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Differential Evolution Based Bi-Level
Programming Algorithm for Computing
Normalized Nash Equilibrium

Andrew Koh

Abstract The Generalised Nash Equilibrium Problem (GNEP) is a Nash game with
the distinct feature that the feasible strategy set of a player depends on the strate-
gies chosen by all her opponents in the game. This characteristic distinguishes the
GNEP from a conventional Nash Game. These shared constraints on each player’s
decision space, being dependent on decisions of others in the game, increases its
computational difficulty. A special solution of the GNEP is the Nash Normalized
Equilibrium which can be obtained by transforming the GNEP into a bi-level pro-
gram with an optimal value of zero in the upper level. In this paper, we propose a
Differential Evolution based Bi-Level Programming algorithm embodying Stochas-
tic Ranking to handle constraints (DEBLP-SR) to solve the resulting bi-level pro-
gramming formulation. Numerical examples of GNEPs drawn from the literature
are used to illustrate the performance of the proposed algorithm.

1 Introduction

In a game when a rational agent optimizes her welfare in the presence of others
symmetrically doing the same simultaneously, game theory [23] provides a way
to analyze the strategic decision variables of all players.The solution concept of
such games was analyzed by Nash in [16]. A game is considered to have attained a
Nash Equilibrium (NE) if no one player can unilaterally improve her payoff given
the strategic decisions of all other players. While establishing that an outcome is
not a NE (by showing that a player can profitably deviate) is usually not difficult,
determining the NE itself is more challenging. A review of some deterministic and
stochastic methodologies for determination of NE is found in [13].
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This paper is concerned with a special class of Nash Games known as the Gen-
eralized Nash Equilibrium Problem (GNEP). In the GNEP, the players’ payoffs and
their strategies are continuous (and subsets of the real line) but more importantly
the GNEP possesses the distinctive feature that players face constraints depending
on the strategies their opponents choose. This feature is incontrast to more com-
mon Nash Game where the utility/payoff/reward the players obtain depend solely
on the decisions they make and their actions are not restricted because of the strate-
gies chosen by others. The ensuing constrained action spacein GNEPs makes them
more difficult to resolve than conventional Nash games discussed in monographs
such as [23]. We point out in passing that the solution algorithm proposed in this
paper can be easily applied to conventional Nash games (see below).

This paper is structured thus. Following this introduction, we introduce the
GNEP formally along with the various game theoretic terminologies. In Sect 3 the
key result emphasized is that the GNEP can be formulated as a bi-level program.
Sect 4 outlines DEBLP-SR, a Differential Evolution based algorithm integrated with
deterministic gradient based solvers and embodying stochastic ranking to resolve
the resulting bi-level formulation. Numerical examples from the literature are dis-
cussed in Sect 5. Results of runs using the proposed DEBLP-SRare presented in
Sect 6 and Sect 7 wraps up with some concluding remarks.

2 Nash Equilibrium and the GNEP

This section introduces the notation used throughout this work. The GNEP is a sin-
gle shot normal form game with a setN of players indexed byi ∈ {1,2, ...,n} and
each player can play a strategyxi ∈ Xi which all players are assumed to announce
simultaneously.X ⊆ R

m is the collective action space for all players. In a standard

Nash Game,X =
n
∏
i=1

Xi . X is thus equal to the Cartesian product. In contrast, in a

GNEP, the feasible strategies for playeri ∈ N depend on the strategies of all other
players [1],[4],[10],[21]. We denote the feasible strategy space of each player by
the point to set mapping:K i : X−i → Xi ,∀i ∈ N that emphasizes the ability of other
players to influence the strategies available to playeri [4],[7],[21]. The distinction
between a conventional Nash game and a GNEP is therefore analogous to the dis-
tinction between unconstrained and constrained optimization.

