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Andrew Koh

Abstract The Generalised Nash Equilibrium Problem (GNEP) is a Nashegaith
the distinct feature that the feasible strategy set of aguldgpends on the strate-
gies chosen by all her opponents in the game. This charstitetistinguishes the
GNEP from a conventional Nash Game. These shared constmairgach player’s
decision space, being dependent on decisions of othergigdime, increases its
computational difficulty. A special solution of the GNEP etNash Normalized
Equilibrium which can be obtained by transforming the GNE® ia bi-level pro-
gram with an optimal value of zero in the upper level. In théper, we propose a
Differential Evolution based Bi-Level Programming algbrh embodying Stochas-
tic Ranking to handle constraints (DEBLP-SR) to solve theiltéing bi-level pro-
gramming formulation. Numerical examples of GNEPs dravemifithe literature
are used to illustrate the performance of the proposedigigor

1 Introduction

In a game when a rational agent optimizes her welfare in tkesgurce of others
symmetrically doing the same simultaneously, game the@ provides a way
to analyze the strategic decision variables of all play&re solution concept of
such games was analyzed by NasHIrl [16]. A game is consideial/e attained a
Nash Equilibrium (NE) if no one player can unilaterally iroge her payoff given
the strategic decisions of all other players. While essliig that an outcome is
not a NE (by showing that a player can profitably deviate) isallg not difficult,
determining the NE itself is more challenging. A review ofreodeterministic and
stochastic methodologies for determination of NE is foun@].
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This paper is concerned with a special class of Nash Gamesgrkas the Gen-
eralized Nash Equilibrium Problem (GNEP). In the GNEP, tlay@rs’ payoffs and
their strategies are continuous (and subsets of the regl it more importantly
the GNEP possesses the distinctive feature that playesscfatstraints depending
on the strategies their opponents choose. This featuredsritrast to more com-
mon Nash Game where the utility/payoff/reward the playdtsio depend solely
on the decisions they make and their actions are not rexiri#cause of the strate-
gies chosen by others. The ensuing constrained action sp&EPs makes them
more difficult to resolve than conventional Nash games dised in monographs
such as|E3]. We point out in passing that the solution atgoriproposed in this
paper can be easily applied to conventional Nash games ¢sa&)b

This paper is structured thus. Following this introductiere introduce the
GNEP formally along with the various game theoretic terrogees. In Secﬂ3 the
key result emphasized is that the GNEP can be formulated &teadb program.
Secl[h outlines DEBLP-SR, a Differential Evolution basegbathm integrated with
deterministic gradient based solvers and embodying sstich@nking to resolve
the resulting bi-level formulation. Numerical examplearir the literature are dis-
cussed in Sedf 5. Results of runs using the proposed DEBLRBrSRresented in
Seclﬂ:‘; and Seg¢f 7 wraps up with some concluding remarks.

2 Nash Equilibrium and the GNEP

This section introduces the notation used throughout thiskwrhe GNEP is a sin-
gle shot normal form game with a stof players indexed by e {1,2,...,n} and
each player can play a strategye X; which all players are assumed to announce
simultaneouslyX C R™M is the collective action space for all players. In a standard

n
Nash GameX = [] X;. X is thus equal to the Cartesian product. In contrast, in a

GNEP, the feasiBIé strategies for player N depend on the strategies of all other
players [L],[#1,[10].[21L]. We denote the feasible stratepace of each player by
the point to set mappind¢' : X' — X', Vi € N that emphasizes the ability of other
players to influence the strategies available to playdh[fl.[RT]. The distinction
between a conventional Nash game and a GNEP is thereforeganeal to the dis-
tinction between unconstrained and constrained optioizat

To emphasize the variables chosen by playare writex = (xi,X_;) wherex_;
is the combined strategies of all players in the game exctuthat of playeir i.e.
X_j = (xl7...,xM),x<i+l)7...,xn). Critically note that the notatiofx,x_;) does not
mean that the componentsyére reordered such thgtbecomes the first block. In
addition, letq (x) be the payoff/reward to playen € N if x is played.

Definition 1 [@] A combined strategy profile* = (x;,x,...,x;) € X is a Gener-
alized Nash Equilibrium for the game if:

@k, X)) > alx, X ), v e K(X;),vie{l,2,..,n}.



