active

MSN was achieved by stimulating inputs around 200mm away

(Figure 10E, Figure S1). Therefore, if a ‘computational element’ of

the striatum is defined by the spatial scales of feedback and

feedforward inhibition – from other MSNs and FSIs, respectively –

then our models show it to be spread over the network, not

concentrated locally within the dendritic field.

The spontaneous organisation of activity in striatum is

consistent with such a widespread network of effective MSN-

MSN connections. Carillo-Reid et al [29] showed that global

excitation in vitro induced the appearance of a few cell assemblies

within an 800|600mm plane, with each assembly comprising

neurons spread over the plane. Models of this phenomenon from

both us [4] – using distance-dependent connections, as here – and

Ponzi and Wickens [16] – using uniform probability of connection

– show that such cell assemblies are not formed by discrete groups

in physical space. The data and models also showed that such

assemblies contain comparatively small numbers of neurons (at

most a few hundred) on the scale of other definitions for a striatal

‘computational-element’. Future work with the model reported

here will examine the reasons for this discrepancy. What the

network model, and the computational model built upon it, do

make clear is that further understanding the computations

performed by the striatal microcircuit requires better knowledge

of the distribution of individual cortical inputs [63,68], to

understand if they are organised along any of the characteristic

spatial scales of the striatal network.

The network model also showed that the density of FSIs affects

both the number and spatial-scales of connections. We showed

that these anatomical effects are reflected in changing dynamical

properties of the FSI network in the computational striatum

model. Changing the FSI density altered the distribution of FSI

firing rates, decreasing the proportion of active FSIs, but

increasing the range of rates. However, irrespective of the FSI

density, the FSI network remained in a globally-asynchronous

state, with many FSIs completely or nearly silent. Though

contrary to previous reports that networks of spiking neurons

coupled by both gap-junctions and inhibitory synapses promote

globally synchronised activity (e.g. [71]), our findings are

consistent with both our previous work [4], and with Lau et al’s

[15] report that asynchronous, partially-silent states dominate in

such networks if the gap junction network is not wired together as

a classic random network – that is, one with a uniform probability

of connection. In the case of Lau et al [15], this wiring was a small-

world network on a ring-lattice; here our striatal anatomy model

deviates from a classic random network because of the distance-

dependent probability of the gap junction connections between the

FSIs. Taken together, Lau et al’s [15] results, and ours here and

previously [4], all point to the importance of considering both the

wiring topology and its spatial embedding when considering the

dynamics – and, hence, likely function – of interneurons coupled

by both gap junctions and inhibitory synapses.

The local and distal networks formed respectively by the inter-

FSI gap junctions and synapses produced characteristic properties

of the MSN population dynamics too. The MSN population

activity was remarkably consistent across changes in FSI density

(Figure 9A), despite the changes in FSI activity just described.

However, when we swapped the inter-FSI networks (gap junctions

distally, synapses locally), the MSN firing rates now changed with

changing FSI density. Hence, the combination of local gap

junction and distal synaptic networks predicted by the model

constrains the whole MSN population to a particular input-output

regime, robust to changes in FSI density.

We also saw that in the absence of active FSIs, the MSN

population activity was globally reduced compared to all normal

models with active FSIs. This result in a larger and anatomically

more detailed model confirms our previous finding that removing

all FSIs reduces model MSN activity [4]. The unintuitive effect

that increasing the number of GABAergic interneurons increases

the firing rate of their target neurons has a clear underlying cause:

the GABA reversal potential is above the typical MSN ‘down’-

state membrane potential [11], and hence sporadic FSI input to

MSNs will tend to keep their membrane potential relatively

depolarised, allowing them to fire (and fire more often) to

excitatory input (too much FSI input, however, would clamp the

MSN membrane potential at the GABA reversal potential).

Applications, extensions, omissions
The results of this work have further applications in the study of

both single-neuron and network-level dynamics. By using our

found parameters for the Burke algorithm, it is possible to generate

many MSN and FSI dendritic morphologies, each consistent with

current morphological data. Hence, instantiating the same multi-

compartmental model (e.g. [13,67,72]) on multiple instances of

these generated morphologies will open up a wide range of

applications, such as placing limits on post-synaptic potential

summation, back-propagating action potentials, maximal conduc-

tance searches, and so on. At the network level we have shown

how we gain the benefits of reconstructing the underlying

structure, as argued at the outset of this paper. Particularly

interesting will be the results of using these reconstructed networks

– requiring only equation (20) – as the basis for other group’s

approaches to modelling the striatum [13–16,72,73].

We have focussed on the principal GABAergic microcircuit of

the striatum here, as this provides the basis for the most

immediate, powerful control over the output of the striatum

[4,45,50]. The current work has thus omitted other interneuron

types. A full striatal network reconstruction would include the

giant cholinergic interneurons with their dense and long-reaching

axonal ramifications that synapse on MSNs [37,74], and the low-

threshold spiking interneurons [37], which may form an inhibitory

network between the cholinergic interneurons [75] or control gap

junction efficacy through the release of nitric oxide [21,76]. In

addition, the network construction does not currently address what

happens at the histochemically defined borders between the

‘patch’ and ‘matrix’ of the striatum [34], which many MSN

dendrites do not cross [77].

Our model is a stochastic realisation of the adult striatum; the

modelling of developing striatal connectivity is a stern challenge

given the current paucity of data [78]. Nonetheless, we think

modelling the development of connectivity is essential to capture

elements of striatal wiring we have not accounted for in the present

model. For example, recent work on BAC transgenic mice suggests

a preferential direction of connection between the two populations

of MSNs defined by their dominant dopamine receptor type (D1

or D2), with significantly fewer projections from D1-expressing to
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D2-expressing MSNs than any other combination [21,22,79].

With no data yet on how such selective connectivity might form,

we must chalk this up as a future target for our models. Clearly we

are only at the beginning of constructing realistic models of the

striatum; but equally we have a promising start.

Supporting Information

Figure S1 Implications of distance-dependent connections for

MSN output. We stimulated all neurons within a 50 mm wide

spherical shell at varying distances from the centre of a 1mm-on-

the-side cube of striatum (84900 MSNs). Here we used a network

with a FSI density of 3% (2547 FSIs) to check that the effects on

the centre MSN were consistent even with increasing numbers of

FSIs. A. The total number of neurons per shell increases

exponentially with increasing distance from the centre; here and

in all other panels we plot distances as the inner radius of the shell.

B. The probability of any chosen neuron in that shell contacting

the central MSN falls exponentially with increasing distance. C.

All stimulated neurons received approximately 1250 spikes/s

excitatory input for 4 seconds. The mean firing rate of MSNs in

the shell fell slightly with increasing distance; the mean firing rate

of FSIs in the shell was roughly constant (the first shell contained

only one FSI). D. The number of neurons projecting to the centre

MSN peaked at the same distance for both MSN and FSI

afferents. E. In response to the same input as the stimulated

neurons, the centre MSN’s firing rate follows the inverse of the

distribution of inputs across the shells. F. The centre MSN’s inter-

spike interval (ISI) coefficient of variation (CV), indicating the

irregularity of the spike train, was more modulated by the distance

of the afferent input than for the 1% FSI network.

Found at: doi:10.1371/journal.pcbi.1001011.s001 (0.19 MB PDF)

Text S1 Specification of the Burke algorithm and the evolution-

ary algorithm used for searching the Burke algorithm parameter

space; also includes a list of missing/desired morphological data.

Found at: doi:10.1371/journal.pcbi.1001011.s002 (0.12 MB PDF)
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