To emphasize the variables chosen by playeri, we writex ≡ (xi ,x−i) wherex−i

is the combined strategies of all players in the game excluding that of playeri i.e.
x−i ≡ (x1, ...,x(i−1)

,x
(i+1)

, ...,xn). Critically note that the notation(xi ,x−i) does not
mean that the components ofx are reordered such thatxi becomes the first block. In
addition, letφi(x) be the payoff/reward to playeri, i ∈ N if x is played.

Definition 1 [21] A combined strategy profilex∗ = (x∗
1
,x∗

2
, ...,x∗n) ∈ X is a Gener-

alized Nash Equilibrium for the game if:

φi(x
∗
i ,x
∗
−i)≥ φi(xi ,x

∗
−i), ∀xi ∈ K(x∗−i) ,∀i ∈ {1,2, ...,n}.



At a Nash Equilibrium no player can benefit (increase individual payoffs) by
unilaterally deviating from her current chosen strategy. Players are assumed not to
cooperate and so each is doing the best she can given what her competitors are doing
[5],[13],[23]. For a GNEP, the strategy profilex∗ is a Generalized Nash Equilibrium
(GNE) if it is feasible with respect to the mappingK i and if it is a maximizer of
each player’s utility over the constrained feasible set [7].

2.1 Nikaido Isoda Function

The Nikaido Isoda (NI) function in Eq 1 is an useful tool used in the study of Nash
Equilibrium problems eg. [3],[4],[8],[10]. Its interpretation is as follows: each sum-
mand shows the increase in payoff a player will receive by unilaterally deviating
and playing a strategyyi ∈ K(x−i) while other players play according tox.

Ψ(x,y) =
n

∑
1
[φi(yi ,x−i)−φi(xi ,x−i)] ,∀i ∈ {1,2, ...,n} (1)

The NI function is always non-negative for any combination of x andy. Fur-
thermore, this function is everywhere non-positive when either x or y is a Nash
Equilibrium point by virtue of Definition 1 since at a Nash Equilibrium no player
can increase their payoff by unilaterally deviating. This result is summarized in Def-
inition 2.

Definition 2 [10] A vector x∗ ∈ X is called a Normalized Nash Equilibrium if
Ψ(x,y) = 0.

2.2 Solution Approaches for the GNEP

A review of solution methods for the GNEP is discussed in the survey [4]. Determin-
istic (i.e. gradient-based) descent, the subject of detailed study in Von Heusinger’s
PhD thesis [9], is the primary solution approach for finding Normalized Nash Equi-
librium (NNE). Krawczyk et al [3],[8],[14] also proposed another deterministic de-
scent method based on minimization of the Nikaido-Isoda function. In this paper
however we exploit the proof that we can find the NNE by formulating the GNEP
as a special bi-level program [2],[21] as discussed in the following section.

3 A Bi-Level Programming Approach for GNEPs

The NNE solution to the GNEP can be found by solving a bi-levelprogramming
problem given by the system of equations in 2 and 3. For a proofsee [2],[21].



max
(x,y)

f (x,y) =−(y− x)T(y− x) (2a)

subject toxi ∈ K i(x−i) ,∀i ∈ {1,2, ...,n}. (2b)

wherey solves

max
(x,y)

(φ1(y
1
,x−1)+ . . .+φn(y

n
,x−n))≡max

(x,y)

n

∑
i=1

[φi(yi ,x−i)−φi(xi ,x−i)] (3a)

subject toyi ∈ K i(x−i) ,∀i ∈ {1,2, ...,n}. (3b)

The upper level problem (Eq 2) is a norm minimization problemsubject to strategic
variable constraints (Eq.2b). The objective function of the lower level problem (Eq
3) is exactly the Nikado Isoda function (Eq 1).

Definition 3 [21] The optimal value of f(x,y) is 0 at the Normalized Nash Equilib-
rium.

Definition 3 will perform the critical role of being the termination criteria of the
proposed DEBLP-SR Algorithm discussed in Sect 4.