At a Nash Equilibrium no player can benefit (increase indigidpayoffs) by
unilaterally deviating from her current chosen stratedgy®@rs are assumed not to
cooperate and so each is doing the best she can given whatrhpetitors are doing
[1.IL31.[23]. For a GNEP, the strategy profit¢ is a Generalized Nash Equilibrium
(GNE) if it is feasible with respect to the mappikg andif it is a maximizer of
each player’s utility over the constrained feasible Eet [7]

2.1 Nikaido | soda Function

The Nikaido Isoda (NI) function in E( 1 is an useful tool usedhe study of Nash
Equilibrium problems eg[[3][4][I8][[10]. Its interpration is as follows: each sum-
mand shows the increase in payoff a player will receive byaterially deviating
and playing a strategy € K(x_i) while other players play according xo

n

W(X,y) = Z[(ﬂ(yivxfi) - (ﬂ(Xi,X,i)] Vie {1727'“an} ()

The NI function is always non-negative for any combinatidrxaandy. Fur-
thermore, this function is everywhere non-positive whethezix or y is a Nash
Equilibrium point by virtue of Definiti0|{|1 since at a Nash Hdrium no player
can increase their payoff by unilaterally deviating. Tlesultis summarized in Def-
inition 3.

Definition 2 [E] A vector x* € X is called a Normalized Nash Equilibrium if
Y(x,y)=0.

2.2 Solution Approaches for the GNEP

A review of solution methods for the GNEP is discussed in theey [B]. Determin-

istic (i.e. gradient-based) descent, the subject of dtatudy in Von Heusinger’s
PhD thesisl]9], is the primary solution approach for findingriMalized Nash Equi-
librium (NNE). Krawczyk et al [B][[B][14] also proposed ather deterministic de-
scent method based on minimization of the Nikaido-Isoda&tion. In this paper
however we exploit the proof that we can find the NNE by forrtiniathe GNEP

as a special bi-level prograrﬂ [2{1[21] as discussed in tHeviing section.

3 A Bi-Level Programming Approach for GNEPs

The NNE solution to the GNEP can be found by solving a bi-l@relgramming
problem given by the system of equationg]in 2 fnd 3. For a mee{}],[2]L].



max fxy)=—(y—x"(y-x (2a)

subject tox' € K'(x™") ,Vi € {1,2,...,n}. (2b)

wherey solves

max@(yh,x H+...+ @y x ") = maXZ[fn (Vi,x-) —@(x,xi)]  (3a)
(xy) (xy) &
subjecttoy' e K'(x ") ,Vi € {1,2,...,n}. (3b)

The upper level problem (E@] 2) is a norm minimization probfrmiject to strategic
variable constraints (E@Zb). The objective function & kbwer level problem (Eq
B) is exactly the Nikado Isoda function (g 1).

Definition 3 [@] The optimal value of (x,y) is O at the Normalized Nash Equilib
rium.

Definitionl?, will perform the critical role of being the terndtion criteria of the
proposed DEBLP-SR Algorithm discussed in %ct 4.

4 Differential Evolution for Bi-Level Programming

Differential Evolution (DE) for Bi-Level Programming (DEBP) was initially pro-
posed in ] to solve Bi-Level Programs (posed as leadtovier games) arising
in transportation systems management. It follows the GeA&gorithms Based Ap-
proach proposed ilL_UZZ] but substitutes the use of binargdd@genetic Algorithms
strings with real coded DEL_U.8] as the stochastic optimarathethod instead.

DEBLP integrates DE manipulation of the upper level vagablith gradient
based optimization of the lower level problem. The charéstie feature of GNEPs
is the constraints facing the players i.e. .2b); and thissnecessary to employ
constraint handling techniques to produce solutions tit#tfg the constraints. Con-
straint handling methods were not required for the classadiNGames discussed
in [@] and so the technique proposed here is considered georeric.

In the original DEBLP, constraints in the upper level prableere handled by
degrading fitness values if constraints were not satisfiadrwilimentary penalty
methods |[1|2]. In this paper, the upper level constraintsqrﬂt‘are handled using
stochastic rankind [20]. Hence this version of DEBLP is tedDEBLP-SR.

The pseudo code of DEBLP-SR is summarized in Algoriﬂwm 1. DEESR op-
erates thus: A population df chromosomes is randomly initialized between the
bounds of the problem and the user provides the control pateasy(mutation prob-
ability and crossover factors) for the DE aIgorithEl[lB] ETévaluation of fithess
is carried out in a two stage process: In the first stage (nasd 13), each chro-



mosome, representingthe upper level variable, is used as a input argument into
the lower level program (Eﬂ 3) parameterizedimhus giverx we solve the lower
level program foly using conventional gradient based optimization methadthé
second stage (lines 6 and 1#)andy are used to compute Eﬂ1 2(&) in line 10).
This measures how far the chromosome is from the optimakwafl0 (cf Definition

E) and thus represents the fitness of the chromosonreaddition, the constraint
violation are also output by the evaluation routine (linend 45).

Stochastic ranking (SR), a robust procedure for handlingstaints, uses a
stochastic bubble sort procedure to rank population mesntading into account
both the objective function value and constraint vioIa$io(See|EO] for more de-
tails). In the first iteration (line 9) the best member of tlhgplation is the member
that is assigned a rank of 1 (one) by the SR algorithm. DE dioersare subse-
quently used to evolve child chromosomes and evaluateowoiy the two stage
process described in the foregoing.

1: Input:h, Max, DE Control Parameters (Mutation Probability, Crossoetér)
St 0
: Randomly initialize a population &f parent chromosome%’
: for j=1tohdo
Solve Ecﬂs using deterministic optimization given chreooej € &
Compute E(ﬂz to evaluate fitness of chromosgrae?
Compute constraint violation of chromosome &2
: end for
. Apply Stochastic Ranking to rank each membegb{between 1 (best member) ahy
10: while it < Max; or f(x) # 0do
11:  Apply DE/best/l/binS] to create a child populatien
12: for j=1tohdo

13: Solve Ecﬂs using deterministic optimization given chosomej € ¢
14: Compute EE|2 to evaluate fitness of chromosqraes’

15: Compute constraint violation of chromosoine ¢

16: end for

17:  Pool Parents and Children Chromosomes:

18: T+ PU%

19:  Apply Stochastic Ranking to rank each membefbtbetween 1 (best member) ahgd
20: 7 < MaxRank.7)

21: if f(x)=0then

22: Terminate
23:  else

24 it «—it+1
25:  endif

26: end while

27: Output: Normalized Nash Equilibrium
Algorithm 1: :Differential Evolution for Bi-Level Programming with Sthastic
Ranking (DEBLP-SR)

To utilize the ranking information generated by SR, we mptlie selection pro-
cedure used for determining whether parent or child suivicethe next generation.
Instead of the one to one greedy selection found in canoEaE], we pool the



entire set of parent and child chromosomes together andathely SR to identify
the toph ranked population members which will survive (this is therséurned by
the MaxRankprocedure in line 20 of Algorithrﬂ 1). The rest of the popudatis
discarded and such a selection procedure is reminiscehaibfised in e.g. GENI-
TOR [24]. If the best fitness attains the value it constraints are satisfied, then
we have found the NNE and the algorithm terminates, elseténation counter is
increased and the process is repeated M generations are exceeded.

5 Numerical Examples

In this section, we give details of the numerical examplesvtoch we apply
DEBLP-SR and present the results of numerical experimerﬁettﬂi.

5.1 Problem 1

Problem 1, from@Q] was originally solved using a projeageddient method. This
game has 2 players with 1 decision variable each. Playerbjéstive is:

1
Ou(X1,%2) = E(Xl)z — X1X2

Player 2’s objective is:
B (X1, %2) = (X2)* + X1X2

The feasible space is defined according to:
X ={xeD?x3>0,%>0-x3—X < —1}
As an example, we give the NI function explicitly as:
P(x,y) = [(%Xlz —X1Xp) — (%hz — yx2)] + [(%® + X1X2) — (Y2 + Xay2)]

The NNE isx; = 1,x5 = 0 [F],[L9].

5.2 Problem 2

Problem 2, again with 2 players and 1 decision variable ezaimes from Harker
[[ll- Player 1's objective is:

8
@(x, %) = (X)) + 32— 344



Player 2’s objective is:
O (x1,%0) = (X2)2 + gxlxz —24.25%,
The feasible space is defined according to:
X = {xe 0?x; > 0,x2 > 0,%1 4+ X3 < 15}

The NNE isx; = 5,x5 = 9 [, [A].

5.3 Problem 3

This problem describes an Environmental Pollution Corfrablem known as the
“River Basin Pollution Game” studied by Krawczyk and co-tens @],]. There
are 3 players with 1 variable each. The objective functiorpfayerj is:

(0] (X) = (Clj + Czj)Xj — (3— 0.01(X1+X2—|—X3))Xj V€ {1, 2, 3}
The feasible space is defined according to:
3.25x1 + 1.25x +4.125¢3 < 100

2.2915¢ 4 1.5625¢; 4 2.8125¢; < 100
xj >0,¥j € {1,2,3}
The NNE isx; = 21.14,x5 = 16.03,x; = 2.927 [9], [§], [14].

5.4 Problem 4

This problem describes an internet switching model with [Eygrs proposed in
[L7] and also studied irf][9]. The cost function for playés given by

Xj
(Xg+ ... +X10)

)(1_("”"1'”10)), Vje{L,..,10}

@ (%) =—(

The feasible solution space is:
10
X = {xe 0%%x; > 0.01,Vj € {1,...,10}, > x <1}
=1

The NNE isx; = 0.09, Vj={1,...,10} [Lq].