4 Differential Evolution for Bi-Level Programming

Differential Evolution (DE) for Bi-Level Programming (DEBLP) was initially pro-
posed in [12] to solve Bi-Level Programs (posed as leader-follower games) arising
in transportation systems management. It follows the Genetic Algorithms Based Ap-
proach proposed in [22] but substitutes the use of binary coded Genetic Algorithms
strings with real coded DE [18] as the stochastic optimization method instead.

DEBLP integrates DE manipulation of the upper level variables with gradient
based optimization of the lower level problem. The characteristic feature of GNEPs
is the constraints facing the players i.e. (Eq.2b); and thusit is necessary to employ
constraint handling techniques to produce solutions that satisfy the constraints. Con-
straint handling methods were not required for the class of Nash Games discussed
in [13] and so the technique proposed here is considered moregeneric.

In the original DEBLP, constraints in the upper level problem were handled by
degrading fitness values if constraints were not satisfied via rudimentary penalty
methods [12]. In this paper, the upper level constraints in Eq 2 are handled using
stochastic ranking [20]. Hence this version of DEBLP is termed DEBLP-SR.

The pseudo code of DEBLP-SR is summarized in Algorithm 1. DEBLP-SR op-
erates thus: A population ofh chromosomes is randomly initialized between the
bounds of the problem and the user provides the control parameters (mutation prob-
ability and crossover factors) for the DE algorithm [18] . The evaluation of fitness
is carried out in a two stage process: In the first stage (lines5 and 13), each chro-



mosome, representingx the upper level variable, is used as a input argument into
the lower level program (Eq 3) parameterized iny. Thus givenx we solve the lower
level program fory using conventional gradient based optimization methods. In the
second stage (lines 6 and 14),x andy are used to compute Eq 2 (f (x) in line 10).
This measures how far the chromosome is from the optimal value of 0 (cf Definition
3) and thus represents the fitness of the chromosomex. In addition, the constraint
violation are also output by the evaluation routine (line 7 and 15).

Stochastic ranking (SR), a robust procedure for handling constraints, uses a
stochastic bubble sort procedure to rank population members taking into account
both the objective function value and constraint violations. (See [20] for more de-
tails). In the first iteration (line 9) the best member of the population is the member
that is assigned a rank of 1 (one) by the SR algorithm. DE operations are subse-
quently used to evolve child chromosomes and evaluated following the two stage
process described in the foregoing.

1: Input:h, Maxit , DE Control Parameters (Mutation Probability, Crossover Factor)
2: it ← 0
3: Randomly initialize a population ofh parent chromosomesP
4: for j = 1 toh do
5: Solve Eq 3 using deterministic optimization given chromosome j ∈P

6: Compute Eq 2 to evaluate fitness of chromosomej ∈P

7: Compute constraint violation of chromosomej ∈P

8: end for
9: Apply Stochastic Ranking to rank each member ofP (between 1 (best member) andh)

10: while it < Maxit or f (x) 6= 0 do
11: Apply DE/best/1/bin [18] to create a child populationC

12: for j = 1 to h do
13: Solve Eq 3 using deterministic optimization given chromosomej ∈ C

14: Compute Eq 2 to evaluate fitness of chromosomej ∈ C

15: Compute constraint violation of chromosomej ∈ C

16: end for
17: Pool Parents and Children Chromosomes:
18: T ←P ∪C

19: Apply Stochastic Ranking to rank each member ofT (between 1 (best member) andh)
20: P ←MaxRank(T )
21: if f (x) = 0 then
22: Terminate
23: else
24: it ← it +1
25: end if
26: end while
27: Output: Normalized Nash Equilibrium

Algorithm 1: :Differential Evolution for Bi-Level Programming with Stochastic
Ranking (DEBLP-SR)

To utilize the ranking information generated by SR, we modify the selection pro-
cedure used for determining whether parent or child surviveinto the next generation.
Instead of the one to one greedy selection found in canonicalDE [18], we pool the



entire set of parent and child chromosomes together and thenapply SR to identify
the toph ranked population members which will survive (this is the set returned by
the MaxRankprocedure in line 20 of Algorithm 1). The rest of the population is
discarded and such a selection procedure is reminiscent of that used in e.g. GENI-
TOR [24]. If the best fitness attains the value of 0andconstraints are satisfied, then
we have found the NNE and the algorithm terminates, else the iteration counter is
increased and the process is repeated untilMaxit generations are exceeded.

5 Numerical Examples

In this section, we give details of the numerical examples towhich we apply
DEBLP-SR and present the results of numerical experiments in Sect 6.

5.1 Problem 1

Problem 1, from [19] was originally solved using a projectedgradient method. This
game has 2 players with 1 decision variable each. Player 1’s objective is:

φ1(x1,x2) =
1
2
(x1)

2− x1x2

Player 2’s objective is:
φ2(x1,x2) = (x2)

2+ x1x2

The feasible space is defined according to:

X = {x∈ℜ2|x1≥ 0,x2≥ 0,−x1− x2≤−1}

As an example, we give the NI function explicitly as:

Ψ(x,y) = [(
1
2

x1
2− x1x2)− (

1
2

y1
2− y1x2)]+ [(x2

2+ x1x2)− (y2
2+ x1y2)]

The NNE isx∗1 = 1,x∗2 = 0 [9],[19].

5.2 Problem 2

Problem 2, again with 2 players and 1 decision variable each,comes from Harker
[7]. Player 1’s objective is:

φ1(x1,x2) = (x1)
2+

8
3

x1x2−34x1



Player 2’s objective is:

φ2(x1,x2) = (x2)
2+

5
4

x1x2−24.25x2

The feasible space is defined according to:

X = {x∈ℜ2|x1≥ 0,x2≥ 0,x1+ x2≤ 15}

The NNE isx∗1 = 5,x∗2 = 9 [7], [9].

5.3 Problem 3

This problem describes an Environmental Pollution ControlProblem known as the
“River Basin Pollution Game” studied by Krawczyk and co-workers [8],[14]. There
are 3 players with 1 variable each. The objective function for player j is:

φ j(x) = (c1 j + c2 j)x j − (3−0.01(x1+ x2+ x3))x j ,∀ j ∈ {1,2,3}

The feasible space is defined according to:

3.25x1+1.25x2+4.125x3≤ 100

2.2915x1+1.5625x2+2.8125x3≤ 100

x j ≥ 0,∀ j ∈ {1,2,3}

The NNE isx∗1 = 21.14,x∗2 = 16.03,x∗3 = 2.927 [9], [8], [14].

5.4 Problem 4

This problem describes an internet switching model with 10 players proposed in
[11] and also studied in [9]. The cost function for playerj is given by

φ j(x) =−(
x j

(x1+ ...+ x10)
)(1−

(x1+ ...+ x10)

1
), ∀ j ∈ {1, ...,10}

The feasible solution space is:

X = {x∈ℜ10|x j ≥ 0.01,∀ j ∈ {1, ...,10},
10

∑
j=1

x j ≤ 1}

The NNE isx∗j = 0.09, ∀ j = {1, ...,10} [10].



5.5 Problems 5a and 5b

The last problem studied is a non-linear Cournot-Nash Game with 5 players pro-
posed in [15] which we refer to as Problem 5a. Inclusion of Problem 5a serves to
emphasize that the method articulated here can be applied toboth standard Nash
Games and GNEPs and thus demonstrate that the method in this paper is more gen-
eral than that proposed in [13]. With the introduction of a production constraint in
[17], it is transformed into a GNEP (and referred to as Problem 5b herein).