5.5 Problems 5a and 5b

The last problem studied is a non-linear Cournot-Nash Gaitte 3vplayers pro-
posed in [15] which we refer to as Problem 5a. Inclusion ofolnm 5a serves to
emphasize that the method articulated here can be appliedttostandard Nash
Games and GNEPs and thus demonstrate that the method iraffésig more gen-
eral than that proposed iﬂ13]. With the introduction of adarction constraint in
[@], it is transformed into a GNEP (and referred to as Pnol® herein).

For both problems, each player’s cost function is given as:

B . # B2 .
B+ 1 +1)Lj fixj B —P(X)x, Vje{1,..,5}

@ (x) = (Xj) = ¢jXj + (
5
P(x) = 5000C1 (§ x;)(T1).vj € {1,...,5}
J; j

The firm dependent parameters,(8jandL;) are found in [15][1l7]. The feasible
space for Problem 5a (NEP) is the positive axis as productmmot be negative.
The solution of the NEP ix* = [36.931841.817543.706042.658839.1786"
[EIHITE]]

The feasible space for the GNEP variant includes a joint gpctidn constraint
(Problem 5b) given as follows]: [117]

5
X={xeO%x >0Vje {L,..,5}, 5 x <M}
=1

For the case wher® = 100, then the NNE (for GNEP variant 5b) ¥ =
[14.050,17.79820.907,23.111 24.133 " [f].

6 Results

In numerical experiments, we carried out 30 independerg nffDEBLP-SR for
each test problem allowing for a maximum of 200 iteratigWisx; ) each run. Based
on Definitionﬂs, we terminate the algorithm when the objexfinction reaches a
value of . When this target value is reachaxdthe maximum constraint violation
is less than 0.000001, we deem a run to be “successful ” andutmbder of such
runs are reported in Tabl} 1. All runs also utilize the DEtékin strategy@S].
The crossover and mutation factor applied to all problerasbath set 0.9 without
any parameter tuning. Our results illustrate that the dlgor is very useful for
simpler problems but robustness (as measured by standeiatiole and number
of successful runs out of 30) decreases as both non-liggarft Problem 5) and

1 In practice we terminate when the best objective reachesbisthan or equal to 0.000001.



number of players increases (c.f. Problem 4). However, hdisa would be valid
if it does not satisfy the constraints and it is evident tHiat@nstraints are satisfied
for all problems since the maximum constraint violationdéach run is zero.

For the purposes of comparing DEBLP-SR against others geapm the lit-
erature, we also used PSwar@ [25], which is explicitly desdyto handle both
bound and linear constraints, to solve our test problemsaiainable to include
a comparison of DEBLP-SR with PSWARM due to space conssdint instead
have made the performance comparison availabje ap: / / goo. gl / bupzQ.
For this we used the MATLAB version of PSWARM available on therld wide
web atht t p: / / www. nor g. umi nho. pt/ai vaz/ pswar m

Table 1 Results of Application of DEBLP-SR to Test Problems defimanactiorﬂS

Problem Number 1 2 3 4 5a 5b
Best Objective 1E-08 0 2E-08 0 0 0
Worst Objective 1E-07 0 1E-07 3.4E-05 0 1.2E-07
Mean Objective 5.13E-08 0 5.5E-08 4.2E-06 0 5.8E-08
Median Objective 5E-08 0 5E-08 0 0 8E-08
Standard Deviation 2.57E-08 0 2.84E-08 1.1E-05 0 5.33E-08
Maximum Constraint Violation 0 0 0 0 NA 0

Minimum No. of Function Evaluations 400 420 800 4320 1920 @70
Maximum No. of Function Evaluations 660 640 1940 6000 2790 0060
Mean No. of Function Evaluations 529 535 1081 5618 2388 4935
Median No. of Function Evaluations 520 520 1040 5730 2430 5568
Population Size 20 20 20 30 30 30
No. of Successful Runs 30 30 30 24 30 30

7 Conclusions

The Generalized Nash Equilibrium Problem is a Nash Gametéltharacteristic
that the strategic options open to each player depend onathets have chosen.
One particular solution of the GNEP is the Normalized Nashilitarium which can
be found by solving a specialized bi-level program. We hamahstrated the use
of a heuristic method which integrates deterministic oftation with Differential
Evolution to solve the resulting bi-level program. DEBLR-Bicorporates stochas-
tic ranking to deal with constraints and tournament sedectd select survivors
when comparing parent and child chromosomes. We illustridie performance of
DEBLP-SR with numerical examples drawn from the literatanel evidence sug-
gests that DEBLP-SR is a viable algorithm for this class o§iNgames.
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