For both problems, each player’s cost function is given as:

φ j(x) = (x j) = c jx j +(
β j

β j +1
)L j

−1
β j x j

β j+1

β j −P(x)x j , ∀ j ∈ {1, ...,5}

P(x) = 5000
1

1.1 (
5

∑
j=1

x j)
−( 1

1.1 ),∀ j ∈ {1, ...,5}

The firm dependent parameters (c j , β jandL j ) are found in [15],[17]. The feasible
space for Problem 5a (NEP) is the positive axis as productioncannot be negative.
The solution of the NEP isx∗ = [36.9318,41.8175,43.7060,42.6588,39.1786]T

[6],[15].
The feasible space for the GNEP variant includes a joint production constraint

(Problem 5b) given as follows: [17]

X = {x∈ℜ5|x j ≥ 0 ∀ j ∈ {1, ...,5},
5

∑
j=1

x j ≤M}

For the case whereM = 100, then the NNE (for GNEP variant 5b) isx∗ =
[14.050,17.798,20.907,23.111,24.133]T [9].

6 Results

In numerical experiments, we carried out 30 independent runs of DEBLP-SR for
each test problem allowing for a maximum of 200 iterations(Maxit ) each run. Based
on Definition 3, we terminate the algorithm when the objective function reaches a
value of 01. When this target value is reachedandthe maximum constraint violation
is less than 0.000001, we deem a run to be “successful ” and thenumber of such
runs are reported in Table 1. All runs also utilize the DE/best/1/bin strategy [18].
The crossover and mutation factor applied to all problems are both set 0.9 without
any parameter tuning. Our results illustrate that the algorithm is very useful for
simpler problems but robustness (as measured by standard deviation and number
of successful runs out of 30) decreases as both non-linearity (c.f. Problem 5) and

1 In practice we terminate when the best objective reached is less than or equal to 0.000001.



number of players increases (c.f. Problem 4). However, no solution would be valid
if it does not satisfy the constraints and it is evident that all constraints are satisfied
for all problems since the maximum constraint violation foreach run is zero.

For the purposes of comparing DEBLP-SR against others proposed in the lit-
erature, we also used PSwarm [25], which is explicitly designed to handle both
bound and linear constraints, to solve our test problems. Weare unable to include
a comparison of DEBLP-SR with PSWARM due to space constraints but instead
have made the performance comparison available athttp://goo.gl/bupz0.
For this we used the MATLAB version of PSWARM available on theworld wide
web athttp://www.norg.uminho.pt/aivaz/pswarm.

Table 1 Results of Application of DEBLP-SR to Test Problems defined in Section 5

Problem Number 1 2 3 4 5a 5b

Best Objective 1E-08 0 2E-08 0 0 0
Worst Objective 1E-07 0 1E-07 3.4E-05 0 1.2E-07
Mean Objective 5.13E-08 0 5.5E-08 4.2E-06 0 5.8E-08

Median Objective 5E-08 0 5E-08 0 0 8E-08
Standard Deviation 2.57E-08 0 2.84E-08 1.1E-05 0 5.33E-08

Maximum Constraint Violation 0 0 0 0 NA 0
Minimum No. of Function Evaluations 400 420 800 4320 1920 2700
Maximum No. of Function Evaluations 660 640 1940 6000 2790 6000

Mean No. of Function Evaluations 529 535 1081 5618 2388 4935
Median No. of Function Evaluations 520 520 1040 5730 2430 5685

Population Size 20 20 20 30 30 30
No. of Successful Runs 30 30 30 24 30 30

7 Conclusions

The Generalized Nash Equilibrium Problem is a Nash Game withthe characteristic
that the strategic options open to each player depend on whatothers have chosen.
One particular solution of the GNEP is the Normalized Nash Equilibrium which can
be found by solving a specialized bi-level program. We have demonstrated the use
of a heuristic method which integrates deterministic optimization with Differential
Evolution to solve the resulting bi-level program. DEBLP-SR incorporates stochas-
tic ranking to deal with constraints and tournament selection to select survivors
when comparing parent and child chromosomes. We illustrated the performance of
DEBLP-SR with numerical examples drawn from the literatureand evidence sug-
gests that DEBLP-SR is a viable algorithm for this class of Nash games.
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